
 

Strategies for Producing Browser-Based Technical 
Documentation

By Tom Maremaa
Apple Developer Technology Services (DTS)

maremaa@apple.com 

 



CONTENTS

The Omnipresent Trend: Web Bloat

Factors to Consider

Developing a Few Strategies for HTML 
Technical Publishing

Countering Resistance to the Strategy

Using Tables in your HTML Template: 
A Sidebar

Summary 

For better or worse, Web browsers have 

become one of the preferred ways of viewing 
technical documentation. Some 30,000 pages of 
Inside Macintosh were recently converted to 
HTML for online viewing and retrieval -- a 
monumental and important achievement. Yet 
Web browsers and technical documents make 
strange bedfellows indeed. Viewing documents 
in a browser (especially if those documents 
contain complex technical data, extensive 
illustrations, block diagrams, tables and 
cross-references) may be less than satisfactory -- 
the equivalent of reading programmer manuals 
in a fishbowl.

The problem may be that many technical 
documents originated in other forms, such as 
books, articles, or dissertations, and when 
converted to straight HTML -- without concern 
for how the material will be "read" in a Web 
browser -- show their true roots. They beg to be 
printed or read in book format, which may 
frustrate those engineers and programmers who 
are reading them through their Web browsers. 

This Note attempts to provide a few good 
strategies for resolving some of the issues 
around producing and viewing Web-based 
technical documentation. The Note may be 
useful for engineers, technical writers and 
content producers who must wrestle with issues 
of producing documents such as ReadMe files, 
Release Notes, technical articles, and other forms 
of technical communication that land on the 
Web. 



The Omnipresent Trend: Web Bloat

There is no doubt that the number of technical documents produced and published on 
the Web over the last several years has grown exponentially. With powerful new search 
engines indexing every known document ever produced, the Web is a tremendous 
resource for developers and programmers who need to get information on the latest 
Macintosh system updates, for example, or answers to frequently-asked technical 
questions, such as those on Apple's Technical Q&A site. This has accelerated the trend 
for many companies to throw every imaginable piece of technical information on the 
Web -- often without regard for how that information is to be understood or used by the 
readers who visit that company's Website. Indeed, Web bloat is here and shows no signs 
of abating. This may make it more difficult, in fact, to find necessary documents to aid in 
your development efforts, but that's another issue, tangential to this Note. 

Factors to Consider

As more and more technical documentation is being converted to HTML, it is 
important to consider several factors:

1. How you expect the readers who come to your Website to follow the line of 
reasoning presented in each document, and what you want them to take away 
from the experience of reading and viewing these documents online. (Of course, 
you can assume that your readers may download the Acrobat versions of your 
documents, and then print them out and read them in paper form. But in truth, 
how you present your technical documents in HTML may dictate whether your 
Web readers follow through by downloading the Acrobat versions and printing 
them out.)

2. Finding ways of increasing "reader interactivity" with your technical documents 
by adding hypertext links, buttons and cross-references, as well as embedding 
binhexed, downloadable files within the body of each document. For example, 
one of the most popular Notes I've produced is Technote 1031, "History & 
Peregrinations: The Dogcow Goes QuickTime VR," which contains a number of 
embedded, downloadable files that are designed to illustrate the main points of 
the piece. 

Developing a Few Strategies for HTML Technical 
Publishing

There are several strategies you can develop to make sure that your technical documents, 
when converted to HTML, are structured for optimal browsing. 



Strategy #1: Produce the Originals in HTML

If your technical documents are produced originally in HTML, then reviewed and 
distributed as HTML documents before getting posted on your Website, you'll be in a 
much better position to assess if they really work for Web viewing and understanding. 
This may belabor the obvious, but you would be surprised how conditioned we are to 
think in terms of "paper first" and HTML only as an afterthought.

The idea is to be able to determine the response to a technical document by seeing if that 
document works structurally to get across its main points. By writing a document with 
your word processor and then printing that document for review and allowing 
reviewers to comment and mark up the document in pen or pencil, you are in effect 
avoiding all consideration of how your reader will view or respond to the content in a 
Web browser. It's a little like writing a screenplay and handing it out to moviegoers at 
the theatre and asking them to imagine the results onscreen. 

Producing documents originally in HTML may seem like an impossible chore, and until 
recently it was because you had to write the document and then insert all the requisite 
HTML tags so your browser could display it. But that's changed dramatically over the last 
year.

Because of the quality of HTML authoring and editing tools available, you can ask your 
technical writers, engineers and programmers to produce documents initially in HTML. 
This won't be a big stretch for them, if they're not doing it already. I won't list all the 
tools -- Claris Home Page, Adobe PageMill, BBEdit, and FrontPage are just a few -- that 
offer technical writers and engineers the power and flexibility to generate HTML 
documents, often without having to write even a single line of HTML code.

If desktop publishing was the wave of the 1980s, propelling forward a new generation of 
graphic artists, illustrators, printers and electronic publishers, certainly HTML publishing 
is the wave of the 1990s. Picture an environment where all of us are familiar with the 
basics of HTML and work with one of the HTML authoring and editing tools available.

All indications are that HTML is becoming the lingua franca of the known universe, as 
more and more documents are written, exchanged, published, and read in Web browers. 
If Marshall McLuhan changed the world in one sentence -- The Medium is the Message 
-- I think the world has changed us by making us dance to the tune of HTML 
everywhere. 



Strategy #2: Build an HTML Template That Everybody Can Use

Producing HTML technical documents at the outset not only makes more sense from the 
point of view of presenting content to your readers -- it just saves more production time 
in the fast and frenzied world of Web publishing.

For this process to work, you need to build a template in HTML for your technical 
documents. If you build and distribute such a template, you can then ask your technical 
writers and engineers to pour the contents of their drafts into the template for peer 
review.

With Claris Home Page, for example, you can use the Strikethrough feature and color text 
to indicate changes and markups made by your reviewers electronically, and then when 
you are satisfied with the results move to publish the documents on your Website.

We've developed a template for Technotes, which you can download by clicking here.

The template is designed specifically for the content of Technotes. It's a distillation of 
what works best for those who read and rely on Technotes for information from Apple. 

Because Technotes work with a Thesis-Antithesis-Synthesis structure, the first few 
paragraphs of a Note are important for setting up the main thesis. The thesis is not an 
introductory paragraph, as in the traditional essay structure, but rather a formulation of a 
particular theory or problem, which is then "proved" or "disproved" with code snippets, 
diagrams or examples that follow. Each section of the Note must contribute to the issues 
raised at the beginning. The thesis is then resolved in a summary section at the end of the 
Note.

With this content structure in mind, we designed an HTML format that would work 
most effectively for the reader's understanding of the issues presented in a Note. The idea 
here was a simple marriage of form and content with HTML as the minister of 
ceremonies.

Note:
Delivering your documents in HTML does not necessarily mean you have to give up 
using your tried-and-true text editor. You can still produce the initial drafts of your 
documents in a text editor of your choosing. From that point on, you can copy and paste 
the content into an HTML template that you've customized, such as the one we've 
created for Technotes, and then distribute that HTML document for review among your 
peers. 

Countering Resistance to the Strategy

In proposing these strategies, I can hear the voices of resistance clamoring with 
arguments and counterarguments. 

Resistance #1

Aren't we giving up the paper/printed versions of our documents by moving right to 
HTML?



HTML?

The answer is yes and no. Anyone can still print out an HTML document and read it to 
their heart's content. In fact, they can print it out in a font of their choosing and seven 
different font sizes.

Resistance #2

How can you assume that everybody who reads, reviews, or comments on a technical 
document has a Web browser? 

I heard this one about a year ago and agreed with the answer implicit in the question. A 
year later, well...

Resistance #3

What about the PDF or Acrobat delivery of my documents? 

The answer is that it's not difficult at all to produce a PDF or Acrobat version of your 
document from HTML. It just takes a little tweaking of that document, then printing it 
from your Web browser to a file for Acrobat distilling and conversion to PDF. 

Using Tables in your HTML Template: A Sidebar

If you download this Technote template, you'll see that it is set up with a series of tables 
for each section and each code snippet. The code snippets are in a gray table color, notes 
are in yellow. (Code snippets can be placed in a table and specified as preformatted text.) 
Tables, where you specify the width you want the information in them displayed, are the 
way to go.

If you open the template in Claris Home Page 2.0, for example, you'll see that the tables 
have a thin dotted line demarcating their boundaries. This is very useful for capturing 
and viewing technical information; it also helps in terms of reviewing the content.

What's cool is that you can embed tables within tables within tables and live happily 
with the results. 

Web browsers are here to stay as one of the preferred ways of viewing, navigating and 
retrieving technical documentation. With that in mind, if you begin to produce your 
documents originally in HTML, you'll have a better idea of how they'll be read and 
understood in a browser-based viewing environment. This Note provides you with a 
few strategies you can implement to make this happen. 

Further References

Technote 1031: History & Peregrinations: The Dogcow Goes QuickTime 
V R 
Technote 1047: On Creating Web-Friendly Documentation 



Acknowledgments

Thanks to Otto Schlosser, Vinnie Moscaritolo, Jeanne Woodward, and John Gorham.

Send feedback to maremaa@apple.com
Updated: 20-December-96


