
Technote 1128
Understanding Open Transport Memory Management

By Quinn "The Eskimo!"
Apple Worldwide Developer Technical Support

CONTENTS

Introducing OT Memory Management

Using OT Memory Effectively

Advanced Topics

Summary

This Technote describes how Open Transport's

interrupt-safe memory management system works, and
how you can use it for best effect in your software.

This Technote is directed at advanced programmers
writing Open Transport client or kernel code.

Introducing OT Memory Management
Open Transport provides many different interrupt-safe memory allocation routines. These include
OTAllocMem, OTAlloc, OTAllocSharedClientMem and OTAllocPortMem. In order to know which
routines to use in which circumstances -- and how using these routines affects the memory available to
Open Transport and the rest of Mac OS -- you need to understand the OT memory management system.

Pools of Power

OT memory management is layered on top of four classes of memory pools:

1. A client pool is allocated for each program that calls InitOpenTransport (or
InitOpenTransportUtilities). It is used to satisfy OT memory allocations for that program
and it is destroyed when that program calls CloseOpenTransport (either explicitly or by an
application quitting).

2. The shared client pool (also known as the native pool) is allocated when the first program
calls InitOpenTransport (typically this is the AppleTalk protocol stack, early in the boot
sequence). This pool is used by the OT client-side libraries for the bulk of their allocation.

3. The kernel pool is allocated the first time the OT kernel is loaded. It is used by the OT kernel
and its plug-ins (for example, STREAMS modules and drivers).

4. The port pool is allocated the first time a program calls InitOpenTransport or
InitOpenTransportUtilities. The pool is used to hold information about ports. It is distinct
from the kernel pool, because port scanners can run without loading the kernel, hence without
creating the kernel pool.

Open Transport memory pools are implemented by the Apple Shared Library Manager (ASLM)
TStandardPool class and inherit some attributes from that class:

1. A pool is always allocated within a Mac OS Memory Manager zone.
2. Each pool starts with an initial size.
3. Memory pools are interrupt-safe. You can allocate memory from the OT memory pools at any

time. However, the pool can only grow at system task time. If you allocate memory at interrupt
time, the allocation may fail even though there is enough memory in the zone to grow the pool to
meet the request.

4. When the pool runs low on memory, the pool expands by allocating memory from the Mac OS
Memory Manager at system task time. The pool grows by a percentage factor, known as the
grow by factor. The amount grown is bounded below by the minimum grow amount.

5. The pool starts to grow when the amount of free space in the pool drops below the low mark.
There is also a high mark, which defines when the pool should start to shrink. This feature is
used only by the kernel pool.

Note:
You can read more about the ASLM memory pool classes in the ASLM Developer's Guide, available as
part of the ASLM SDK on the Mac OS SDK CDs.

Pool Parameters

The following tables gives the basic parameters of the various Open Tranpsort memory pools.

Pool Type Zone Initial Grow By Min Grow Low Mark High Mark

Client [1] Appl 2K 20% 2K 1K infinite

Client [2] System 1K 20% 2K 512 infinite

Shared System 2K 20% 4K 2K+1 infinite

Kernel System [3] 2K 20% 34K 34K+1 [4]

Port System 2K 20% 1K 1K+1 infinite

Notes:

1. This row is for client programs that link with the OT application libraries (those whose names
end with "App") and who have not called InitLibraryManager.

2. This row is for client programs that link with the OT extension libraries (those whose names end
with "Extn") and who have not called InitLibraryManager.

3. OT explicitly holds (in the virtual memory sense) the memory in the kernel pool. OT does not
guarantee to hold the memory in the other pools.

4. The OT kernel pool shrinks and grows depending on a number of factors, which are described
below.

Using OT Memory Effectively
This section describes various hints and tips for using the OT memory management system effectively.

OT Routines and their Pool Usage

The following table is a summary of the common OT routines that allocate memory, the amount of
memory they allocate, and the pool from which they allocate.

Routine Pool Approximate Amount

OTAllocMem [1] Client depends on size parameter

OTAllocMem [1] Kernel depends on size parameter

OTAlloc Client depends on ref and fields parameters

OTAllocSharedClientMem Shared depends on size parameter

OTAllocPortMem Port depends on size parameter

OTOpenEndpoint
Client
Shared
Port

16 bytes
150 bytes
1 KB

OTStreamOpen Shared
Kernel

40 bytes
1 KB

OTCreateConfiguration Shared 100 bytes [2]

OTSnd Kernel nbytes [3]

IMPORTANT:
These amount are approximate. The values vary depending on the relative complexity of the protocol
being used and between versions of Open Transport. These values are only meant as a guide
for analyzing your program's memory needs.

Notes:

1. OTAllocMem behaves differently depending on the libraries with which you link. If you link with
the OT client libraries (for example, OpenTransportLib), OTAllocMem allocates memory from
the client pool. If you link with the OT kernel libraries (for example, OpenTptModuleLib),
OTAllocMem allocates memory from the kernel pool.

2. The exact size depends on the complexity of the configuration. This value is a lower bound,
based on a simple call to OTCreateConfiguration("serial").

3. This memory is consumed only if the endpoint is copying sent data (i.e., ack sends if off),
which is the default setting. If no-copy sends are enabled, the routine allocates a much smaller
amount of housekeeping memory.

Examining Memory Pools in MacsBug

The above analysis was done empirically, by calling each routine repeatedly while recording the effect on
each memory pool. While OT provides no programming interface for measuring the usage of its memory
pools, you can easily find the pools in MacsBug.

First, you will need to find the debug version of Open Transport -- available via links on the OT web
page -- and extract the "OT Debugger Prefs" file, included as part of the install package:

 Open Tpt Debug Installer
 Open Transport Installer
 Open Transport Files
 OT Debugger Prefs

You should copy the "OT Debugger Prefs" file to your MacsBug Preferences folder, then restart your
machine.

IMPORTANT:
It is vital that you use the "OT Debugger Prefs" file from a debug install of OT whose version number
matches the version of OT you have installed. The "OT Debugger Prefs" file contains MacsBug
templates that are automatically generated by the OT build system to match the layout of the fields in the
OT data structures. This layout changes from version to version of OT. If you have the wrong version
of the "OT Debugger Prefs", you will not get accurate results in MacsBug.

Once you have the "OT Debugger Prefs" file installed, you can use it to find and display the various OT
memory pools. The first step is to dump the OT globals. This is done differently on 68K and PowerPC,
and is explained in the following sections.

Dumping OT Globals on PowerPC

On PowerPC, you can dump the OT globals using the following command:

>>> dm __gOTGlobal OTGlobal
 Displaying OTGlobal at 0006BDA0
 0006BDA0 fGestaltValue 0000003F
 0006BDA4 f68KDeferredProc 00000000
 0006BDA8 fVersion 01308000
 [... other stuff deleted ...]
 0006BF04 fClientGlobal
 0006BF04 fClientList
 0006BF04 fHead 005F1714
 [... other stuff deleted ...]
 0006BF30 fNativePool 00095320
 [... other stuff deleted ...]
 0006BF8C fKernelGlobal
 0006BF8C fKernelPool 0039A4A0
 0006BF90 fKernelPoolMaxSize #13421772
 [... other stuff deleted ...]
 0006BFD4 fPortPool 0037AA90
 [... other stuff deleted ...]

OT exports the address of the OT globals as a CFM symbol, __gOTGlobal. The above command dumps
that address using the OTGlobal template from the "OT Debugger Prefs" file. As far as memory usage is
concerned, there are three fields of interest:

1. fNativePool -- This is the address of the shared client pool.
2. fKernelPool -- This is the address of the kernel pool.
3. fClientList.fHead -- This is the head of the OT client list. You can dump out the first client

using the command:
>>> dm 5f1714 RegisteredClient
 Displaying RegisteredClient at 005F1714
 005F1714 fLink
 005F1714 fNext 005F15BC
 005F1718 fProviders
 005F1718 fHead 005F13D0
 005F171C fStreams
 005F171C fHead 00000000
 005F1720 fWhoAmI 070A7134
 [... other stuff deleted ...]

You can examine the next client by following the fLink.fNext field. Your application will be
the one whose fWhoAmI field points into your application heap. One you've found your
application, you can display its connection to ASLM by dumping its fWhoAmI pointer using the

TLibraryManager template, as shown below:
>>> dm 70a7134 TLibraryManager
 Displaying TLibraryManager at 070A7134
 070A7134 __vptr 003873B0
 070A7138 fPool 070A6780
 070A713C fLibraryFile 00000000
 070A7140 fDefaultPool 070A6780
 [... other stuff deleted ...]

The address of your client pool is held in the fDefaultPool field.

Given the address of a pool, you can do a number of things with it:

The following MacsBug command will display some basic information about the pool:
>>> dm 70a6780 TMemoryPool
 Displaying TMemoryPool at 070A6780
 070A6780 __vptr 00386F40
 070A6784 fMemList 070A6770
 070A6788 fSize #2408
 070A678C fLowMark #1797
 070A6790 fHighMark #4294967295
 070A6794 fMaxUsed #352
 070A6798 fCurFree #2056
 070A679C fZone 06F7CF00
 070A67A0 fMemType #1
 [... other stuff deleted ...]

The fSize field is the total amount of memory in the pool. The fCurFree field is the amount of
free memory left in the pool.

The dumppool dcmd will display the list of memory blocks in the pool, for example:
>>> dumppool 70a6780
 Allocated Memory

 70a7000(#16) 70a7010(#16) 70a7020(#168)
 70a70c8(#64) "!$plnt"
 70a7108(#40) "!$slst"
 70a7130(#48) "!$lmgr"
 Free Memory

 70a67f8(#2056)

The dumprawpool dcmd will display a more detailed list, for example:
>>> dumprawpool 70a6780
 Allocated Memory

 F: 70a67f8(#2056)
 A: 70a7000(#16) 70a7010(#16) 70a7020(#168)
 A: 70a70c8(#64) "!$plnt"
 A: 70a7108(#40) "!$slst"
 A: 70a7130(#48) "!$lmgr"

Dumping OT Globals on 68K

On 68K, the procedure is slightly more complex. The first step is to find the address of the OT global.
You do this using the following MacsBug command:

IMPORTANT:
For this to work you will need to install the debug version of OT so that MacsBug can find the
FetchOTGlobal symbol.

>>> hx 2800
 The target heap is the System heap at 00002800
>>> il FetchOTGlobal
 Disassembling from FetchOTGlobal
 FetchOTGlobal
 +00000 0015D5E2 LINK A6,#$0000 | 4E56 0000
 +00004 0015D5E6 MOVE.L $00092434,D0 | 2039 0009 2434
 +0000A 0015D5EC UNLK A6 | 4E5E
 +0000C 0015D5EE RTS | 4E75
 [... other stuff deleted ...]

The first command switches the current MacsBug target zone to the system heap. The next command
disassembles a function that returns the address of the OT globals. The line at FetchOTGlobal + 4
moves the address of the OT globals into register D0. In this case, the address of the OT globals is stored
in memory location $00092434. You can dump the globals using the following MacsBug command:

>>> dm 92434^ OTGlobal
 Displaying OTGlobal at 000B5050
 000B5050 fGestaltValue 0000000F
 000B5054 f68KDeferredProc 00238164
 000B5058 fVersion 01306007
 [... other stuff deleted ...]

After dumping the OT globals, you can proceed as in the PowerPC case.

Controlling Client Pool Parameters

As described above, the OT client pool for an application is allocated in the application heap when you
call InitOpenTransport. The pool starts very small and grows on demand. However, this behavior is
not always optimal. Specifically, if you want to exclusively use the OT memory allocators in your
application, you should dedicate your entire application heap to their use. Having the allocators consume
your application heap piecemeal is much less efficient than giving it to them in one big chunk.

You can obtain more control over your client pool by using the ASLM programming interface. If you
have already initialized a connection to ASLM, InitOpenTransport will use it (and its client pool)
instead of creating its own. You can use this to control how large your client pool is, where it is
allocated, and how it grows.

Note:
To program with ASLM, you need the ASLM SDK from the Mac OS SDK CDs.

IMPORTANT:
To call ASLM from 68K C or C++ code, you must be building with the 4-byte integers.

To use this technique, you must call InitLibraryManager before calling InitOpenTransport. In
addition, you must call CleanupLibraryManager after calling CloseOpenTransport. The prototypes

for these routines are defined in "LibraryManager.h", but they are given below for your convenience.

OSErr InitLibraryManager(size_t poolsize, int zoneType, int memType);
void CleanupLibraryManager(void);

The additional parameters to InitLibraryManager allow you to specify the initial size for your client
pool (in bytes), the location of the client pool (typically kSystemZone, kApplicZone, or kCurrentZone
), and the type of memory for the client pool (typically kNormalMemory; however, if you access the
memory when paging is unsafe, kHoldMemory may be useful).

The following code snippet demonstrates this technique. It first creates a subsidiary zone within the
application heap (whose size is calculated to consume the entire heap, minus some memory for use by the
toolbox). It then calls InitLibraryManager to connect to ASLM (and establish the client pool in the
subsidiary zone) before calling InitOpenTransport.

static OSStatus InitOpenTransportWithMemoryLimit(void)
{
 OSStatus err;
 SInt32 junkTotalFree;
 SInt32 contigFree;
 SInt32 zoneSize;
 Ptr subsidiaryZone;
 THz oldZone;

 // First call the system Memory Manager to determine the largest
 // contiguous block in the heap.

 PurgeSpace(&junkTotalFree, &contigFree);

 zoneSize = contigFree - kBytesReservedForToolboxInApplicationZone;

 // Allocate the memory for our zone and create a zone in that
 // block. Then init ASLM, telling it to create a pool that
 // takes up the entire zone (minus the ASLM overhead factor)
 // in the current zone, i.e., the zone we just created. Finally,
 // initialize OT. OT will see that we've inited ASLM and use
 // the pool that ASLM created (in the zone we created) for
 // satisfying OTAllocMem requests.

 subsidiaryZone = NewPtr(zoneSize);
 oldZone = GetZone();

 // InitZone sets the current zone to the newly created zone,
 // so I don't have to do it myself.

 InitZone(nil, 16, subsidiaryZone + zoneSize, subsidiaryZone);
 err = InitLibraryManager(zoneSize - 2048, kCurrentZone, kNormalMemory);
 if (err == noErr) {
 err = InitOpenTransport();
 if (err != noErr) {
 CleanupLibraryManager();
 }
 }
 SetZone(oldZone);

 return err;
}

Note:
This code is a simplified version (less error checking) of the code used by the DTS sample code
OTStreamLogViewer. If you use this technique, you should get the real code from that sample.

Note:
The above technique is by no means the only one available to you using the ASLM API. You should
read the ASLM Developer's Guide for more information.

Advanced Topics
This section describes some of the more advanced issues in the realm of OT memory management.
Specifically, the section describes how the OT shared client and kernel pools grow and shrink over time.
Before tackling this, you need to learn about another API call you can make to alter the behavior of the
OT memory system.

Note:
This section of the note is intended for those with an intimate knowledge of the Open Transport
architecture. Do not be alarmed if you do not understand it!

OTSetMemoryLimits

The OTSetMemoryLimits routine allows software to directly affect the behavior of the OT memory
pools. The prototype for the routine is:

#ifdef __cplusplus
extern "C" {
#endif

extern OSStatus OTSetMemoryLimits(size_t growSize, size_t maxSize);

#ifdef __cplusplus
}
#endif

The growSize parameter is the amount by which OT should grow the kernel pool right now. When you
call the routine, OT immediately tries to grow the kernel pool by this amount. The maxSize parameter is
the new maximum size of the kernel pool. OT will never grow the kernel pool larger than this amount.

OTSetMemoryLimits also implicitly sets an internal Open Transport variable called fServerMode. If you
call OTSetMemoryLimits with a positive growSize value, fServerMode is incremented. If you call it
with a zero value, fServerMode is decremented. If fServerMode is non-zero, OT will never downsize
the shared client or kernel pools. To be a good citizen, server software should call OTSetMemoryLimits
with a positive growSize when it starts up, and a zero growSize when it shuts down.

Finally, if you grow the kernel pool by more than 20 KB, OTSetMemoryLimits will also grow the
shared client pool by 10% of the growSize value.

OTSetMemoryLimits is only of use to server software which must handle extremely 'bursty' connection
patterns or many connections in parallel. By increasing the maximum size of the kernel pool, the server
can handle more connections in parallel. By growing the kernel pool immediately (rather than as each
connection is created), the server can handle these parallel connections as soon as it's started, rather than
waiting for the kernel pool to grow through usage. By never downsizing the kernel pool, the server can
handle many connections simultaneously even after a long period of inactivity.

OTSetMemoryLimits must be called at system task time and returns an error result if it can't grow the
kernel pool by the specified amount.

IMPORTANT:
Using OTSetMemoryLimits will never increase the performance of a single connection. It is only useful
for software with dozens of parallel connections. DTS strongly recommends that client software never
call OTSetMemoryLimits.

Note:
The OTSetMemoryLimits routine does not appear in any Open Transport header files. If you use the
routine, you must declare the prototype yourself. This is a consequence of the above policy -- general
application programs should not call this routine.

Note:
There is an earlier incarnation of OTSetMemoryLimits, called OTSetServerMode. This routine has been
completely subsumed by OTSetMemoryLimits.

Growing OT Memory Pools

When OT attempts to grow a pool, it uses a binary back-off algorithm to do so. It starts by attempting to
grow the pool by getting one big block of memory from the Mac OS Memory Manager. If a block of that
size is not available, it halves the size requested and tries again. This process terminates when either OT
has grown the pool the requested amount, or the block size shrinks below 10 KB.

Shrinking OT Memory Pools

ASLM memory pools have the ability to shrink. A memory pool is made up of a number of
discontiguous memory blocks that have been allocated from the Mac OS Memory Manager. When a pool
is downsized, each Mac OS memory block is examined to see if it is empty. If it is, that memory block
is released back to the Mac OS Memory Manager.

OT memory pools are downsized at the following points:

Whenever a client dies (it calls CloseOpenTransport or an application quits without calling
CloseOpenTransport) and OT is not in server mode, OT downsizes the shared client and
kernel pools.
Whenever OT unloads the client libraries, it downsizes the shared client pool.
Whenever OT unloads the kernel (which happens when there are no remaining clients who called
InitOpenTransport), it downsizes the kernel pool if OT is not in server mode.
Whenever OT unloads the kernel utilities library (which happens when there are no remaining
clients who called InitOpenTransportUtilities), OT downsizes the port pool.
OT downsizes the port pool after it runs port scanners.
OT downsizes the shared client pool immediately after it runs through the list of configurators
calling their OTSetupConfigurator or OTStartupConfigurator entry points.

More Kernel Pool Trivia

OT maintains a hard limit on the upper bound of the size of the kernel pool. Clients can set this limit
using the OTSetMemoryLimits routine. This poses the question: What is the initial value for this limit?
Out of the box, OT sets this limit to 10% of the physical memory on the machine (as returned by
gestaltPhysicalRAMSize). This strikes a balance between providing enough buffer space for
networking while preventing OT from consuming all the user's memory.

When the kernel is loaded for the first time, OT creates the kernel pool at the initial size specified above.
However, each time the kernel loads (including the first time), OT forces the kernel to grow to be at least
96 KB before finishing the load. This mechanism allows the kernel pool to be small while the kernel is
unloaded, but grow quickly when the kernel loads.

Summary
Open Transport provides a reliable, flexible, and interrupt-safe memory management system. By
understanding how it works, you can avoid some common pitfalls and still write code that allocates
memory at interrupt time. Finally.

Further References

Inside Macintosh: Networking With Open Transport
Inside Macintosh: Memory
Apple Shared Library Manager Developer's Guide
Open Transport Web Page

Downloadables

Acrobat version of this Note (152K).

Acknowledgments

Thanks to Mark Cookson, Steve Kalkwarf, Rich Kubota and Brad Suinn.

To send feedback, please use the Feedback page.

11-May-98

Technotes
Previous Technote | Contents | Next Technote

