
ð

T E C H N O T E :
Some Techniques for Handling
Variables in Apple Guide

By Don Swatman
don@bilpin.co.uk
Developer Technical Support (DTS)

Apple Guide has many advantages over other help systems but also has
several drawbacks. One is that it is not easy to keep track of what the user
has already done. This becomes a particular problem if you are writing a
tutorial. For example, your tutorial might have 10 different lessons which the
user may need to complete over several days. How can the user be sure that he
or she has gone back to the point they left the tutorial and not skipped stages?
One way to do this is to store variables within an application.

This Technote also discusses using helper applications with Apple Guide.

Technote 1075 /// Release 1.0 © 1996 /// 10/4/96 /// Page 1 of 9

Storing Apple Guide Variables in an Application
Storing the variables within your application is often the easiest place to put
them. You need to do several things:

• Create storage for the variables and initialize them

• Install Apple Event handlers

• Install custom context check handlers

The examples below just store an array of longs and initialize everything to 0
each time the application is run. For simplicity sake, the codes only going to
set them to 0 or 1 and test whether they are 0 or non 0. An unregistered suite of
Apple Events 'Vals' is going to be used. This is for demonstration purposes only
and you should use your own ID's. The Apple Guide accesses variables 1 to 3,
however, as arrays in 'C' start from 0, indexes from the guide are mapped from
1-3 to 0-2.

Installing and Initializing
You need to create storage for variables and then initialize them. You may
want to store and recall these from a preference file or clear them each time
the application is run. Listing 1 contains storage for 3 variables and a context
check reference. It also shows how to initializes them and install the
handlers.

Listing 1. Initializing the guide variables and handlers

// Maximum number of values that can be stored by app

#define kMaxAGEntries 3

// Storage for values

long gAGValues[kMaxAGEntries];

// Storage for context check references

AGContextRefNum contextRefNum;

void ClearAllAGValues()

{

long count;

for (count=0;count < kMaxAGEntries;count++)

gAGValues[count] = 0;

}

OSErr InitAGVars()

Technote 1075 /// Release 1.0 © 1996 /// 10/4/96 /// Page 2 of 9

{

OSErr theErr = noErr;

short count;

// Clear all the values stored by the application

ClearAllAGValues();

// Install context check handler. MyContextCallBack will
get called when a

// context check of 'Vals' is queried by the Guide

theErr = AGInstallContextHandler(
NewContextReplyProc(MyContextCallBack), 'Vals', 0,
&contextRefNum);

if (theErr)

DebugStr("\pGot an Err - AGInstallContextHandler ");

// set up the dispatch table for the Apple Events

theErr = AEInstallEventHandler('Vals', 'Cler',
NewAEEventHandlerProc(ClearAGValues), 0, false) ;

theErr = AEInstallEventHandler('Vals', 'Clr1',
NewAEEventHandlerProc(ClearAGValues1), 0, false) ;

theErr = AEInstallEventHandler('Vals', 'Clr2',
NewAEEventHandlerProc(ClearAGValues2), 0, false) ;

theErr = AEInstallEventHandler('Vals', 'Clr3',
NewAEEventHandlerProc(ClearAGValues3), 0, false) ;

theErr = AEInstallEventHandler('Vals', 'Set1',
NewAEEventHandlerProc(SetAGValues1), 0, false) ;

theErr = AEInstallEventHandler('Vals', 'Set2',
NewAEEventHandlerProc(SetAGValues2), 0, false) ;

theErr = AEInstallEventHandler('Vals', 'Set3',
NewAEEventHandlerProc(SetAGValues3), 0, false) ;

return theErr;

}

Setting and Clearing Variables
Setting and clearing of variables is done by Apple Events. Each event has a
specific ID and no passed parameters. You will probably need to make these
obvious by their ID. For instance, to set and clear value 1, use the event ID's
'Set1' and 'Clr1' . The source for the handlers can be found in Listing 1.

Technote 1075 /// Release 1.0 © 1996 /// 10/4/96 /// Page 3 of 9

Listing 2. Setting and clearing a variable

pascal OSErr SetAGValues1(const AppleEvent *message, const
AppleEvent *reply, long refcon)

{

gAGValues[0] = 1;

return(noErr);

}

pascal OSErr ClearAGValues1(const AppleEvent *message,
const AppleEvent *reply, long refcon)

{

gAGValues[0] = 0;

return(noErr);

}

For ease, you may want to clear all the variables. This is done by event ID
'Cler'.

Listing 3. Clearing all the variables

pascal OSErr ClearAGValues(const AppleEvent *message,
const AppleEvent *reply, long refcon)

 {

ClearAllAGValues();

return(noErr);

}

Interrogating Variables
Checking the state of the variables is handled by Apple Guide context checks.
There are mechanisms to pass data from a guide file into a context check;
therefore, you only need one check which can be used to interrogate all the
values. In this case, two longs are passed in the pInputData parameter. The
easiest way to access them is to create a structure.

Listing 3. Passed data

struct PassedAGParamType

{

long command;

long index;

};

Technote 1075 /// Release 1.0 © 1996 /// 10/4/96 /// Page 4 of 9

typedef struct PassedAGParamType PassedAGParamType,

*PassedAGParamPtr, **PassedAGParamHdl;

If command contains a 0, then a check is made to see if the value is 0. If it
contains a 1, then the check sees it if the value is non-0. Index is used to define
which variable to check.

Listing 4. Context check

pascal OSErr MyContextCallBack(Ptr pInputData,

Size inputDataSize,

Ptr *ppOutputData,

Size *pOutputDataSize,

AGAppInfoHdl hAppInfo)

{

OSErr theErr = noErr;

Boolean checkResult = false;

// Check the index is within range

if (((PassedAGParamPtr)pInputData)->index <=
kMaxAGEntries)

// Work out whether we need to return true or false

if (((PassedAGParamPtr)pInputData)->command == 1)

checkResult = gAGValues[
((PassedAGParamPtr)pInputData)->index - 1] != 0;

else

checkResult = gAGValues[
((PassedAGParamPtr)pInputData)->index - 1] == 0;

// Set up the return values ppOutputData and
pOutputDataSize

theErr = MySetContextResult (checkResult, ppOutputData,
pOutputDataSize);

return theErr;

}

Once the result of the check has been determined, MySetContextResult() is
used to fill in the ppOutputData and pOutputDataSize. The result is returned
in this way because it is part of a far wider mechanism. MySetContextResult

Technote 1075 /// Release 1.0 © 1996 /// 10/4/96 /// Page 5 of 9

creates a pointer and moves the value in result into to it. Next, it returns the
newly created pointer and the size of the data within it. Apple Guide is
responsible for deallocating this pointer.

Listing 5. Setting the context check result

OSErr MySetContextResult(Boolean result, Ptr *outMessage,

Size *outSize)

{

Ptr pOut;

Size theSize = sizeof (Boolean);

OSErr theErr = noErr;

pOut = NewPtr (theSize);

if (pOut)

{

BlockMove((void *)&result, pOut, theSize);

*outSize = theSize;

*outMessage = pOut;

}

else

theErr = MemError();

return theErr;

}

Don't forget to clear up when you quit
Before your application quits, you should remove the context check handlers
using AGRemoveContextHandler . You also may want to save the variables into a
preference file.

Listing 6. Removing the context check

void RemoveAGStuff()

{

OSErr theErr;

theErr = AGRemoveContextHandler(&contextRefNum);

}

Making Use of These Calls
Once the necessary calls have been added to the application, it's time to make
changes to the guide's source files.

Technote 1075 /// Release 1.0 © 1996 /// 10/4/96 /// Page 6 of 9

• Define events

• Define context checks

• Mark sequences that are completed

• Skip completed sequences

Defining the Events
To make use of the events defined in the application, you need to define the
events in the guide.

Listing 7. Defining the events

<Define Event> "ClearValues", 'AgHp', 'Vals', 'Cler'

<Define Event> "SetFlag1", 'AgHp', 'Vals', 'Set1'

<Define Event> "ClearFlag1", 'AgHp', 'Vals', 'Clr1'

ClearValues sends the Apple Event 'Cler' of event class 'Vals' to the
application with the creator type 'AgHp'. This is defined in the application
to clear all variables to 0.

Defining the Context Checks
As previously mentioned, context checks have a mechanism for passing data.
They are defined in the additional parameters of the <DCC> command. In
this case, if we want to check that a variable has been set,we would use the
command:

Listing 8. Defining the context checks.

<DCC> "IsFlagSet", 'Vals', 'AgHp', LONG:1, LONG

'Vals' is the context check in the application with the identifier 'AgHp'. The
first additional parameter is a long with a default value of one. The second is
a long which will need a value entered each time the check is used. These two
parameters correspond to the data structure PassedAGParamType described
above, therefore to check to see if variable one has been set:

<If> (IsFlagSet(1))

If you want to be more specific, for example a check to see if lesson one has
been completed could be:

<DCC> "IsLesson1Done", 'Vals', 'AgHp', LONG:1, LONG:1

<If> (IsLesson1Done())

Note that because both parameters have defaults, you don't need to enter a
parameter when the check is used.

Marking Sequences Completed

To mark a sequence completed, use an <On Panel Hide> command with a
suitable event to set the variable.

Technote 1075 /// Release 1.0 © 1996 /// 10/4/96 /// Page 7 of 9

Listing 9. Marking a sequence complete

<Define Panel> "Lesson 1 - last panel"

Panel text....

<On Panel Hide> SetFlag1()

<End Panel>

Skipping Completed Sequences

To skip sequences, create a containing sequence that will take you through your
tutorial. You'll probably want to put an intro and outro panel into the
sequence. To decide whether to show a lesson sequence, use the <If> command
as shown below. This will skip lessons that have already been completed.

<Define Sequence> "Tutorial"

 <Panel> "Tutorial Intro"

 <If> NOT Flag1Set()

 <Jump Sequence> "Lesson 1"

 <End If>

 <If> NOT Flag2Set()

 <Jump Sequence> "Lesson 2"

 <End If>

 <If> NOT Flag3Set()

 <Jump Sequence> "Lesson 3"

 <End If>

 <Panel> "Tutorial Outro"

<End Sequence>

Helper Applications
It's not always possible for a guide author to have access to the applications
source, therefore it is not always possible to add the features described above
to an application. Also, some applications use Apple Events but are not
necessarily scripted. Setting up these events may be very difficult or
impossible from Apple Guide. In these cases, it's possible to write a small
background only application which can be used to store variables and from
simple Apple Eventsm create and trigger far more sophisticated events. This
small application could be used to store variables and handle the code
described above.

To trigger it, you need to add a compiled Apple Script to the application.

Listing 10. Apple Script to trigger helper application

tell application "AGHelperApp"

Technote 1075 /// Release 1.0 © 1996 /// 10/4/96 /// Page 8 of 9

launch

end tell

When you compile the script, make sure the helper application is in the same
folder as the script. Also, if you change the creator type of the helper, you
will need to recompile the script.

You will probably need to start the helper from the first panel of the tutorial
sequence. In the example below, the compiled script is called
StartHelperApp.

Listing 11. Starting the helper application from within the guide

<Define Panel> "Tutorial Intro"

Tutorial Intro text...

<On Panel Create> DoAppleScript("StartHelperApp")

<End Panel>

Summary

Guide files and tutorials can seriously add to the usability of your
product. Keeping track of how far the user has gone through your tutorial
will help the user learn your product. The techniques in this Technote will
help you to implement this. Use them!

Further Reference

• Apple Guide Complete, published by Addison-Wesley, is an essential
volume if you are writing Apple Guide help systems.

• AGVariable sample code is an example implementation using the
techniques described in this Technote. It contains a 'C' file that can be added
to your application however it based around a helper application.

Acknowledgments

Special thanks to Jason Hodges-Harris.

Technote 1075 /// Release 1.0 © 1996 /// 10/4/96 /// Page 9 of 9

