

ð

2

T E C H N O T E :
Driver Loader Library Call
GetDriverInformation:
A Bug & Workaround 2

By John Miller
john_miller@quickmail.apple.com
Apple Integration Quality/API Quality Tools

This Technote describes a workaround to a bug in the first version of the Driver
Loader Library in System 7.5.2 and System Update 7.5.3 (it should be fixed in
later versions of the Mac OS). As of this writing, the Driver Loader Library is
only available on Power Macintoshes that support PCI cards (for example:
Power Mac 7200, 7500, 8500 and 9500). There is a bug in the routine
GetDriverInformation that can possibly cause an overwriting past the end of
the name string that it is passed in.

This Technote is directed primarily at writers or family experts and especially
applications that get information about drivers.

Defining the Problem 2

In the Driver Loader Library, there is a bug in the routine GetDriverInformation
that can possibly cause an overwriting past the end of the name string that it is
passed in.

This bug surfaces only when calling GetDriverInformation() for a driver that
has had its Device Control Entry fields zeroed when it was closed (the Chooser
Defining the Problem 1 of 8
Technote 1025 - Release 1.0 Apple Computer, Inc. 1/22/96

T E C H N O T E : Driver Loader Library Call

GetDriverInformation

: A Bug &
Workaround

driver has been observed to exhibit this behavior). The bug occurs because
GetDriverInformation() does not check for zeroed fields before using the
dCtlDriver field to reference the driver’s name; instead, it copies a garbage
string from low memory into the name string passed as a parameter to
GetDriverInformation().

If the first byte of this garbage string is larger than the number bytes of storage
allocated by the caller for the name string, then the caller’s data located just
past the end of name’s storage will be overwritten with garbage.

You can see the zeroing out of fields for the Chooser’s driver by following these
steps using any version of MacsBug:

1. Open the Chooser

2. Drop into MacsBug and type:

drvr <return>

3. Look down the list of drivers in the Driver column of the drvr display and
see the Chooser (on my machine it’s at dNum 0xF).
To see what the Chooser’s DCE fields look like before the zeroing type:

dm xxxxx dctlentry <return>

(where xxxxx is the hexidecimal number in the Chooser’s row in the “DCE
at”column in the drvr display)

4. Exit Macsbug by hitting Command-g

5. Close the Chooser window

6. Drop into MacsBug and type:

drvr <return>

You’ll see that name Chooser is replace by blanks in the row that it was in.

7. To see the zeroing of DCE fields type:

dm xxxxx dctlentry <return>

(again, where xxxxx is the hexidecimal number in the Chooser’s row in the
“DCE at” column in the drvr display).
2 of 8 Defining the Problem

Technote 1025 - Release 1.0 Apple Computer, Inc. 1/22/96

T E C H N O T E : Driver Loader Library Call

GetDriverInformation

: A Bug &

You’ll see that all fields except the RefNum field have been zeroed

It’s doubtful that any expert code will encounter this problem if the expert code
executes pre-Finder; applications that execute after the Finder boots are the
most likely victim. If your code calls GetDriverInformation() after a user has a
chance to close one of these “zeroed-out” drivers(and the DCE fields are thus
zeroed), then you will need this workaround. If you call GetDriverInformation
only for a driver that you know doesn’t have its Device Control Entry fields
zeroed upon closing, then you don’t need this workaround because the bug
will not appear. It is only when you traverse the unit table, calling
GetDriverInformation for unknown drivers, that you need to be aware of the
workaround.

GetDriverInformation 2

Here is the declaration for GetDriverInformation as gleaned from the universal
headers file, Devices.h:

extern OSErr
GetDriverInformation(DriverRefNum refNum,

UnitNumber *unitNum,
DriverFlags *flags,
DriverOpenCount *count,
StringPtr name, // ** this is the field we are

concerned with//
RegEntryID *device,
CFragHFSLocator *driverLoadLocation,
CFragConnectionID *fragmentConnID,
DriverEntryPointPtr *fragmentMain,
DriverDescription *driverDesc);

It is the StringPtr name parameter that we are concerned with. If you allocate,
for example, a Str31 to use to pass in as the StringPtr, then (if the erroneous
byte GetDriverInformation thinks is the length byte of the garbage string is
greater than 0x1f, or 31 decimal) GetDriverInformation will unwittingly copy
all the garbage bytes to your code without regard to the actual location of the
end of the name string.
Defining the Problem 3 of 8
Technote 1025 - Release 1.0 Apple Computer, Inc. 1/22/96

T E C H N O T E : Driver Loader Library Call

GetDriverInformation

: A Bug &
Workaround

Solving the Problem 2

The workaround is simple: allocate a String255 for the name parameter passed
into GetDriverInformation(), rather than some shorter-length string. This
means any garbage copied to the string will be contained in that string rather
than any other data. If you’re familiar with GetDriverInformation, that’s all you
need to know: use a Str255 for the name parameter rather than a shorter string
and you’re protected. If you’re not familiar with GetDriverInformation and
would like to see some code to traverse the unit table, sample code is provided
for your information. You also have to take precautions about using the
garbage string data as well (if you were going to display the driver name in an
application, you would probably want to check for non-printing characters if
displaying them would cause problems in your code. You might want to make
sure the garbage length of the name string isn’t too long for your code to
handle).

Sample Code Using GetDriverInformation To Iterate Over
the Driver Unit Table 2

To drive the point home about using a Str255, and also to alert you to another
mandatory initializing of the FSSpec field of the driverLoadLocation struct,
(another input of GetDriverInformation), here is some barebones sample code.
Note that traversing the unit table using GetDriverInformation() is not the
most efficient way to discover which units are empty and which are full. Use
the Driver Loader Library routine, LookupDrivers() for that.

void TraverseDrivers()
{

OSErr err = noErr;
DriverRefNum refNum;
UnitNumber unitNum;
DriverFlags flags;
DriverOpenCount count;
RegEntryID device;
4 of 8 Solving the Problem

Technote 1025 - Release 1.0 Apple Computer, Inc. 1/22/96

T E C H N O T E : Driver Loader Library Call

GetDriverInformation

: A Bug &

CFragHFSLocator driverLoadLocation;
DriverDescription driverDesc;
// Str63 theName; // BAD, not long enough
Str255 theName; // GOOD: THIS IS THE WORKAROUND!
FSSpec loadLocSpec;
short i;

// this is another caveat about using GetDriverInformation(); you must
// initialize the FSSpec ptr field of the driverLoadLocation struct to
// point to an allocated FSSpec because GetDriverInformation assumes you
// have. This is done is the next line below.

 driverLoadLocation.u.onDisk.fileSpec = &loadLocSpec;

for(i = 0; i <= HighestUnitNumber(); ++i){
refNum = ~i; // convert the unit number to a driver refNum.
err = GetDriverInformation(refNum,

&unitNum,
&flags,
&count,
theName,
&device,
&driverLoadLocation,
&fragmentConnID,
&fragmentMain,
&driverDesc);

if(err != noErr){ // there’s a driver for this refNum

// Do whatever it was you wanted to do with the information
// BEWARE: If the driver is a non-native driver, that is a
// 68k driver of pre-PCI-supporting Macintosh, the device,
// driverLoadLocation, fragmentConnID, fragmentMain, and
// driverDesc inputs above will be set to nil after the call
// because these fields don’t apply to 68k drivers.

}
} // for

} // end TraverseDrivers()
Sample Code Using GetDriverInformation To Iterate Over the Driver Unit Table 5 of 8
Technote 1025 - Release 1.0 Apple Computer, Inc. 1/22/96

T E C H N O T E : Driver Loader Library Call

GetDriverInformation

: A Bug &
Workaround

Reference for GetDriverInformation 2

GetDriverInformation 2

GetDriverInformation returns a number of pieces of information about an
installed driver.

OSErr GetDriverInformation
(DriverRefNum refNum,
 UnitNumber *unitNum,
 DriverFlags *flags,
 DriverOpenCount *count,
 StringPtr name,
 RegEntryID *device,
 CFragHFSLocator *driverLoadLocation,
 CFragConnectionID *fragmentConnID,
 DriverEntryPointPtr *fragmentMain,
 DriverDescription *driverDesc);

refNum refNum of driver to examine

unit resulting unit number

flags resulting DCE flag bits

count number of times driver has been opened

name rresulting driver name

device resulting Name Registry device specification

driverLocation
resulting CFM fragment locator (from which the driver was
loaded)

fragmentConnIDresulting CFM connection ID

fragmentMain resulting pointer to DoDriverIO

driverDesc resulting pointer to DriverDescription
6 of 8 Reference for GetDriverInformation

Technote 1025 - Release 1.0 Apple Computer, Inc. 1/22/96

T E C H N O T E : Driver Loader Library Call

GetDriverInformation

: A Bug &

DESCRIPTION

GetDriverInformation is used by driver experts in PCI-bus-supporting
machine, software that makes decisions about which driver to load for a
particular device –– or by any software that needs to get information about a
driver for a device.

Given the Unit Table reference number of an installed driver,
GetDriverInformation returns the driver’s unit number in unit, its DCE flags in
flags, the number of times it has been opened in count, its name in name, its
RegEntryID value in device, its CFM fragment locator in driverLocation, its
CFM connection ID in fragmentConnID, its DoDriverIO entry point in
fragmentMain, and its Driver Description in driverDesc.

Note
With 68K drivers, GetDriverInformation returns
meaningful information in only the unit, flags, count, and
name parameters. ◆

▲ W A R N I N G

You must allocate the FSSpec field of the CFragHFSLocator *
driverLocation before passing it in to
GetDriverInformation(). ▲

RESULT CODES

noErr 0No error

badUnitErr –21Bad unit number

unitEmptyErr –22Empty unit number

Summary 2

To protect yourself against having GetDriverInformation copy garbage into the
passed StringPtr name parameter when a driver has its Device Control Entry
(DCE) fields zeroed upon closing (the Chooser, for example), allocate a large
enough string (for example, String255) for the name parameter. This will
assure that any garbage copied to the string will be contained in that string.
Summary 7 of 8
Technote 1025 - Release 1.0 Apple Computer, Inc. 1/22/96

T E C H N O T E : Driver Loader Library Call GetDriverInformation: A Bug &
Workaround
Further References 2

See Designing PCI Cards and Drivers for Power Macintosh Computers for further
documentation on GetDriverInformation or any other Driver Loader Library
calls.

Acknowledgments 2

Special thanks to Tom Maremaa. Thanks to Larry Chiu, Tom Mason, and Tom
Saulpaugh.
8 of 8 Summary

Technote 1025 - Release 1.0 Apple Computer, Inc. 1/22/96

	T E C H N O T E : Driver Loader Library Call GetDr...
	Defining the Problem
	1. Open the Chooser
	2. Drop into MacsBug and type:
	3. Look down the list of drivers in the Driver col...
	4. Exit Macsbug by hitting Command-g
	5. Close the Chooser window
	6. Drop into MacsBug and type:
	7. To see the zeroing of DCE fields type:

	GetDriverInformation

	Solving the Problem
	Sample Code Using GetDriverInformation To Iterate ...
	Reference for GetDriverInformation
	GetDriverInformation
	DESCRIPTION
	RESULT CODES

	Summary
	Further References
	Acknowledgments

