

ð

Developer Press

 Apple Computer, Inc. 1995

ð

Developer Note

Macintosh PowerBook 190
Computer

Macintosh PowerBook 190
Macintosh PowerBook 190cs

Thi d t t d ith F M k 4 0 4

ð

Apple Computer, Inc.

 1995 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.
Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, LaserWriter,
LocalTalk, Macintosh, Macintosh
Quadra, Newton, PowerBook, Power
Macintosh, and ProDOS are trademarks
of Apple Computer, Inc., registered in
the United States and other countries.
AOCE, Apple Desktop Bus,
AppleScript, Disk First Aid, Finder,
Mac, Macintosh, PC Exhange, and
QuickDraw are trademarks of Apple
Computer, Inc.

Adobe Illustrator, Photoshop, and
PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
America Online is a service mark of
Quantum Computer Services, Inc.
Classic is a registered trademark
licensed to Apple Computer, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
IBM is a registered trademark of
International Business Machines
Corporation.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Motorola is a registered trademark of
Motorola Corporation.
NuBus is a trademark of Texas
Instruments.
PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.
Unix is a registered trademark of
Novell, Inc., in the United States and
other countries, licensed exclusively
through X/Open Company, Ltd.
Windows is a trademark of Microsoft
Corporation, and SoftWindows is a
trademark used under license by
insignia from Microsoft Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, APDA will replace
the media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Thi d t t d ith F M k 4 0 4

iii

Contents

Figures and Tables ix

Preface

About This Developer Note

xi

Contents of This Note xi
Supplemental Reference Documents xii

Apple Publications xii
Other Publications xiii

Conventions and Abbreviations xiv
Typographical Conventions xiv
Standard Abbreviations xiv

Chapter 1

Introduction

1

Features 2
Appearance 3
Configurations 5
Peripheral Devices 6
Compatibility Issues 6

RAM Expansion Cards 6
Number of Colors 6
Video Mirror Mode 7
Sound Sample Rates 7
Power Manager Interface 7

Chapter 2

Architecture

9

Processor/Memory Subsystem 11
Microprocessor 11
RAM 11
ROM 11
Pratt Memory Controller IC 11

Bus Bridge 12
Input/Output Subsystem 12

Whitney Peripheral Support IC 12
Combo IC 13
Singer IC 13
Power Manager IC 13
Display Controller IC 14
Baboon Custom IC 14
TREX Custom IC 15

Thi d t t d ith F M k 4 0 4

iv

Video Card 15
Keystone Video Controller IC 15
Ariel Video Output IC 15

Chapter 3

I/O Features

17

Internal Hard Disk Drive 18
Hard Disk Specifications 18
Hard Disk Connectors 20

Connector Location 20
Pin Assignments 21
IDE Signal Descriptions 22

Trackpad 23
Keyboard 23
Flat Panel Displays 24

Flat Panel Display Circuitry 24
Number of Colors 25

Serial Port 25
SCSI Port 26
ADB Port 28
Infrared Module 29
Sound System 29

Sound Inputs 30
Sound Outputs 30

Chapter 4

Expansion Modules

31

Expansion Bay 32
Expansion Bay Design 32
Expansion Bay Connector 33

Signals on the Expansion Bay Connector 34
Signal Definitions 35
Unused IDE Signals 37
Power on the Expansion Bay 37

User Installation of an Expansion Bay Device 38
Sequence of Control Signals 38
Guidelines for Developers 38

RAM Expansion 39
Electrical Design Guidelines for the RAM Expansion Card 39

Connector Pin Assignments 39
Signal Descriptions 42
Address Multiplexing 43
Banks of DRAM 44
DRAM Device Requirements 44
Expansion Card Electrical Limits 45

v

Mechanical Design of the RAM Expansion Card 46
RAM Card Dimensions 46
RAM Card Connector 47

Video Card 48
The Apple Video Card 48

Monitors Supported 48
Video Mirroring 49
External Video Connector 50
Monitor Sense Codes 51

Video Card Design Guide 52
Video Card Connector 52
Signals on the Video Card Connector 52
Video Card Mechanical Design 54

PCMCIA Slot 57
PCMCIA Features 57
Summary Specifications 58

Access Windows 58
Data Access 58
Signal Definitions 58
Power 59
Controller Interrupts 59

Chapter 5

Software Features

61

ROM Software 62
Machine Identification 62
Memory Controller Software 63
Power Manager Software 63
Display Controller Software 63
Sound Features 63
ATA Storage Devices 64
IDE Disk Mode 64
Ethernet Driver 64
Support for Function Keys 64
Smart Battery Support 64
Trackpad Support 65

System Software 65
Control Strip 66
Support for ATA Devices 66
Large Partition Support 66

64-Bit Volume Addresses 66
System-Level Software 66
Application-Level Software 67
Limitations 67

Drive Setup 67
Improved File Sharing 68

vi

Math Library 68
QuickDraw Acceleration API 68
Display Manager 68

Chapter 6

Large Volume Support

69

Overview of the Large Volume File System 70
API Changes 70
Allocation Block Size 70
File Size Limits 71
Compatibility Requirements 71

The API Modifications 71
Data Structures 71

Extended Volume Parameter Block 71
Extended I/O Parameter Block 73

New Extended Function 75

Chapter 7

Software for ATA Devices

79

Introduction to the ATA Software 80
ATA Disk Driver 81

Drives on PC Cards 82
Drives in the Expansion Bay 83

ATA Manager 83
ATA Disk Driver Reference 83

Standard Device Routines 84
The Control Routine 84
The Status Routine 85

Control Functions 86
Status Functions 93

ATA Manager Reference 98
The ATA Parameter Block 99
Functions 104

Using the ATA Manager With Drivers 132
Notification of Device Events 132
Device Driver Loading 133

New API Entry Point for Device Drivers 134
Loading a Driver From the Media 135
Notify-all Driver Notification 135
ROM Driver Notification 136

Device Driver Purging 136
Setting the I/O Speed 138

Error Code Summary 139

vii

Chapter 8

PC Card Services

143

Client Information 144
Configuration 148
Masks 155
Tuples 159
Card and Socket Status 163
Access Window Management 164
Client Registration 168
Miscellaneous Functions 170
PC Card Manager Constants 177

Glossary

181

Index

183

ix

Figures and Tables

Chapter 1

Introduction

1

Figure 1-1

Front view of the computer 4

Figure 1-2

Back view of the computer 5

Table 1-1

Models and configurations 5

Chapter 2

Architecture

9

Figure 2-1

Block diagram 10

Chapter 3

I/O Features

17

Figure 3-1

Maximum dimensions of the internal hard disk 19

Figure 3-2

Connector for the internal IDE hard disk 20

Figure 3-3

Position of the hard disk connector 20

Figure 3-4

Keyboard, U.S. layout 23

Figure 3-5

Keyboard, ISO layout 24

Figure 3-6

Serial port connector 25

Figure 3-7

ADB connector 28

Table 3-1

Pin assignments on the hard disk connector 21

Table 3-2

Signals on the IDE hard disk connector 22

Table 3-3

Characteristics of the displays 24

Table 3-4

Serial port signals 26

Table 3-5

Signals on the SCSI connector 26

Table 3-6

ADB connector pin assignments 28

Chapter 4

Expansion Modules

31

Figure 4-1

Expansion bay module 32

Figure 4-2

Expansion bay dimensions 33

Figure 4-3

RAM expansion card 46

Figure 4-4

Dimensions of the RAM expansion card 46

Figure 4-5

Restricted areas on the component side of the card 47

Figure 4-6

Video card 48

Figure 4-7

Video connectors 51

Figure 4-8

Dimensions of the video card 54

Figure 4-9

Video card and 80-pin connector 55

Figure 4-10

Video card bottom view with component restrictions 55

Figure 4-11

Video card top view with component restrictions 56

Figure 4-12

Video card top view 56

Figure 4-13

Detail of EMI shield mounting holes 57

Thi d t t d ith F M k 4 0 4

x

Table 4-1

Signal assignments on the expansion bay connector 34

Table 4-2

Control signals on the expansion bay connector 36

Table 4-3

Floppy disk signals on the expansion bay connector 36

Table 4-4

IDE signals on the expansion bay connector 36

Table 4-5

Unused IDE signals 37

Table 4-6

Power for the expansion bay 37

Table 4-7

Configurations of RAM banks 39

Table 4-8

Signal assignments on the RAM expansion connector 40

Table 4-9

Descriptions of signals on the RAM expansion connector 42

Table 4-10

Address multiplexing for some typical DRAM devices 44

Table 4-11

Video monitors and modes 49

Table 4-12

Signals on the video connector 50

Table 4-13

Monitor sense codes 51

Table 4-14

Signals on the video card connector 52

Table 4-15

Descriptions of the signals on the video card connector 53

Chapter 7

Software for ATA Devices

79

Figure 7-1

ATA software model 80

Table 7-1

Control functions 84

Table 7-2

Status functions 85

Table 7-3

Control bits in the

ataFlags

 field 101

Table 7-4

ATA Manager functions 104

Table 7-5

Event masks 112

Table 7-6

Bits in

pcValid

 field 119

Table 7-7

ATA register selectors 127

Table 7-8

Register mask bits 128

Table 7-9

Event codes send by the ATA Manager 132

Table 7-10

Input parameter bits for the old API 134

Table 7-11

Input parameter bits for the new API 134

Table 7-12

Purge permissions and responses 137

Table 7-13

ATA driver error codes 139

xi

P R E F A C E

About This Developer Note

This developer note describes the Macintosh PowerBook 190 computer,
emphasizing the features that are new or different from those of other
Macintosh PowerBook computers.

This developer note is intended to help hardware and software developers
design products that are compatible with the Macintosh products described in
the note. If you are not already familiar with Macintosh computers or if you
would simply like more technical information, you may wish to read the
supplementary reference documents described in this preface.

This note is published in two forms: an online version included with the Apple
Developer CD and a paper version published by APDA. For information about
APDA, see “Supplemental Reference Documents.”

Contents of This Note 0

The information in this note is arranged in eight chapters.

■

Chapter 1, “Introduction,” introduces the Macintosh PowerBook 190
computer and describes its new features.

■

Chapter 2, “Architecture,” describes the internal logic of the Macintosh
PowerBook 190 computer, including the main ICs that appear in the
block diagram.

■

Chapter 3, “I/O Features,” describes the input/output features, including
both the internal I/O devices and the external I/O ports.

■

Chapter 4, “Expansion Modules,” describes the expansion features of
interest to developers: the expansion bay, the RAM expansion connector,
the video card connector, and the PCMCIA slot.

■

Chapter 5, “Software Features,” describes the new features of the ROM
and system software, with the emphasis on software that is specific to
this computer.

■

Chapter 6, “Large Volume Support,” describes the modifications that
enable the file system to support volumes larger than 4 GB.

■

Chapter 7, “Software for ATA Devices,” describes the low-level program
interface used by utility software for the IDE hard disk drive.

■

Chapter 8, “PC Card Services,” describes the new system software that
supports PC cards in the PCMCIA slot.

Thi d t t d ith F M k 4 0 4

xii

P R E F A C E

Supplemental Reference Documents 0

The following documents provide information that complements or extends
the information in this developer note.

Apple Publications 0

Developers should have copies of the appropriate Apple reference books,
including the relevant volumes of

Inside Macintosh;

Guide to the Macintosh
Family Hardware,

second edition; and

Designing Cards and Drivers for the
Macintosh Family,

third edition

.

 These Apple books are available in technical
bookstores and through APDA.

For information about the PCMCIA slot, PC cards, and the PC Card Manager,
developers should have a copy of

Developing PC Card Software for the Mac OS.

That book is currently available only in draft form, but it is scheduled for
publication at about the time the Macintosh PowerBook 190 computer is
introduced.

For information about the Device Manager and the Power Manager,
developers should have a copy of

Inside Macintosh: Devices.

For information
about designing device drivers for Power Macintosh computers, developers
should have a copy of

Designing PCI Cards and Drivers for Power Macintosh
Computers

.

For information about the control strip, developers should have the Reference
Library volume of the Developer CD Series, which contains Macintosh
Technical Note

OS 06 – Control Strip Modules

.

For information about earlier PowerBook models, developers should also
have copies of the

Macintosh Classic II, Macintosh PowerBook Family, and
Macintosh Quadra Family Developer Notes;

and

 Macintosh Developer Notes,

numbers 1 through 5 and 9. These developer notes are available on the
Developer CD Series and through APDA.

APDA is Apple Computer’s worldwide source for hundreds of development
tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Customers receive
the

APDA Tools Catalog

featuring all current versions of Apple development
tools and the most popular third-party development tools. APDA offers
convenient payment and shipping options, including site licensing.

xiii

P R E F A C E

To order products or to request a complimentary copy of the

APDA Tools
Catalog

, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Other Publications 0

To supplement the information in this developer note, developers should
have copies of the appropriate Motorola reference books for the MC68040
microprocessor. Software developers should have a copy of Motorola’s

MC68040 Programmer’s Reference Manual.

 Hardware developers should have
copies of Motorola’s

MC68030 User’s Manual,

MC68040 User’s Manual,

 and

MC68040 Designer’s Handbook.

For information about the IDE hard disk drive, developers should have a
copy of the ATA/IDE specification, ANSI proposal X3T10/0948D, Revision
2K or later (ATA-2).

For information about PC cards and the PCMCIA slot, developers should
refer to the

PC Card Standard

. You can order that book from

Personal Computer Memory Card International Association
1030G East Duane Avenue
Sunnyvale, CA 94086
Phone: 408-720-0107
Fax: 408-720-9416

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

xiv

P R E F A C E

Conventions and Abbreviations 0

This developer note uses the following typographical conventions and
abbreviations.

Typographical Conventions 0

Computer-language text—any text that is literally the same as it appears in
computer input or output—appears in

Courier

 font.

Hexadecimal numbers are preceded by a dollar sign ($). For example, the
hexadecimal equivalent of decimal 16 is written as $10.

Note

A note like this contains information that is of interest but is not
essential for an understanding of the text.

◆

IMPORTANT

A note like this contains important information that you should read
before proceeding.

▲

▲ W A R N I N G

Warnings like this direct your attention to something that could cause
injury to the user, damage to either hardware or software, or loss of
data.

▲

Standard Abbreviations 0

Standard units of measure used in this note include

A amperes K 1024

cm centimeters KB kilobytes

dB decibels kHz kilohertz

GB gigabytes k

Ω

kilohms

Hz hertz M 1,048,576

k 1000 mA milliamperes

continued

Sidebar

information about a related subject or technical details
that are not required reading.

Sidebars are used for information that is not part of
the main discussion. A sidebar may contain

xv

P R E F A C E

Other abbreviations used in this note include

MB megabytes

µ

s microseconds

MHz megahertz ns nanoseconds

mm millimeters

Ω

ohms

ms milliseconds pF picofarads

mV millivolts V volts

µ

F microfarads VAC volts AC

$

n

 hexadecimal value

n

AC alternating current

ADB Apple Desktop Bus

API application program interface

ATA AT attachment

ATAPI ATA packet interface

BCD binary-coded decimal

CAS column address strobe (a memory control signal)

CCFL cold cathode fluorescent lamp

CD compact disc

CD-ROM compact-disc read-only memory

CIS card information structure

CLUT color lookup table

CMOS complementary metal oxide semiconductor

CPU central processing unit

CSC color screen controller

DAC digital-to-analog converter

DDM driver descriptor map

DMA direct memory access

DOS disk operating system

DRAM dynamic RAM

FIFO first in, first out

FPU floating-point unit

FSTN film supertwist nematic (a type of LCD)

HBA host bus adapter

HFS hierarchical file system

IC integrated circuit

IDE integrated device electronics

I/O input/output

xvi

P R E F A C E

IR infrared

IWM Integrated Woz Machine (a custom IC that controls
the floppy disk interface)

LCD liquid crystal display

LS TTL low-power Schottky TTL (a standard type of device)

MMU memory management unit

n.c. no connection

PCMCIA Personal Computer Memory Card International Association

PWM pulse width modulation

RAM random-access memory

RAMDAC random-access memory, digital to analog converter

RAS row address strobe

RGB red-green-blue (a type of color video system)

rms root-mean-square

ROM read-only memory

SCC Serial Communications Controller

SCSI Small Computer System Interface

SNR signal-to-noise ratio

SOJ small outline J-lead package

SOP small outline package

SRAM static RAM

SVGA super video graphics adapter

TDM time-division multiplexing

TFT thin-film transistor (a type of LCD)

TSOP thin small outline package

TTL transistor-transistor logic (a standard type of device)

VCC positive supply voltage (voltage for collectors)

VGA video graphics adapter

VRAM video RAM

C H A P T E R 1

Introduction 1Figure 1-0
Listing 1-0
Table 1-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 1

Introduction

2

Features

The Macintosh PowerBook 190 computer is a full-featured, all-in-one notebook
computer with a 68040 microprocessor. Inside the computer’s contoured case are a
PCMCIA slot, an expansion bay for a floppy disk drive or an 8 cm CD-ROM drive, and
space for a rechargeable battery.

Features 1

Here is a summary of the major features of the Macintosh PowerBook 190 computer.
Each feature is described more fully later in this developer note.

■

Micoprocessor

: The Macintosh PowerBook 190 computer has an MC68LC040
microprocessor running at a clock frequency of 66/33 MHz (see sidebar).

■

Upgrade path:

The user can upgrade to a PowerPC

 603 processor by replacing the
main logic board.

■

RAM:

The built-in memory consists of 4 or 8 MB of low-power, self-refreshing
dynamic RAM (DRAM).

■

RAM expansion:

The computer accepts a RAM expansion card with up to 32 MB, for
a total of 40 MB of RAM.

■

Display:

The computer has a built-in flat panel display, a 640-by-480 pixel LCD
backlit by a cold cathode fluorescent lamp (CCFL). The display can be one of two
types: 10.4-inch FSTN color or 9.5-inch supertwist grayscale.

■

Hard disk:

The computer has one internal 2.5-inch IDE hard disk drive with a
capacity of 500 MB. See “Configurations” on page 5.

■

SCSI disk mode:

With an optional HDI-30 SCSI Disk Adapter cable, the computer
allows the user to read and store data on the computer’s internal hard disk from
another Macintosh computer.

■

Expansion bay:

The computer has an opening that accepts a plug-in module with a
1.4 MB high-density disk drive, some other IDE device, or an AC power adapter.

■

PCMCIA slot:

The computer accepts one type III or two type II PCMCIA cards.

■

Modem:

The computer accepts a PCMCIA modem card or an external modem
connected to the serial port.

Processor clock speeds

bus clock of 33 MHz runs its internal processor at
66 MHz.

The MC68LC040 uses two processor clocks: one for the
system bus and another, at twice the speed, for the
internal circuits. Thus, an MC68LC040 with a system

C H A P T E R 1

Introduction

Appearance

3

■

Standard I/O ports:

The computer has all the standard Macintosh inputs and
outputs, including external video output. The I/O ports are an HDI-30 connector for
external SCSI devices, a 4-pin mini-DIN Apple Desktop Bus (ADB) port, an 8-pin
mini-DIN serial port, a stereo audio output jack, and a video output connector for an
external monitor.

■

Networking:

The computer has a built-in LocalTalk network interface.

■

Sound:

The computer has a built-in microphone and speaker as well as a stereo
headphone jack.

■

Keyboard:

The computer has a full-size keyboard with function keys and power on/
off control.

■

Trackpad:

The cursor-positioning device is an integrated flat pad that replaces the
trackball used in previous Macintosh PowerBook computers.

■

Batteries:

The computer has space for one Macintosh PowerBook Intelligent Battery:
a rechargeable battery with a built-in processor that communicates with the
computer’s Power Manager. The model with the color display uses a 16.8 V lithium
ion battery; the grayscale model uses a nickel metal hydride battery.

■

Power supply:

The computer comes with an external recharger/power adapter that
accepts any worldwide standard voltage from 100–240 VAC at 50–60 Hz.

■

Security connector:

The computer has a connector on the side panel that allows users
to attach a security device.

The security device also secures the battery and any
module in the expansion bay.

■

Weight:

The computer weighs 6.5 pounds with the battery installed.

■

Size:

The computer is 11.3 inches wide and 8.5 inches deep. The models with
grayscale displays are 2.0 inches high; models with color displays are 2.1 inches high.

Appearance 1

The Macintosh PowerBook 190 computer has a streamlined case that opens up like a
clamshell. Figure 1-1 shows a front view of the Macintosh PowerBook 190 computer, and
Figure 1-2 shows a back view.

C H A P T E R 1

Introduction

4

Appearance

Figure 1-1

Front view of the computer

Sleep indicator

Brightness control

Contrast control

Microphone

Floppy disk drive module
in expansion bay

Security slot

Battery

Trackpad button

Trackpad

Speaker

C H A P T E R 1

Introduction

Configurations

5

Figure 1-2

Back view of the computer

Configurations 1

The Macintosh Macintosh PowerBook 190 computer is available in four configurations,
as shown in Table 1-1.

Table 1-1

Models and configurations

Model RAM size Display type Hard disk size

Macintosh PowerBook 190 4 MB 9.5-inch supertwist grayscale 500 MB

Macintosh PowerBook 190 8 MB 9.5-inch supertwist grayscale 500 MB

Macintosh PowerBook 190cs 4 MB 10.4-inch active matrix color 500 MB

Macintosh PowerBook 190cs 8 MB 10.4-inch active matrix color 500 MB

PC card slots
IR window

Video port

Reset button

Sound input jack

Sound output jack

PC card eject buttons

Power adapter jack

ADB port

/ Serial I/O portSCSI port (HDI-30)

C H A P T E R 1

Introduction

6

Peripheral Devices

Peripheral Devices 1

In addition to the devices that are included with the computer, several peripheral
devices are available separately:

■

The Macintosh PowerBook 8 MB Memory Expansion Kit expands the RAM to 12
or 16 MB.

■

The Macintosh PowerBook 8-bit Color Video-out Upgrade Kit for the Macintosh
PowerBook 190 series provides a 256-color display on an external video monitor up
to 17 inches in screen size.

■

The Macintosh PowerBook Infrared Upgrade Kit for the Macintosh PowerBook 190
sereis allows the computer to communicate with Newton PDAs and other
communications devices.

■

The Macintosh PowerBook Intelligent Battery is a lithium ion battery, available
separately as an additional or replacement battery.

■

The Macintosh PowerBook 45W AC Adapter,

which comes with the computer, is also
available separately. The adapter can recharge one internal battery in just four hours
while the computer is running or two hours while the computer is shut down or in
sleep mode.

Compatibility Issues 1

The Macintosh PowerBook 190 computer incorporates many significant changes from
earlier Macintosh PowerBook designs. This section highlights key areas you should
investigate in order to ensure that your hardware and software work properly with the
new Macintosh PowerBook models. These topics are covered in more detail in
subsequent sections.

RAM Expansion Cards 1

The RAM expansion card used in the Macintosh PowerBook 190 computer is the same
new design used in the Macintosh PowerBook 5300. RAM expansion cards designed for
earlier Macintosh PowerBook models will not work in the Macintosh PowerBook 190
models. See the section “RAM Expansion” beginning on page 39 for more information.

Number of Colors 1

The controller circuitry for the flat panel display includes a 256-entry color lookup table
(CLUT) and is compatible with software that uses QuickDraw and the Palette Manager.
The controller supports a palette of thousands of colors. However, due to the nature of
color LCD technology, some colors are dithered or exhibit noticeable flicker. Apple has

C H A P T E R 1

Introduction

Compatibility Issues

7

developed a new gamma table for the color displays that minimizes flicker and
optimizes the available colors. For the active matrix color display, the effective range of
the CLUT is about 260,000 colors. For the DualScan color display, the range of the CLUT
is about 4000 colors.

See the section “Flat Panel Displays” beginning on page 24 for more information about
the internal display hardware and LCD screen.

Video Mirror Mode 1

When a video card is installed and an external monitor is in use, the user can select video
mirror mode, in which the external monitor mirrors (duplicates) the flat panel display.
Applications that write directly to the display buffer may not be compatible with video
mirror mode unless they take precautions to ensure that they do not write outside the
active portion of the display. That is not a problem for applications that use QuickDraw
and never write directly to the display buffer.

See the section “Video Mirroring” on page 49 for more information about video modes.

Sound Sample Rates 1

The Macintosh PowerBook 190 computer provides sound sample rates of 22.05 kHz,
44.1 kHz, and 48 kHz. The 22.05 kHz sample rate is slower than the 22.254 kHz sample
rate used in some older Macintosh models. The 22.254 kHz sample rate was derived
from the 16 MHz system clock; the 22.05 kHz rate was chosen for compatibility with the
44.1 kHz audio CD sample rate.

For sound samples made at the 22.254 kHz rate, playback at the 22.05 kHz rate is about 1
percent low in pitch. Furthermore, programs that bypass the Sound Manager and write
to the sound FIFOs at the older rate now write too many samples to the FIFOs, causing
some samples to be dropped. The result is a degradation in sound quality for those
programs. Programs that use the Sound Manager to generate sounds are not affected by
the change.

Power Manager Interface 1

Developers have written software that provides expanded Power Manager control for
some older Macintosh PowerBook models. That software will not work in the Macintosh
PowerBook 190 computer.

Until now, third-party software for the Power Manager has worked by reading and
writing directly to the Power Manager’s data structures, so it has had to be updated
whenever Apple brings out a new model with changes in its Power Manager software.
Starting with the Macintosh PowerBook 520 and 540 computers, the system software
includes interface routines for program access to the Power Manager functions, so it is
no longer necessary for applications to deal directly with the Power Manager’s data
structures. For more information, see

Inside Macintosh: Devices

.

C H A P T E R 1

Introduction

8

Compatibility Issues

Developers should not assume that the Power Manager’s data structures are the same on
all Macintosh PowerBook models. In particular, developers should beware of the
following assumptions regarding different PowerBook models:

■

assuming that timeout values such as the hard disk spindown time reside at the same
locations in parameter RAM

■

assuming that the power-cycling process works the same way or uses the same
parameters

■

assuming that direct commands to the Power Manager microcontroller are supported
on all models

C H A P T E R 2

Architecture 2Figure 2-0
Listing 2-0
Table 2-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 2

Architecture

10

The architecture of the Macintosh PowerBook 190 computer is partitioned into three
subsystems: the processor/memory subsystem, the input/output subsystem, and the
external video card. The processor/memory subsystem operates at 33 MHz on the
microprocessor bus. The input/output subsystem operates at 25 MHz on the I/O bus, a
68030-compatible bus. An Apple custom IC called the Pratt IC acts as the bridge between
the two buses, translating processor bus cycles into single or multiple I/O bus cycles, as
needed. The video card provides the signals for an external video monitor.

The block diagram shown in Figure 2-1 shows the two subsystems along with other
modules attached to them.

Figure 2-1

Block diagram

Sound in

Sound out

Serial port A

ADB port

Serial port B (IR)

SCSI

Flat panel
display

Track pad

Keyboard

Power

Power
Manager

Singer

sound IC

Combo

SCC and
SCSI IC

SRAM

Whitney

I/O
controller

Baboon

IDE drive
and floppy
disk drive
controller

Barney

PCMCIA
controller

Media
bay

PCMCIA
slots

CSC

video
controller

VRAM

RAM
RAM

expansion
card

ROM

Processor and
memory
subsystem

Video card

Pratt

memory
controller

68040

micro-
processor

Keystone

video
controller

Ariel

video
DAC

VRAM

External video

C H A P T E R 2

Architecture

Processor/Memory Subsystem

11

Processor/Memory Subsystem 2

The processor/memory subsystem includes the MC68LC040 microprocessor, main RAM,
and ROM. An optional RAM expansion card can be plugged into the logic board and
becomes part of the processor/memory subsystem.

Microprocessor 2

The microprocessor used in the Macintosh PowerBook 190 computer is the MC68LC040.
The MC68LC040 does not contain an FPU (floating-point unit). The MC68LC040 does
include a built-in MMU (memory management unit).

The MC68LC040 microprocessor runs at an internal clock rate that is double its external
clock rate. With an external rate of 33 MHz, the internal clock rate is 66 MHz.

For complete technical details, see the

MC68040 User’s Manual

 and the

MC68040
Designer’s Handbook.

RAM 2

The built-in RAM consists of 4 or 8 MB of dynamic RAM (DRAM). The RAM ICs are the
low-power, self-refreshing type with an access time of 70 ns.

An optional RAM expansion card plugs into a 120-pin connector on the logic board.
With the RAM expansion card installed, the processor/memory subsystem supports up
to 40 MB of RAM. The RAM expansion card for the Macintosh PowerBook 190 computer
is not compatible with the RAM card used in earlier PowerBook models. See the section
“RAM Expansion” beginning on page 39 for details.

ROM 2

The ROM in the Macintosh PowerBook 190 computer is implemented as a 512K by 32-bit
array consisting of a 1 M by 16-bit ROM IC. The ROM supports burst mode so it does
not degrade the performance of the microprocessor. The ROM IC provides 2 MB of
storage, which is located in the system memory map between addresses $3000 0000 and
$3FFF FFFF. The ROM data path is 32 bits wide and addressable only as longwords. See
Chapter 5, “Software Features,” for a description of the features of this new ROM.

Pratt Memory Controller IC 2

The Pratt IC is an Apple custom IC that provides RAM and ROM memory control and
also acts as the bridge between the MC68040 microprocessor bus and the MC68030 I/O
bus. The Pratt IC transparently translates MC68040 bus cycles into single or multiple
MC68030 dynamically sized bus cycles. Because the Pratt IC seamlessly integrates the
two buses, the microprocessor and other bus masters operate as though they were on the
same bus.

C H A P T E R 2

Architecture

12

Input/Output Subsystem

The Pratt IC provides address multiplexing and refresh signals for the DRAM devices.
For information about the address multiplexing, see “Address Multiplexing” on page 43.
The Pratt IC supports read, write, and page mode cycles to the RAM. Pratt generates a
2048-byte CAS-before-RAS refresh cycle every 128 ms.

Bus Bridge 2

The Pratt IC acts as a bridge between the processor bus and the I/O bus, converting
signals on one bus to the equivalent signals on the other bus. The bridge functions are
performed by two converters. One accepts requests from the processor bus and presents
them to the I/O bus in a manner consistent with a 68030 microprocessor. The other
converter accepts requests from the I/O bus and provides access to the RAM and ROM
on the processor bus.

The bus bridge in the Pratt IC runs asynchronously so that the processor bus and the I/O
bus can operate at different rates. The processor bus operates at a clock rate of 33 MHz,
and the I/O bus operates at 25 MHz.

Input/Output Subsystem 2

The input/output subsystem includes the components that communicate by way of
the I/O bus:

■

the Whitney custom IC

■

the I/O controller ICs Combo and Singer

■

the Power Manager IC

■

the display controller IC

■

the Baboon custom IC that controls the expansion bay

■

the TREX custom IC that controls the PCMCIA slots

The next few sections describe these components.

Whitney Peripheral Support IC 2

The Whitney IC is a custom IC that provides the interface between the system bus and
the I/O bus that supports peripheral device controllers. The Whitney IC incorporates the
following circuitry:

■

VIA1 like that in other Macintosh computers

■

SWIM II floppy disk controller

■

CPU ID register

C H A P T E R 2

Architecture

Input/Output Subsystem

13

The Whitney IC also performs the following functions:

■

bus error timing for the I/O bus

■

bus arbitration for the I/O bus

■

interrupt prioritization

■

VIA2 functions

■

sound data buffering

■

clock generation

■

power control signals

The Whitney IC contains the interface circuitry for the following peripheral ICs:

■

Combo, which is a combination of SCC and SCSI ICs

■

Singer, the sound codec IC

The Whitney IC provides the device select signals for the following ICs:

■

the flat panel display controller

■

the external video controller

The Whitney IC also provides the power off and reset signals to the peripheral
device ICs.

Combo IC 2

The Combo custom IC combines the functions of the SCC IC (85C30 Serial Communica-
tions Controller) and the SCSI controller IC (53C80). The SCC portion of the Combo IC
supports the serial I/O port. The SCSI controller portion of the Combo IC supports the
external SCSI devices.

Singer IC 2

The Singer custom IC is a 16-bit digital sound codec. It conforms to the IT&T

ASCO 2300
Audio-Stereo Code Specification.

 The Whitney IC maintains sound I/O buffers in main
memory for sound samples being send in or out through the Singer IC. For information
about the operation of the Singer IC, see the section “Sound System” on page 29.

Power Manager IC 2

The Power Manager IC is a 68HC05 microprocessor that operates with its own RAM and
ROM. The Power Manager IC performs the following functions:

■

controls sleep, shutdown, and on/off modes

■

controls power to the other ICs

■

controls clock signals to the other ICs

■

supports the ADB

C H A P T E R 2

Architecture

14

Input/Output Subsystem

■

scans the keyboard

■

controls display brightness

■

monitoring battery charge level

■

controls battery charging

Display Controller IC 2

A CSC (color support chip) IC provides the data and control interface to the LCD panel.
The CSC IC contains a 256-entry CLUT, RAMDAC, display buffer controller, and flat
panel control circuitry. For more information, see “Flat Panel Display Circuitry” on
page 24.

Baboon Custom IC 2

The Baboon custom IC provides the interface to the expansion bay. The IC performs
four functions:

■

controls the expansion bay

■

controls the IDE interfaces, both internal and in the expansion bay

■

buffers the floppy disk signals to the expansion bay

■

decodes addresses for the PCMCIA slots and the IDE controller

The Baboon IC controls the power to the expansion bay and the signals that allow the
user to insert a device into the expansion bay while the computer is operating. Those
signals are fully described in the section “Expansion Bay” beginning on page 32.

The Baboon IC controls the interface for both the internal IDE hard disk drive and a
possible second IDE drive in the expansion bay. For information about the drive, see the
section “Internal Hard Disk Drive” beginning on page 18. For information about the IDE
drive signals in the expansion bay, see the section “Signals on the Expansion Bay
Connector” beginning on page 34 and Table 4-4 on page 36.

The Baboon IC also handles the signals to a floppy disk drive installed in the expansion
bay. For more information, see the section “Signals on the Expansion Bay Connector”
beginning on page 34.

The address decode portion of the Baboon IC provides address decoding for the IDE
controller portion of the IC. It also provides the chip select decode for the TREX custom
IC and address decoding for the two PCMCIA slots.

C H A P T E R 2

Architecture

Video Card

15

TREX Custom IC 2

The TREX custom IC provides the interface and control signals for the PCMCIA slots.
The main features of the TREX IC are

■

the interrupt structure for the PCMCIA slots

■

transfers of single-byte and word data to and from the PCMCIA slots

■

power management for the PCMCIA slots, including

n

sleep mode

n

control of power to individual sockets

n

support of insertion and removal of PC cards while the computer is operating

■

support for software control of card ejection

■

support for time-division multiplexing (TDM), Apple Computer’s technique for
implementing PC cards for telecommunications

For more information about the operation of the PCMCIA slots, see “PCMCIA Slot” on
page 57.

Video Card 2

The video card includes two additional components that communicate by way of the
I/O bus:

■

the Keystone custom video controller IC

■

the Ariel custom video output IC

Keystone Video Controller IC 2

The Keystone custom IC contains the timing and control circuits for the external video
circuitry. The Keystone IC has internal registers that the video driver uses to set the
horizontal and vertical timing parameters. The Keystone IC also generates the video
refresh addresses for the VRAM.

Ariel Video Output IC 2

The Ariel custom IC contains the video CLUT (color lookup table) and DAC
(digital-to-analog converter). The Ariel IC takes the serial video data from the VRAM
and generates the actual RGB signals for the external video monitor. The Ariel is pin and
software compatible with the AC843 but does not support 24 bits per pixel.

For more information about the operation of the video card, see the section “Video Card”
beginning on page 48.

C H A P T E R 3

I/O Features 3Figure 3-0
Listing 3-0
Table 3-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 3

I/O Features

18

Internal Hard Disk Drive

This chapter describes both the built-in I/O devices and the interfaces for external I/O
devices. Like the earlier chapters, it emphasizes the similarities and differences between
the Macintosh PowerBook 190 computer and other PowerBook models.

This chapter describes the following built-in devices and I/O ports:

■

internal IDE hard disk drive

■

built-in trackpad

■

built-in keyboard

■

built-in flat panel display

■

serial port

■

SCSI port

■

Apple Desktop Bus (ADB) port

■

IR module

■

sound system

Note

For information about the expansion bay and the optional video card,
see Chapter 4, “Expansion Modules.”

◆

Internal Hard Disk Drive 3

The Macintosh PowerBook 190 computer has an internal hard disk that uses the
standard IDE (integrated drive electronics) interface. This interface, used for IDE
drives on IBM AT–compatible computers, is also referred to as the ATA interface.
The implementation of the ATA interface on the Macintosh PowerBook 190 computer is
a subset of the ATA/IDE specification, ANSI proposal X3T10/0948D, Revision 2K or
later (ATA-2).

For information about the software interface, see Chapter 7, “Software for ATA Devices.”

Hard Disk Specifications 3

Figure 3-1 shows the maximum dimensions of the hard disk and the location of the
mounting holes. The minimum clearance between any conductive components on the
drive and the bottom of the mounting envelope is 0.5 mm.

C H A P T E R 3

I/O Features

Internal Hard Disk Drive

19

Figure 3-1

Maximum dimensions of the internal hard disk

3.00
[0.118]

4.06
[0.160]

61.72
[2.430]

70.00
[2.755]

M3, 3.5 deep,
minimum full
thread, 8X

Note: Dimensions are in millimeters [inches].

19.25 maximum
[0.757 maximum]

34.93±0.38
[1.375±0.015]

101.60 maximum
[4.00 maximum]

38.10
[1.500]

C H A P T E R 3

I/O Features

20

Internal Hard Disk Drive

Hard Disk Connectors 3

The internal hard disk has a 48-pin connector that carries both the IDE signals and the
power for the drive. The connector has the dimensions of a 50-pin connector, but with
one row of pins removed. The remaining pins are in two groups: pins 1–44, which carry
the signals and power, and pins 46–48, which are reserved. Figure 3-2 shows the
connector and identifies the pins. Notice that pin 20 has been removed, and that pin 1 is
located nearest the gap, rather than at the end of the connector.

Figure 3-2

Connector for the internal IDE hard disk

Connector Location 3

Figure 3-3 shows the position of the connector on the hard disk drive.

Figure 3-3

Position of the hard disk connector

43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 45

44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

47

48 46

Note: gaps are equivalent to missing pins.

Note: Dimensions are in millimeters [inches].

19.25 maximum
[0.757 maximum]

3.99
[0.157]

10.14±0.375
[0.399±0.014]

Key vacant
position pin 20

Vacant row in
50-pin connector

Pin 1

Center line of pin 44

C H A P T E R 3

I/O Features

Internal Hard Disk Drive

21

Pin Assignments 3

Table 3-1 shows the pin assignments on the 40-pin section of the hard disk connector. A
slash (/) at the beginning of a signal name indicates an active-low signal.

Note

The IDE data bus is connected to the I/O bus through bidirectional bus
buffers. To match the big-endian format of the MC68030-compatible I/O
bus, the bytes are swapped. The lower byte of the IDE data bus,
DD(0–7), is connected to the high byte of the upper word of the I/O bus,
IOD(24–31). The higher byte of the IDE data bus, DD(8–15), is connected
to the low byte of the upper word of the I/O bus, IOD(16–23).

◆

Table 3-1

Pin assignments on the hard disk connector

Pin
number Signal name

Pin
number Signal name

1 /RESET 2 GROUND

3 DD7 4 DD8

5 DD6 6 DD9

7 DD5 8 DD10

9 DD4 10 DD11

11 DD3 12 DD12

13 DD2 14 DD13

15 DD1 16 DD14

17 DD0 18 DD15

19 GROUND 20 KEY

21 DMARQ 22 GROUND

23 /DIOW 24 GROUND

25 /DIOR 26 GROUND

27 IORDY 28 CSEL

29 /DMACK 30 GROUND

31 INTRQ 32 /IOCS16

33 DA1 34 /PDIAG

35 DA0 36 DA2

37 /CS0 38 /CS1

39 /DASP 40 GROUND

41 +5V LOGIC 42 +5V MOTOR

43 GROUND 44 Reserved

C H A P T E R 3

I/O Features

22

Internal Hard Disk Drive

IDE Signal Descriptions 3

Table 3-2 describes the IDE signals on the hard disk connector.

Table 3-2

Signals on the IDE hard disk connector

Signal name Signal description

/CS0 IDE register select signal. It is asserted low to select the main task file
registers. The task file registers indicate the command, the sector
address, and the sector count.

/CS1 IDE register select signal. It is asserted low to select the additional
control and status registers on the IDE drive.

CSEL Cable select; if CSEL is asserted, the device address is 1; if negated, the
device address is 0.

DA(0–2) IDE device address; used by the computer to select one of the registers
in the IDE drive. For more information, see the descriptions of the /CS0
and /CS1 signals.

DD(0–15) IDE data bus; buffered from IOD(16–31) of the computer’s I/O bus.
DD(0–15) are used to transfer 16-bit data to and from the drive buffer.
DD(8–15) are used to transfer data to and from the internal registers
of the drive, with DD(0–7) driven high when writing.

/DASP Device active or slave present.

/DIOR IDE I/O data read strobe.

/DIOW IDE I/O data write strobe.

/DMACK Used by the host to initiate a DMA transfer in response to DMARQ.

DMARQ Asserted by the device when it is ready to transfer data to or
from the host.

IORDY IDE I/O ready; when driven low by the drive, signals the CPU to insert
wait states into the I/O read or write cycles.

/IOCS16 IDE I/O channel select; asserted low for an access to the data port. The
computer uses this signal to indicate a 16-bit data transfer.

INTRQ IDE interrupt request. This active-high signal is used to inform the
computer that a data transfer is requested or that a command has
terminated.

KEY This pin is the key for the connector.

/PDIAG Asserted by device 1 to indicate to device 0 that it has completed the
power-on diagnostics.

/RESET Hardware reset to the drive; an active-low signal.

C H A P T E R 3

I/O Features

Trackpad

23

Trackpad 3

The pointing device in the Macintosh PowerBook 190 computer is a trackpad, an
integrated flat pad provides precise cursor positioning in response to motions of the
user’s fingertip over the surface of the pad. A single button below the trackpad is used to
make selections.

The trackpad is a solid-state device that emulates a mouse by sensing the motions of the
user’s finger over its surface and translating those motions into ADB commands. The
trackpad is lighter and more durable than the trackball used in earlier Macintosh
PowerBook computers, and it consumes less power.

Also see the section “Trackpad Support” on page 65.

Keyboard 3

A new keyboard design provides 76 (U.S. version) or 77 (ISO version) keys, including 12
function keys. Figure 3-4 shows the version of the keyboard used on machines sold in
the United States. Figure 3-5 shows the version of the keyboard used on machines sold in
countries that require the ISO standard.

Figure 3-4

Keyboard, U.S. layout

]

return

enter

shift

ctrl option

~

`

!
1

@
2

#
3

$
4

%
5

^
6

&
7

*
8

(
9

)
0

_
-

+
=

esc F2 F3 F4F1 F8 F9 F10 F11 F12F5 F6 F7

Q W E R T Y U I O P [

A S D F G H J K L ; '

Z X C V B N M , . /

{

?><

":

delete

\tab

caps lock

shift

C H A P T E R 3

I/O Features

24

Flat Panel Displays

Figure 3-5

Keyboard, ISO layout

By removing two screws, the user can lift out the keyboard to obtain access to the
internal components and expansion connectors inside the computer.

Flat Panel Displays 3

The Macintosh PowerBook 190 computer has a built-in flat panel display showing 640 by
480 pixels. Two types of flat panel display are used in the different models, as shown in
Table 3-3. Both types of display have a dot pitch of 0.30 mm and are backlit by a cold
cathode fluorescent lamp (CCFL). Both displays can show up to 8 bits per pixel, which
provides 256 colors on color displays or 256 levels of gray on grayscale displays.

Flat Panel Display Circuitry 3

The flat panel display circuitry emulates a NuBus

 video card installed in slot $0. There
is no declaration ROM as such; its functions have been incorporated into the system
ROM. The display circuitry includes the CSC controller IC and a display buffer
consisting of 512 KB of VRAM. The LCD display is compatible with software that uses
QuickDraw and the Palette Manager. The display supports color table animation.

Table 3-3

Characteristics of the displays

Display type
Display size
(inches)

Dot pitch
(mm)

Bits per
pixel

Number of
colors

DualScan color
(FSTN)

10.4 0.30 8 256

Supertwist grayscale
(FSTN)

9.5 0.27 8 256

±

§
!
1

@
2

#
3

$
4

%
5

^
6

&
7

*
8

(
9

)
0

_
-

+
=

esc F2 F3 F4F1 F8 F9 F10 F11 F12F5 F6 F7

Q W E R T Y U I O P [
{

]
}

A S D F G H J K L ; '

Z X C V B N M , . /

ctrl

~

`

\

?><

|":

C H A P T E R 3

I/O Features

Serial Port

25

Number of Colors 3

The display controller IC contains a 256-entry CLUT. Although the CLUT supports a
palette of thousands of colors, many of the possible colors do not look acceptable on the
display. Due to the nature of color LCD technology, some colors are dithered or exhibit
noticeable flicker. Apple has developed new gamma tables for these displays that
minimize flicker and optimize available colors. With these gamma tables, the effective
range of the CLUT for the active matrix color display is about 260,000 colors; for the
DualScan color display, the effective range is about 4000 colors.

Serial Port 3

The Macintosh PowerBook 190 computer has a standard Macintosh serial port for
synchronous, asynchronous, or AppleTalk serial communication. The 8-pin

mini-DIN
connector on the back panel is the same as those on other Macintosh computers. Figure
3-6 shows the connector pins and Table 3-4 shows the signal assignments.

Figure 3-6

Serial port connector

Types of Displays

Passive matrix refers to a display technology that
does not have individual transistors. That technology
is also called FSTN, for film supertwist nematic,
sometimes shortened to just supertwist.

DualScan is Apple Computer’s new type of FSTN
color, an improved version of the color display used in
the Macintosh PowerBook 165c.

Flat panel displays come in two types: active matrix
and passive matrix.

Active matrix displays, also called thin-film
transistor (TFT) displays, have a driving transistor
for each individual pixel. The driving transistors
give active matrix displays high contrast and fast
response time.

8 7 6

1

5 4

2

3

C H A P T E R 3

I/O Features

26

SCSI Port

SCSI Port 3

The SCSI port on the Macintosh PowerBook 190 computer supports the SCSI interface as
defined by the American National Standards Institute (ANSI) X3T9.2 committee.

The external HDI-30 connector is identical to those used in other Macintosh PowerBook
models. The SCSI portion of the Combo IC connects directly to the external SCSI
connector and can sink up to 48 mA through each of the pins connected to the SCSI bus.
The data and control signals on the SCSI bus are active low signals that are driven by
open drain outputs.

Table 3-5 shows the signal assignments for the external SCSI connector. Note that pin 1
of the external SCSI connector is the /SCSI.DISK.MODE signal.

Table 3-4

Serial port signals

Pin
number Signal name Signal description

1 HSKo Handshake output

2 HSKi Handshake input

3 TxD– Transmit data –

4 SG Signal ground

5 RxD– Receive data –

6 TxD+ Transmit data +

7 GPi General-purpose input

8 RxD+ Receive data +

Table 3-5

Signals on the SCSI connector

Pin
number Signal name Signal name

1 /SCSI.DISK.MODE SCSI disk operating mode

2 /DB0 Bit 0 of SCSI data bus

3 GND Ground

4 /DB1 Bit 1 of SCSI data bus

5 TERMPWR Termination power (not used; reserved)

6 /DB2 Bit 2 of SCSI data bus

7 /DB3 Bit 3 of SCSI data bus

continued

C H A P T E R 3

I/O Features

SCSI Port

27

8 GND Ground

9 /ACK Acknowledge for a REQ/ACK data
transfer handshake

10 GND Ground

11 /DB4 Bit 4 of SCSI data bus

12 GND Ground

13 GND Ground

14 /DB5 Bit 5 of SCSI data bus

15 GND Ground

16 /DB6 Bit 6 of SCSI data bus

17 GND Ground

18 /DB7 Bit 7 of SCSI data bus

19 /DBP Parity bit of SCSI data bus

20 GND Ground

21 /REQ Request for a REQ/ACK data
transfer handshake

22 GND Ground

23 /BSY Indicates whether SCSI data bus is busy

24 GND Ground

25 /ATN Indicates an attention condition

26 /C/D Indicates whether control or data is
on the SCSI bus

27 /RST SCSI data bus reset

28 /MSG Indicates the message phase

29 /SEL Selects a target or an initiator

30 /I/O Controls the direction of data movement

Table 3-5

Signals on the SCSI connector (continued)

Pin
number Signal name Signal name

C H A P T E R 3

I/O Features

28

ADB Port

ADB Port 3

The Apple Desktop Bus (ADB) port on the Macintosh PowerBook 190 computer is
functionally the same as on other Macintosh computers. Figure 3-7 shows the pins on the
connector for the ADB port.

Figure 3-7

ADB connector

The ADB is a single-master, multiple-slave serial communications bus that uses an
asynchronous protocol and connects keyboards, graphics tablets, mouse devices, and
other devices to the computer. The custom ADB microcontroller drives the bus and reads
status from the selected external device. A 4-pin mini-DIN connector connects the ADB
controller to the outside world. Table 3-6 lists the ADB connector pin assignments.
For more information about the ADB, see

Guide to the Macintosh Family Hardware,

second edition.

IMPORTANT

The total current available for all devices connected
to the +5 V pins on the ADB is 100 mA.

▲

Table 3-6

ADB connector pin assignments

Pin
number Name Description

1 ADB Bidirectional data bus used for input and output; an
open collector signal pulled up to +5 volts through a
470-ohm resistor on the main logic board.

2 PSW Power on signal; generates reset and interrupt key
combinations.

3 +5V +5 volts from the computer.

4 GND Ground from the computer.

4 3

2 1

C H A P T E R 3

I/O Features

Infrared Module

29

Infrared Module 3

The Macintosh PowerBook 190 computer has an infrared (IR) module that can communi-
cate with Newton PDAs and other communications devices. When the computer is
placed within a few feet of another machine with an IR interface, it can send and receive
serial data using one of several standard communications protocols. The other machine
may be another IR-equipped computer, a Newton PDA, or some other IR-equipped
device such as a TV set.

The IR module supports the following communications protocols:

■

LocalTalk

■

Newton PDA

■

HP-IRDA

■

TV remote control

For LocalTalk operation, the IR module takes serial bits from the SCC and transmits
them using a modified form of pulse encoding called PPM-4. This method of encoding
uses four cycles of a 3.92 MHz carrier for each pulse, which increases the system’s
immunity to interference from fluorescent lights.

The modulation method used in the Newton PDA consists of gating a 500 kHz carrier on
and off. This method is capable of data rates up to 38.4k bits per second.

Sound System 3

The 16-bit stereo audio circuitry provides high-quality sound input and output through
the built-in microphone and speaker. The user can also connect external input and
output devices by way of the sound input and output jacks.

The sound system is based on the Singer codec IC along with input and output
amplifiers and signal conditioners. In the Macintosh PowerBook 190 computer, the
Singer codec supports two channels of digital sound with sample sizes up to 16 bits
and sample rates of 11 kHz, 22.05 kHz, and 44.1 kHz.

The frequency response of the sound circuits, not including the microphone and speaker,
is within plus or minus 2 dB from 20 Hz to 20 kHz. Total harmonic distortion and noise
is less than 0.05 percent with a 1 V rms sine wave input. The signal-to-noise ratio (SNR)
is 85 dB, with no audible discrete tones.

C H A P T E R 3

I/O Features

30

Sound System

Sound Inputs 3

The sound system accepts inputs from several sources:

■

built-in microphone

■

sound from the expansion bay

■

1-bit sound from the PCMCIA slot

The sound signal from the built-in microphone goes through a dedicated preamplifier
that raises its nominal 30 mV level to the 1 V level of the codec circuits in the Singer IC.

Stereo sound signals from the expansion bay go through an analog multiplexer raises the
nominal 0.5 V level of the expansion-bay sound to the 1 V input level of the codec circuits.

The sound input from the expansion bay has the following electrical characteristics:

■

input impedance: 3.2k

Ω

■

maximum level: 0.5 V

Each PCMCIA card has one sound input pin, and the computer accepts either one or two
cards. The signals from the sound input pins are mixed together and passed through a
low-pass filter on their way to the codec circuits in the Singer IC. The low-pass filter has
a cutoff frequency of 5 kHz. The filter has two functions: it takes the sharp edge off any
tones sent from a PC card and serves as a reconstruction filter for PWM sounds
generated by a PC card.

The sound input from the PCMCIA slot has the following electrical characteristics:

■

input impedance: 20k

Ω

■

maximum level: 1 V rms

Sound Outputs 3

The sound system sends computer-generated sounds or sounds from the expansion bay
or PC card to a built-in speaker and to an external sound output jack. The sound output
jack is located on the back of the computer.

The sound output jack provides enough current to drive a pair of low-impedance
headphones. The sound output jack has the following electrical characteristics:

■

output impedance: 33

Ω

■

minimum recommended load impedance: 32

Ω

■

maximum level: 1 V rms

■ maximum current: 32 mA peak

The computer turns off the sound signals to the internal speaker when an external device
is connected to the sound output jack and during power cycling.

C H A P T E R 4

Expansion Modules 4Figure 4-0
Listing 4-0
Table 4-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 4

Expansion Modules

32

Expansion Bay

This chapter describes each of the following expansion features of the Macintosh
PowerBook 190 computer:

■

expansion bay

■

RAM expansion

■

video card (for an external monitor)

■

PCMCIA slot

Expansion Bay 4

The expansion bay is an opening in the Macintosh PowerBook 190 computer that accepts
a plug-in disk drive such as a floppy disk. The expansion bay can also accept a power
device such as an AC adapter or a second battery.

Expansion Bay Design 4

Figure 4-1 shows a module designed to fit into the expansion bay. Figure 4-2 shows the
dimensions of the expansion bay.

Figure 4-1

Expansion bay module

C H A P T E R 4

Expansion Modules

Expansion Bay

33

Figure 4-2

Expansion bay dimensions

Expansion Bay Connector 4

The expansion bay connector is a 90-pin shielded connector. The pins are divided into
two groups by a gap. Pins 1 and 46 are at the end of the connector nearest the gap; pins
45 and 90 are at the end farthest from the gap. The connector on the main logic board is
AMP part number C-93-1817-53.

A matching card connector is available as part number C-93-1817-54 from AMP, Inc. For
a specification sheet or information about obtaining this connector, contact AMP at

AMP, Inc.
19200 Stevens Creek Blvd.
Cupertino, CA 95014-2578
408-725-4914
AppleLink: AMPCUPERTINO

IMPORTANT

The expansion bay connector is designed so that when a module is
inserted into the expansion bay, the connections are made in the
following order: first the ground by way of the connector shells, then
the power pins, and last of all the signal lines.

▲

18.00
[0.709]

106.00
[4.173]

145.75 [5.738]

Note: Dimensions are in millimeters [inches].

C H A P T E R 4

Expansion Modules

34

Expansion Bay

Signals on the Expansion Bay Connector 4

Table 4-1 shows the signal assignments on the expansion bay connector. Signal names
that begin with a slash (/) are active low.

Table 4-1

Signal assignments on the expansion bay connector

Pin
number Signal name

Pin
number Signal name

1 Reserved 28 IDE_D(5)

2 Reserved 29 IDE_D(7)

3 MB_+3V 30 IDE_D(8)

4 MB_SND_COM 31 IDE_D(10)

5 Reserved 32 MB_+3V

6 Reserved 33 IDE_D(13)

7 GND 34 IDE_D(15)

8 Reserved 35 /DIOR

9 /DEV_IN 36 /CS3FX

10 DEV_ID(1) 37 Reserved

11 GND 38 IDE_ADDR(1)

12 MB_+5V 39 Reserved

13 /WRREQ 40 Reserved

14 PHASE(0) 41 Reserved

15 MB_+5V 42 Reserved

16 PHASE(3) 43 Reserved

17 WRDATA 44 Reserved

18 FD_RD 45 MB_+BAT

19 HDSEL 46 Reserved

20 GND 47 Reserved

21 Reserved 48 MB_SND_L

22 Reserved 49 MB_SND_R

23 Reserved 50 Reserved

24 IOCHRDY 51 Reserved

25 GND 52 Reserved

26 IDE_D(2) 53 Reserved

27 MB_+3V 54 DEV_ID(0)

continued

C H A P T E R 4

Expansion Modules

Expansion Bay

35

Signal Definitions 4

The signals on the expansion bay connector are of three types: expansion bay control
signals, floppy disk signals, and IDE signals. The next three tables describe the three
types of signals: Table 4-2 describes the control signals, Table 4-3 describes the floppy
disk signals, and Table 4-4 describes the IDE signals.

Note

In Tables 4-2 through 4-4, signal names that
begin with a slash (/) are active low.

◆

55 DEV_ID(2) 73 IDE_D(6)

56 Reserved 74 GND

57 Reserved 75 IDE_D(9)

58 GND 76 IDE_D(11)

59 PHASE(1) 77 IDE_D(12)

60 PHASE(2) 78 IDE_D(14)

61 GND 79 GND

62 MB_+5V 80 /DIOW

63 /FL_ENABLE 81 /CS1FX

64 /MB_IDE_RST 82 IDE_ADDR(0)

65 Reserved 83 IDE_ADDR(2)

66 Reserved 84 GND

67 MB_+5V 85 IDE_INTRQ

68 Reserved 86 Reserved

69 IDE_D(0) 87 Reserved

70 IDE_D(1) 88 Reserved

71 IDE_D(3) 89 GND

72 IDE_D(4) 90 MB_+BAT

Table 4-1

Signal assignments on the expansion bay connector (continued)

Pin
number Signal name

Pin
number Signal name

C H A P T E R 4

Expansion Modules

36

Expansion Bay

Table 4-2

Control signals on the expansion bay connector

Signal name Signal description

DEV_ID(0–2) These three signal lines identify the type of media bay device. A
value of 000b identifies a floppy-disk drive; 011b identifies all other
IDE devices.

/DEV_IN This signal is low whenever a device is installed in the expansion
bay; it is used by the Baboon IC to determine when a device has
been inserted or removed.

MB_SND_COM Common (ground) line for expansion bay sound signals.

MB_SND_L Left channel sound signal from the expansion bay device.

MB_SND_R Right channel sound signal from the expansion bay device.

Table 4-3

Floppy disk signals on the expansion bay connector

Signal name Signal description

FD_RD Read data from the floppy disk drive.

/FL_ENABLE Floppy disk drive enable.

PHASE(0–3) Phase(0–3) are state-control lines to the drive; Phase(3) is the strobe
signal for writing to the drive’s control registers.

WRDATA Write data to the floppy disk drive.

/WRREQ Write data request signal.

Table 4-4

IDE signals on the expansion bay connector

Signal name Signal description

/CS1FX IDE register select signal. It is asserted low to select the main task
file registers. The task file registers indicate the command, the
sector address, and the sector count.

/CS3FX IDE register select signal. It is asserted low to select the additional
control and status registers on the IDE drive.

/DIOR IDE I/O data read strobe.

/DIOW IDE I/O data write strobe.

IDE_ADDR(0–2) IDE device address; used by the computer to select one of the
registers in the IDE drive. For more information, see the
descriptions of the /CS1FX and /CS3FX signals.

IDE_D(0–15) IDE data bus, buffered from IOD(16–31) of the controller IC.
IDE_D(0–15) are used to transfer 16-bit data to and from the drive
buffer. IDE_D(0–7) are used to transfer data to and from the drive’s
internal registers, with IDE_D(8-15) driven high when writing.

continued

C H A P T E R 4

Expansion Modules

Expansion Bay

37

Unused IDE Signals 4

Several signals defined in the standard interface for the IDE drive are not used by the
expansion bay. Those signals are listed in Table 4-5 along with any action required for the
device to operate in the media bay.

Power on the Expansion Bay 4

Table 4-6 describes the power lines on the expansion bay connector. The MB_+5V line is
controlled by the MB_PWR_EN signal from the Power Manager IC. The current drawn
from MB_+5V must not exceed 1.0 A.

IOCHRDY IDE I/O channel ready; when driven low by the IDE drive, signals
the CPU to insert wait states into the I/O read or write cycles.

IDE_INTRQ IDE interrupt request. This active high signal is used to inform the
computer that a data transfer is requested or that a command has
terminated.

/MB_IDE_RST Hardware reset to the IDE drive.

Table 4-5

Unused IDE signals

Signal name Comment

DMARQ No action required.

CSEL This signal must be tied to ground to configure the device as
the master in the default mode.

DMACK This signal must be pulled high (to the IDE device’s Vcc).

IOCS16 No action required.

PDIAG No action required; the device is never operated in
master-slave mode.

DAS No action required.

Table 4-6

Power for the expansion bay

Signal name Signal description

GND Ground.

MB_+5V 5 V power; maximum
total current is 1.0 A.

Table 4-4

IDE signals on the expansion bay connector (continued)

Signal name Signal description

C H A P T E R 4

Expansion Modules

38

Expansion Bay

User Installation of an Expansion Bay Device 4

The user can insert a device into the expansion bay while the computer is operating. This
section describes the sequence of control events in the computer and gives guidelines for
designing an expansion bay device so that such insertion does not cause damage to the
device or the computer.

Sequence of Control Signals 4

Specific signals to the Baboon IC and the Power Manager IC allow the computer to
detect the insertion of a device into the expansion bay and take appropriate action. For
example, when an IDE device is inserted, the computer performs the following sequence
of events:

1. When a device is inserted, the /DEV_IN signal goes low, causing the Baboon IC to
generate an interrupt.

2. The Power Manager IC reads the three DEV_ID signals, which identify the device as
an IDE device.

3. System software responds to the interrupt and sets a signal that turns on the power to
the expansion bay.

4. When the media bay power goes high, the Baboon IC generates another interrupt.

5. System software responds to the power-on interrupt and asserts a signal to enable the
IDE bus in the expansion bay.

6. The software then releases the /MB_IDE_RST signal from the Power Manager IC,
allowing the IDE device to begin operating.

Essentially the reverse sequence occurs when a device is removed from the
expansion bay:

1. When the device is removed, the /DEV_IN signal goes high causing the Baboon IC to
generate an interrupt and disbale the IDE bus.

2. System software responds to the interrupt by reading the device ID settings in the
Power Manager IC, setting a signal to turn off the power to the expansion bay, and
asserting the /MB_IDE_RST signal to disable the IDE drive.

Guidelines for Developers 4

Each expansion bay device must be designed to prevent damage to itself and to
the computer when the user inserts or removes an expansion bay device with
the computer running.

The expansion bay connector is designed so that when the device is inserted the ground
and power pins make contact before the signal lines.

Even though you can design an expansion bay device that minimizes the possibility of
damage when it is inserted hot—that is, while the computer is running—your
instructions to the user should include warnings against doing so.

C H A P T E R 4

Expansion Modules

RAM Expansion

39

RAM Expansion 4

This section includes electrical and mechanical guidelines for designing a RAM
expansion card for the Macintosh PowerBook 190 computer.

The RAM expansion card can contain from 8 MB to 32 MB of self-refreshing dynamic
RAM in one to four banks, with 2 MB, 4 MB, or 8 MB in each bank. Table 4-7 shows how
the banks can be implemented with standard RAM devices.

IMPORTANT

The RAM expansion card for the Macintosh PowerBook 190 computer is
a new design; cards designed for earlier PowerBook models cannot be
used in this PowerBook model.

▲

▲ W A R N I N G

Installation of a RAM expansion card computer must be performed by
an experienced technician. Installation requires care to avoid damage to
the pins on the RAM expansion connector.

▲

Electrical Design Guidelines for the RAM Expansion Card 4

This section provides the electrical information you need to design a RAM expansion
card for the Macintosh PowerBook 190 computer. The mechanical specifications are
given in a subsequent section, beginning on page 46.

Connector Pin Assignments 4

Table 4-8 lists the names of the signals on the RAM expansion connector. Entries in the
table are arranged the same way as the pins on the connector: pin 1 across from pin 2,
and so on. Signal names that begin with a slash (/) are active low.

Table 4-7

Configurations of RAM banks

Size of
bank

Number
of devices
per bank Device size (bits)

2 MB 4 512K

×

 8

4 MB 8 1 M

×

 4

4 MB 2 1 M

×

 16

8 MB 4 2 M

×

 8

C H A P T E R 4

Expansion Modules

40

RAM Expansion

Table 4-8

Signal assignments on the RAM expansion connector

Pin Signal name Pin Signal name

1 +5V_MAIN 2 +5V_MAIN

3 +3V_MAIN 4 +3V_MAIN

5 GND 6 GND

7 /RASL(2) 8 RA(11)

9 /WE 10 /RASH(2)

11 /CASL(3) 12 /CASH(3)

13 DataL(28) 14 DataH(28)

15 DataL(29) 16 DataH(29)

17 DataL(30) 18 DataH(30)

19 DataL(31) 20 DataH(31)

21 DataL(24) 22 DataH(24)

23 DataL(25) 24 DataH(25)

25 DataL(26) 26 DataH(26)

27 DataL(27) 28 DataH(27)

29 +5V_MAIN 30 +5V_MAIN

31 DataL(20) 32 DataH(20)

33 GND 34 GND

35 DataL(21) 36 DataH(21)

37 DataL(22) 38 DataH(22)

39 DataL(23) 40 DataH(23)

41 DataL(16) 42 DataH(16)

43 DataL(17) 44 DataH(17)

45 DataL(18) 46 DataH(18)

47 DataL(19) 48 DataH(19)

49 DataL(12) 50 DataH(12)

51 +3V_MAIN 52 +3V_MAIN

53 DataL(13) 54 DataH(13)

55 DataL(14) 56 DataH(14)

57 DataL(15) 58 DataH(15)

59 +5V_MAIN 60 +5V_MAIN

61 DataL(8) 62 DataH(8)

continued

C H A P T E R 4

Expansion Modules

RAM Expansion

41

63 GND 64 /RAM_OE

65 DataL(9) 66 DataH(9)

67 DataL(10) 68 DataH(10)

69 DataL(11) 70 DataH(11)

71 DataL(4) 72 DataH(4)

73 DataL(5) 74 DataH(5)

75 DataL(6) 76 DataH(6)

77 DataL(7) 78 DataH(7)

79 /CASH(0) 80 /RASH(1)

81 /CASH(2) 82 /CASH(1)

83 +3V_MAIN 84 +3V_MAIN

85 DataH(3) 86 DataL(3)

87 DataH(2) 88 DataL(2)

89 +5V_MAIN 90 +5V_MAIN

91 DataH(1) 92 DataL(1)

93 GND 94 GND

95 DataH(0) 96 DataL(0)

97 RA(3) 98 RA(4)

99 RA(2) 100 RA(5)

101 RA(1) 102 RA(6)

103 RA(0) 104 RA(7)

105 RA(10) 106 RA(8)

107 RA(9) 108 /RASL(0)

109 /RASL(1) 110 /RASL(3)

111 /CASL(1) 112 +12V

113 /CASL(0) 114 /RASH(0)

115 /CASL(2) 116 /RASH(3)

117 +5V_MAIN 118 +3V_MAIN

119 GND 120 GND

Table 4-8

Signal assignments on the RAM expansion connector (continued)

Pin Signal name Pin Signal name

C H A P T E R 4

Expansion Modules

42

RAM Expansion

Signal Descriptions 4

Table 4-9 describes the signals on the RAM expansion connector. Signal names that begin
with a slash (/) are active low.

Table 4-9

Descriptions of signals on the RAM expansion connector

Signal name Description

+12V 12.0 V for flash memory; 30 mA maximum.

+5V_MAIN 5.0 V

±

 5%; 500 mA maximum.

+3V_MAIN 3.6 V

±

 5%; 500 mA maximum.

Devices that use the +3V supply
must be 5-V tolerant.

/CASH(0–3) Column address select signals for the individual bytes in a longword.
The signals are assigned to the bytes as follows:

/CASH(3) selects DataH(24–31)
/CASH(2) selects DataH(16–23)
/CASH(1) selects DataH(8–15)
/CASH(0) selects DataH(0–7)

/CASL(0–3) Column address select signals for the individual bytes in a longword.
The signals are assigned to the bytes as follows:

/CASL(3) selects DataL(24–31)
/CASL(2) selects DataL(16–23)
/CASL(1) selects DataL(8–15)
/CASL(0) selects DataL(0–7)

DataH(0–31) Bidirectional 32-bit DRAM data bus. (DataH lines are connected to
corresponding DataL lines on the main logic board.)

DataL(0–31) Bidirectional 32-bit DRAM data bus. (DataL lines are connected to
corresponding DataH lines on the main logic board.)

GND Chassis and logic ground.

RA(0–11) Multiplexed row and column address to the DRAM devices. (See the
section “Address Multiplexing” on page 43 to determine which bits to
use for a particular type of DRAM device.)

/RAM_OE Output enable signal to the DRAM devices.

/RASL(0–3) Row address select signals for the four banks of DRAM whose data
bytes are selected by /CASL(0–3). (Signals /RASL(1–3) are for DRAM
on the expansion card. The /RASL(0) signal selects a bank of DRAM on
the main logic board.)

/RASH(0–3) Row address select signals for the four banks of DRAM whose data
bytes are selected by /CASH(0–3). (Signals /RASH(1–3) are for
DRAM on the expansion card. The /RASH(0) signal selects a bank
of DRAM on the main logic board.)

/WE Write enable for all banks of DRAM.

C H A P T E R 4

Expansion Modules

RAM Expansion

43

In the table, signals are specified as inputs or outputs with respect to the main logic
board that contains the CPU and memory module; for example, an input is driven by the
expansion card into the logic board.

IMPORTANT

The last letter in the names of row and column strobe signals identifies
signals that are used together: /CASL() signals are used with /RASL()
signals; /CASH() signals are used with /RASH() signals. In the
Macintosh PowerBook 190 computer, corresponding DataL and DataH
lines are connected together.

▲

Address signals must be stable before the falling edge of RAS. Because each address line
is connected to every DRAM device, whereas each RAS line is connected to only one
bank of devices, the difference in loading can cause the address signals to change more
slowly than the RAS signals. This situation is more likely to arise on cards with many
DRAM devices. One solution is to add 100

Ω

 damping resistors on the RAS lines.

Address Multiplexing 4

Signals RA(0-11) are a 12-bit multiplexed address bus and can support several different
types of DRAM devices.

Depending on their internal design and size, different types of DRAM devices require
different row and column address multiplexing. The operation of the multiplexing is
determined by the way the address pins on the devices are connected to individual
signals on the RA(0-11) bus and depends on the exact type of DRAM used.

Table 4-10 on page 44 shows how the signals on the address bus are connected for
several types of DRAM devices. The device types are specified by their size and by the
number of row and column address bits they require.

Table 4-10 also shows how the signals are multiplexed during the row and column
address phases. For each type of DRAM device, the first and second rows show the
actual address bits that drive each address pin during row addressing and column
addressing, respectively. The third row shows how the device’s address pins are
connected to the signals on the RA(0-11) bus.

IMPORTANT

Some types of DRAM devices don’t use all 12 bits in the row or column
address. The table shows the bit numbers for those unused bits in italics;
bit numbers for the bits that are used are shown in bold.

▲

Note

The address multiplexing scheme used in the Macintosh PowerBook 190
computer supports only the types of RAM devices shown in Table 4-10.
Other RAM types should not be used.

◆

C H A P T E R 4

Expansion Modules

44

RAM Expansion

Banks of DRAM 4

The DRAM expansion card can have up to four banks of RAM, selected by individual
signals /RASL(2–3) and /RASH(2–3). Banks can be 2 MB, 4 MB, or 8 MB in size; on a
card with more than one bank, all banks must be the same size.

Because only one bank is active at a time, and because different-sized DRAM devices
consume about the same amount of power when active, a card having fewer devices per
bank consumes less power than a card having more devices per bank.

DRAM Device Requirements 4

The DRAM devices used in a DRAM expansion card must meet the following minimum
specifications:

■

fast page mode

■

self-refreshing

■

low-power grade

■

row access time (t

RAC

) of 70 ns or less

■

column access time (t

CAC

) of 20 ns or less

■

page-mode cycle time (t

PC

) of 50 ns or less

DRAM devices that use the 3-V supply must be 5-V tolerant.

Table 4-10

Address multiplexing for some typical DRAM devices

Individual signals on DRAM_ADDR bus

Type of DRAM device

[11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]

1 M

×

 16, 12 row bits, 8 column bits

Row address bits

21 20 19 18 17 16 15 14 13 12 11 10

Column address bits

19 21 18 22

9 8 7 6 5 4 3 2

Device address pins

11 10 9 8 7 6 5 4 3 2 1 0

2 M

×

 8, 12 row bits, 9 column bits

Row address bits

21 20 19 18 17 16 15 14 13 12 11 10

Column address bits

19 21 18

22 9 8 7 6 5 4 3 2

Device address pins

11 10 9 8 7 6 5 4 3 2 1 0

2 M

×

 8, 11 row bits, 10 column bits

Row address bits

21 20

19

18 17 16 15 14 13 12 11 10

Column address bits

19

21 18

22 9 8 7 6 5 4 3 2

Device address pins

9 10 — 8 7 6 5 4 3 2 1 0

C H A P T E R 4

Expansion Modules

RAM Expansion 45

Note
The DRAM refresh operation depends on the state of the computer.
When the computer is operating normally, the Pratt IC provides refresh
signals. When the computer goes into sleep mode, the Pratt IC switches
the DRAM devices to their self-refresh feature to save power. See also
“Pratt Memory Controller IC” on page 11. ◆

Expansion Card Electrical Limits 4

The DRAM expansion card must not exceed the following maximum current limits on
the +5V supply:

The capacitive loading on the signal lines must not exceed the following limits:

If the total capacitive loading for the devices on your card exceeds these guidelines, you
should use buffers (such as 244-type devices) on the address and /RAS lines. Because of
timing constraints, you cannot use buffers on the /CAS and /WE lines. If you do use
buffers, you must keep within the following delay specifications:

■ maximum delay on RA(): 8 ns

■ maximum delay on /RASL() and /RASH(): 10 ns

■ minimum delay on /RASL() and /RASH(): greater than or equal to the actual delay
on RA()

Active 500 mA

Standby 24 mA

Self-refresh 6 mA

/CASL(0–3), /CASH(0–3) 40 pF

DataL(0–31), DataH(0–31) 70 pF

RA(0–11) 25 pF

/RASL(1–3), /RASH(1–3) 30 pF

/WE 85 pF

C H A P T E R 4

Expansion Modules

46 RAM Expansion

Mechanical Design of the RAM Expansion Card 4
All the components of the RAM expansion card, including the connector, are on the same
side of the card, as shown in Figure 4-3.

Figure 4-3 RAM expansion card

IMPORTANT

The component side is the bottom side when the card is installed.
The top surface of the board must have no components or
component leads. All components must reside on the bottom of
the card, along with the connector. ◆

RAM Card Dimensions 4

Figure 4-4 is a plan view of the component side of the card showing its dimensions and
the location of the connector.

Figure 4-4 Dimensions of the RAM expansion card

Connector

Low-profile memory ICs
(typical configuration)

86.30
[3.398]

54.40 [2.142]

23.92 [.942]

R 1.52 [.060]

5.30
[.209]

9.96 [.392]

PIN 1

PIN 2

5.00 [.197]

6.30 [.248]

R 1.52 [.060]

89.00 [3.504]

Note: Dimensions are in millimeters [inches].

C H A P T E R 4

Expansion Modules

RAM Expansion 47

Figure 4-5 shows the maximum component height and the restricted areas on the bottom
(component side) of the card. Only the connector can exceed the height limit shown.

Figure 4-5 Restricted areas on the component side of the card

To keep within the component height restrictions, the DRAM devices on the RAM
expansion card must be of package type TSOP (thin small outline package) rather than
SOP or SOJ.

IMPORTANT

The thickness of the PC board is critical; it must
be within a 0.05 mm tolerance of 0.75 mm. ▲

▲ W A R N I N G

Do not exceed the dimensions shown in the drawings. Cards that
exceed these specifications may damage the computer. ▲

RAM Card Connector 4

The connector on the RAM expansion card is a 120-pin connector, part number
KX14-120K14E9, manufactured by JAE Electronics, Irvine, California.

Note
Some early prototypes of this connector had oil contamination of the
contact surfaces. Developers should avoid using those prototype
connectors in their products.

77.00 [3.031] 2X 6.00 [.236]

6.00 [.236]

Component height
restricted to 1.42
 [.056] maximum

No components
or traces

2X 81.83
 [3.22]

Note: Dimensions are in millimeters [inches].

C H A P T E R 4

Expansion Modules

48 Video Card

Video Card 4

The Macintosh PowerBook 190 computer accepts an optional video card that provides
support for an external video monitor. This section describes the video card that Apple
provides and includes a design guide for developers who wish to design such a card.

The Apple Video Card 4
Apple provides an optional video card for the Macintosh PowerBook 190 computer.
Figure 4-6 shows its general appearance.

Figure 4-6 Video card

Monitors Supported 4

The external video card provides video output for all Apple 12-inch, 13-inch, and 16-inch
RGB monitors, the Apple Macintosh Portrait Display, and Apple Computer’s new
17-inch multiscan display. With appropriate adapter cables, the external video card can
also support a VGA display or an 800-by-600 pixel SVGA display.

The video card contains 512 KB of video RAM, which provides pixel depths of up to 8
bits per pixel on monitor screens of up to 624 by 832 pixels.

Foam block

Video
connector

Shield

80-pin connector

C H A P T E R 4

Expansion Modules

Video Card 49

Table 4-11 lists the video monitors supported by the video card.

The external video interface is enabled by attaching a monitor and restarting the
computer. During the boot process, ROM software tests the monitor sense lines and
activates the video output system if a recognized monitor is attached. If no monitor is
found, the video output system is deactivated to conserve power.

Video Mirroring 4

When two video displays are used, the Macintosh PowerBook 190 computer has two
video output modes: dual mode and mirror mode. In dual mode, which is the normal
Macintosh mode of operation, the external video monitor is independent of the flat panel
display and displays additional information. Alternatively, the user can select mirror
mode, in which the external monitor mirrors (duplicates) the flat panel display.

The screen of the external monitor may be larger or smaller than the flat panel display. In
mirror mode, the display on the larger screen uses only the central portion of that screen
and matches the horizontal and vertical dimensions of the smaller screen.

▲ W A R N I N G

Applications that write directly to the display buffer may not be
compatible with mirror mode unless they ensure that they do not write
outside the active display area. That is not a problem for applications
that use QuickDraw and never write directly to the display buffer. ▲

Because the video output circuitry consumes additional power, Apple recommends that
customers use the AC adapter when using an external monitor.

* Includes Macintosh Color Display and Apple High Resolution Monochrome Monitor.

Table 4-11 Video monitors and modes

Monitor type
Width
(pixels)

Height
(pixels)

Maximum
pixel depth
(bits)

Frame rate
(Hz)

12-inch RGB 512 384 8 60.15

13-inch RGB* 640 480 8 66.67

Portrait 640 870 4 75.0

16-inch RGB 832 624 8 66.67

17-inch multiscan 640 480 8 66.67

17-inch multiscan 832 624 8 75.0

VGA or SVGA 640 480 8 59.95

SVGA 800 600 8 55.98

C H A P T E R 4

Expansion Modules

50 Video Card

External Video Connector 4

The video card for the Macintosh PowerBook 190 computer has the same type VID-14
video output connector as the PowerBook 520 and 540 computers. An optional adapter
cable allows the user to attach a standard Apple video cable. Table 4-12 lists the signal
pin assignments for both the VID-14 connector on the card and the DB-15 connector on
the adapter cable. Figure 4-7 shows the pin configurations of the VID-14 connector and
the DB-15 connector.

One source for the VID-14 adapter cable is

Hosiden America Corp.
10090 Pasadena Ave., Suite B2
Cupertino, CA 95014
408-252-0541

Refer to Hosiden part number CMP1220-010100.

Table 4-12 Signals on the video connector

Pin

Signal name DescriptionVID-14 DB-15

1 2 RED.VID Red video signal

2 1 RED.GND Red video ground

3 4 SENSE0 Monitor sense signal 0

4 12 /VSYNC Vertical synchronization signal

5 3 /CSYNC Composite synchronization signal

6 11 GND CSYNC and VSYNC ground

7 6 GRN.GND Green video ground

8 5 GRN.VID Green video signal

9 7 SENSE1 Monitor sense signal 1

10 14 HSYNC.GND HSYNC ground

11 10 SENSE2 Monitor sense signal 2

12 15 /HSYNC Horizontal synchronization signal

13 9 BLU.VID Blue video signal

14 13 BLU.GND Blue video ground

— 8 n.c. Not connected

Shell Shell SGND Shield ground

C H A P T E R 4

Expansion Modules

Video Card 51

Figure 4-7 Video connectors

Monitor Sense Codes 4

To identify the type of monitor connected, the video card uses the Apple monitor sense
codes on the signals SENSE0–SENSE2 in Table 4-12. Table 4-13 shows the sense codes
and the extended sense codes for each of the monitors the card can support. Refer to the
Macintosh Technical Note M.HW.SenseLines for a description of the sense code system.

Note
Both VGA and SVGA monitors have the same sense code. The first time
the user starts up with an SVGA monitor, the video card treats it as a
VGA monitor and shows a 640-by-480 pixel display. The user can switch
to the 800-by-600 pixel SVGA mode from the Monitors control panel;
when that happens, the computer changes the display to the 800-by-600
pixel display mode immediately, and continues to use that mode the
next time it is started up. ◆

Table 4-13 Monitor sense codes

Monitor type

Standard
sense codes Extended sense codes

(2–0) (1, 2) (0, 2) (0, 1)

12-inch RGB 0 1 0 n.a. n.a. n.a.

13-inch RGB 1 1 0 n.a. n.a. n.a.

Portrait 0 0 1 n.a. n.a. n.a.

16-inch RGB 1 1 1 1 0 1 1 0 1

17-inch multiscan 1 1 0 1 1 0 1 0 0

VGA and SVGA 1 1 1 0 1 0 1 1 1

No monitor 1 1 1 1 1 1 1 1 1

8 7 6 5 4 3 2

15 14 13 12 11 10 9

1

2 4 6 8 10 12 14

1 3 5 7 9 11 13

VID-14 connector socket

DB-15 connector socket

C H A P T E R 4

Expansion Modules

52 Video Card

Video Card Design Guide 4
This section gives electrical and mechanical specifications for developers who wish to
design a video card for the Macintosh PowerBook 190 computer.

Video Card Connector 4

The video card is connected to the computer’s main logic board by an 80-pin connector.
The connector on the card is a surface-mount connector with 0.8-mm pitch, part number
KX14-80K5E9 manufactured by JAE Electronics.

Signals on the Video Card Connector 4

Table 4-14 shows the pin assignments on the video card connector. The table is arranged
the same way as the pins on the connector, with pin 1 across from pin 2, and so on.

Table 4-14 Signals on the video card connector

Pin
number Signal name

Pin
number Signal name

1 +5V 2 +5V

3 n.c. 4 IO_DATA(8)

5 n.c. 6 GND

7 n.c. 8 IO_DATA(7)

9 IO_DATA(6) 10 IO_DATA(26)

11 IO_DATA(15) 12 IO_DATA(25)

13 IO_DATA(14) 14 IO_DATA(24)

15 IO_DATA(12) 16 IO_DATA(29)

17 IO_DATA(13) 18 IO_DATA(28)

19 IO_DATA(4) 20 IO_DATA(27)

21 GND 22 GND

23 IO_DATA(0) 24 IO_DATA(16)

25 IO_DATA(5) 26 IO_DATA(31)

27 IO_DATA(1) 28 IO_DATA(30)

29 IO_DATA(11) 30 IO_DATA(19)

31 IO_DATA(3) 32 IO_DATA(22)

33 IO_DATA(9) 34 IO_DATA(21)

35 IO_DATA(2) 36 IO_DATA(17)

37 IO_DATA(10) 38 IO_DATA(20)

continued

C H A P T E R 4

Expansion Modules

Video Card 53

Table 4-15 gives descriptions of the signals on the video card connector.

39 IO_DATA(23) 40 IO_DATA(18)

41 /AS 42 IO_RW

43 /IO_RESET 44 /DSACK(1)

45 +5V 46 +5V

47 SIZ(1) 48 /DSACK(0)

49 SIZ(0) 50 IO_ADDR(0)

51 IO_ADDR(2) 52 IO_ADDR(1)

53 IO_ADDR(5) 54 IO_ADDR(3)

55 IO_ADDR(17) 56 IO_ADDR(4)

57 IO_ADDR(19) 58 IO_ADDR(7)

59 IO_ADDR(15) 60 IO_ADDR(6)

61 IO_ADDR(21) 62 IO_ADDR(10)

63 IO_ADDR(22) 64 IO_ADDR(12)

65 IO_ADDR(23) 66 IO_ADDR(13)

67 IO_ADDR(20) 68 IO_ADDR(11)

69 /KEY_CS 70 IO_ADDR(14)

71 /VID_IRQ 72 IO_ADDR(9)

73 VID_CLK 74 IO_ADDR(16)

75 +5V 76 IO_ADDR(8)

77 BUF_IOCLK 78 IO_ADDR(18)

79 GND 80 GND

Table 4-15 Descriptions of the signals on the video card connector

Signal name Description

/AS Address strobe (68030 bus)

BUF_IOCLK 25 MHz I/O clock

/DSACK(0–1) Bus data acknowledge (68030 bus)

/EXT_VID_CS /CS for locations $FDXX XXXX

continued

Table 4-14 Signals on the video card connector (continued)

Pin
number Signal name

Pin
number Signal name

C H A P T E R 4

Expansion Modules

54 Video Card

Video Card Mechanical Design 4

Figure 4-8 shows the dimensions of the video card and the location of the external
video connector.

Figure 4-8 Dimensions of the video card

IO_ADDR(0–23) Address bus (68030 bus)

IO_DATA(0–31) Data bus (68030 bus)

/IO_RESET Device reset; active low

IO_RW Read/write (68030 bus)

/KEY_CS /CS for locations $FEXX XXXX; reserved

SIZ(1:0) Size of video RAM

VID_CLK 16 MHz video clock

/VID_IRQ Video interrupt

Table 4-15 Descriptions of the signals on the video card connector (continued)

Signal name Description

87.68
[3.452]

93.98
[3.700]

30.20
[1.189]

Video
connector

43.00
[1.693]

Note: Dimensions are in millimeters [inches].

C H A P T E R 4

Expansion Modules

Video Card 55

Figure 4-9 is a bottom view of the video card and shows the position of the 80-pin
connector (callout 3). Figure 4-10 and Figure 4-11 show the component restrictions on the
bottom and top of the card.

Figure 4-9 Video card and 80-pin connector

Figure 4-10 Video card bottom view with component restrictions

22.23 [.875]

6.29 [.248]

PIN 1

PIN 2

3

Note: Dimensions are in millimeters [inches].

38.75 [1.526]

31.00 [1.220]

19.10 [.752]

Component height restricted
to 4.00 [.157] maximum

Component height restricted
to 2.00 [.079] maximum

Component height restricted
to 2.75 [.108] maximum

No components, bottom side

See Figure 4-13.

3.74 [.147]
1.69 [.067]

39.58 [1.558]

16.88 [.665]

13.15 [.518]

29.16 [1.148]

27.94
[1.100]

54.10
[2.130]

25.98
[1.023]

28.12
[1.107]

77.88
[3.066]

13.50 [.531]

22.78 [.897]

Component
height restricted

to 2.50 [.098]
maximum

1.71 [.067]

Note: Dimensions are in millimeters [inches].

C H A P T E R 4

Expansion Modules

56 Video Card

Figure 4-11 Video card top view with component restrictions

Figure 4-12 is a top view of the video card showing the position of the foam block that
helps hold the card in the proper position.

Figure 4-12 Video card top view

Figure 4-13 is a detail drawing showing the dimensions of the three mounting holes for
the EMI shield

16.30
[.642]

10.40
[.409]

Component
height restricted

to 4.00 [.157]
maximum

Component
height restricted
to 6.50 [.256]
maximum

No component
allowed

Note: Dimensions are in millimeters [inches].

85.18
[3.354]

9.90
[.390]

9.40 ± 0.50

16.80 ± 0.50

Foam
block

Note: Dimensions are in millimeters [inches].

C H A P T E R 4

Expansion Modules

PCMCIA Slot 57

Figure 4-13 Detail of EMI shield mounting holes

The thickness of the video card’s PC board is 1.30 mm [0.051 inches].

PCMCIA Slot 4

The Macintosh PowerBook 190 computer has a PCMCIA slot that can accept two type II
PC cards or one type III PC card. This section summarizes the features and specifications
of the PCMCIA slots. For a description of the PC Card Services software, see Chapter 8,
“PC Card Services.” For complete specifications and descriptions of the software
interfaces, developers should consult Developing PC Card Software for the Mac OS.

PCMCIA Features 4
The PCMCIA slot supports two types of PC cards: mass storage cards such as SRAM and
ATA drives (both rotating hard disk and flash media) and I/O cards such as modems,
network cards, and video cards. The Macintosh desktop metaphor includes the concept
of storage device representation, so it already supports mass storage cards. Apple
Computer has extended the metaphor to include I/O cards as well.

The user can insert or remove a PC card while the computer is operating. The user can
eject a PC card either by choosing Eject from the Special menu or by dragging the card’s
icon to the trash.

Macintosh PowerBook computers currently support PC card ejection by software
command. Software ejection is controlled by Card Services and allows Card Services to
eject a PC card after notifying all clients of the card that its ejection is about to occur. If
clients are using resources on the card, the clients have the option of refusing the request
and alerting users to the reasons why an ejection can’t take place.

Support for I/O-oriented PC cards is provided through a Macintosh Finder extension
that is a client of the Card Services software. The Finder extension is responsible for
maintaining card icons on the desktop, providing card information in Get Info windows,
and ejecting cards when they’re dragged to the Trash. The Finder extension also helps a
client provide custom features such as icons, card names, card types, and help messages.

3.05 [.120]

0.80 [.031]

0.40 [.016]

1.53 [.060]

Note: Dimensions are in millimeters [inches].

C H A P T E R 4

Expansion Modules

58 PCMCIA Slot

Summary Specifications 4
The PCMCIA slot in the Macintosh PowerBook 190 computer contains two standard PC
card sockets. Each socket accepts either a type I or type II card. The PCMCIA slot also
accepts one type III card, which occupies both sockets.

The mechanical and electrical characteristics of the PCMCIA slot conform to the
specifications given in the PCMCIA PC Card Standard, Release 2.1.

The sockets support 16-bit PC cards. Each socket is 5-volt keyed and supports either a
memory PC card or an I/O PC card.

Access Windows 4

Each socket supports the following two access windows in the computer’s address space:

■ one attribute memory or common memory window

■ one I/O window

The only valid window combinations are the following:

■ one attribute memory window

■ one common memory window

■ one common memory window and one I/O window

Each window has a 64 MB address space. The window address spaces could be
implemented as 8 MB pages in some systems. The PCMCIA interface has the ability
to map the entire PC card’s memory space into the host system’s memory window.

Each window has its own independent access timing register.

Data Access 4

Each socket supports both byte and word data access in both memory and I/O modes.
The IOIS16 signal determines whether word access is single 16-bit access or two 8-bit
accesses. Byte-swapping option is always big-endian mode.

The CE1 and CE2 signals determine the type of data bus access, as follows:

■ word access: CE1=L, CE2=L

■ even bus access: CE1=L, CE2=H

■ odd bus access (not allowed): CE1=H, CE2=L

Signal Definitions 4

Certain signals on the PC card sockets are defined as follows:

■ BVD1, BVD2: battery voltage signals (status and interrupt)

■ WP: write protect (status and interrupt)

■ RDY/BSY: ready/busy signal (status and interrupt)

■ WAIT: used to delay access (maximum asserted time is 10 µs)

C H A P T E R 4

Expansion Modules

PCMCIA Slot 59

■ IRQ: interrupt request, level mode only (pulse mode is not supported)

■ SPKR: speaker (digital audio output)

■ STSCHG/RI: status change and ring indicator (wakeup mode)

■ INPACK: not supported

Power 4

The PC card sockets provide power as follows:

■ Vcc: programmed as either 0 V or 5 V

■ Vpp1, Vpp2: programmed as either 5 V or 12 V

Vpp1 and Vpp2 cannot be programmed independently.

The maximum current from the Vcc pin is 600 mA. The maximum current from each
Vpp1 or Vpp2 pin is 30 mA. The maximum current from all Vpp pins is 120 mA.

The sockets support a low-powered sleep mode.

Controller Interrupts 4

There is a single interrupt for both sockets. The interrupt is a combination of the status
change signal and the PC card’s interrupt request signal.

C H A P T E R 5

Software Features 5Figure 5-0
Listing 5-0
Table 5-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 5

Software Features

62

ROM Software

This chapter describes the new features of the software for the Macintosh PowerBook
190 computer. It describes both the built-in ROM and the system software that resides on
the hard disk.

ROM Software 5

The ROM software in the Macintosh PowerBook 190 computer is based on the ROM
used in previous PowerBook computers, with enhancements to support the many new
features of these computers. Some of the features this ROM supports include the
following:

■

machine identification

■

new memory controller IC

■

Power Manager software

■

new display controller

■

new sound features

■

ATA storage devices

■

IDE disk mode

■

Ethernet

■

function keys

■

smart batteries

■

trackpad

The following sections describe each of these features.

Machine Identification 5

The ROM includes new tables and code for identifying the machine.

Applications can find out which computer they are running on by using the Gestalt
Manager. The

gestaltMachineType

 value returned by the Macintosh PowerBook 190
computer is 122 (hexadecimal $7A).

Inside Macintosh: Overview

 describes the Gestalt
Manager and tells how to use the

gestaltMachineType

 value to obtain the machine
name string.

C H A P T E R 5

Software Features

ROM Software

63

Memory Controller Software 5

The memory control routines have been rewritten to operate with the PBX memory
controller IC, which has a control register configuration different from that of the
memory controller used in earlier Macintosh PowerBook models. The memory
initialization and size code has been rewritten to deal with

■

larger ROM size

■

a new type of DRAM devices

■

new memory configurations

Power Manager Software 5

Changes to the Power Manager software include

■

support for the new lithium ion batteries

■

support for turning on and off power to the Ethernet interface

Like other current PowerBook models, the Macintosh PowerBook 190 computer supports
the public API for power management, which is described in

Inside Macintosh: Devices.

Display Controller Software 5

The Macintosh PowerBook 190 computer has a new custom IC, the CSC

(color support
chip), that provides the data and control interface to the flat panel display. The ROM
software includes new video drivers for that IC.

The new drivers also support a wider range of external video monitors. See “Monitors
Supported” on page 48.

Sound Features 5

The ROM software includes new sound driver software to support the new Sound
Manager, which is part of the system software. The new driver software also supports
the following new features:

■

improved sound performance by way of a new interface to the Singer sound IC

■

support for 16-bit stereo sound input

■

support for automatic gain control in software

■

mixing of sound output from the modem

The new ROM software also includes routines to arbitrate control of the sound hardware
between the modem and the Sound Manager.

C H A P T E R 5

Software Features

64

ROM Software

ATA Storage Devices 5

Support for ATA storage devices (the internal IDE drive, PCMCIA drives, and ATAPI
CD-ROM drives) is incorporated in the ROM software.

IDE Disk Mode 5

The ROM software also includes modifications to support disk mode. In previous
Macintosh PowerBook models, the internal hard disk was a SCSI drive and the setup for
disk access from another computer was called SCSI disk mode. In the Macintosh
PowerBook 190 computer, the internal hard disk is an IDE drive and the disk access
mode is called IDE target mode.

IDE target mode interprets SCSI commands from the external computer, translates them
into the equivalent IDE commands, and calls the ATA driver to carry them out. IDE
target mode does not support all SCSI commands; it supports the commands used in the
Apple SCSI device driver and the new Drive Setup utility.

Note

The ATA driver is described in Chapter 8, “PC Card Services.”

◆

Ethernet Driver 5

The driver for the Ethernet interface can now put a sleep task for Ethernet into the Power
Manager’s sleep table. This sleep task first makes a control call to the Ethernet driver to
prepare the Ethernet interface IC for sleep mode. The sleep task then makes a Power
Manager call to turn off power to the IC. The sleep task installs a corresponding wake
task that turns the interface power back on and reinitializes the interface IC.

Support for Function Keys 5

The keyboard on the Macintosh PowerBook 190 computer has a row of 12 function keys
across the top. Except for the function keys, the keyboard is similar to those on previous
Macintosh PowerBook models. The function keys are added to the key matrix in the
same way as the function keys on the Apple Extended Keyboard and return the same
key codes.

Smart Battery Support 5

The Power Manager IC communicates with the processors in the Macintosh PowerBook
Intelligent Batteries by means of a serial interface. The Power Manager’s command set
has been expanded to provide system access to the data from the batteries.

C H A P T E R 5

Software Features

System Software

65

Trackpad Support 5

The trackpad hardware, the Power Manager IC, and the system software work together
to translate the movements of a finger across the surface of the trackpad into cursor
movements.

The control registers for the trackpad hardware are part of the Power Manager IC. The
Power Manager’s software takes the raw data from the trackpad hardware and converts
it to the same format as ADB mouse data before sending it on to the system software.

The ADB software that supports the trackpad includes the Cursor Device Manager,
which provides a standard interface for a variety of devices. The ADB software checks to
see whether a device connected to the ADB port is able to use the Cursor Device
Manager. For more information, see the January 1994 revision of Technical Note HW 01,

ADB—The Untold Story: Space Aliens Ate My Mouse.

System Software 5

The Macintosh PowerBook 190 computer is shipped with new system software based on
System 7.5 and augmented by several new features.

IMPORTANT

Even though the software for the Macintosh PowerBook 190 computer
incorporates significant changes from System 7.5, it is not a reference
release: that is, it is not an upgrade for earlier Macintosh models.

▲

The system software includes changes in the following areas:

■

control strip support

■

support for ATA devices (IDE and ATAPI)

■

large partition support

■

Drive Setup, a new utility

■

improved file sharing

■

improved math library

■

QuickDraw acceleration API

■

Display Manager

These changes are described in the sections that follow.

Note

For those changes that affect the software, information about new or
modified APIs is given elsewhere. Please see the cross references in the
individual sections.

◆

C H A P T E R 5

Software Features

66

System Software

Control Strip 5

The desktop on the Macintosh PowerBook 190 computer has the status and control
element called the control strip that was introduced in the Macintosh PowerBook 280
and 500 models. It is a strip of graphics with small button controls and indicators in the
form of various icons. For a description of the control strip and guidelines for adding
modules to it, see Macintosh Technical Note

OS 06—Control Strip Modules.

Support for ATA Devices 5

Support for ATA devices (the internal IDE drive, PCMCIA drives, and ATAPI CD-ROM
drives) is incorporated in the ROM software.

System software for controlling the internal IDE drive and PCMCIA drives is included in
a new ATA disk driver and the ATA Manager. System software for controlling the
optional ATAPI CD-ROM drive is provided by a system extension in conjunction with
the ATA Manager. The ATA disk driver and the ATA Manager are described in Chapter
7, “Software for ATA Devices.”

Large Partition Support 5

The largest disk partition supported by System 7.5 is 4 GB. The new system software
extends that limit to 2 terabytes.

IMPORTANT

The largest possible file is still 2 GB.

▲

The changes necessary to support the larger partition size affect many parts of the
system software. The affected software includes system-level and application-level
components.

64-Bit Volume Addresses 5

The current disk driver API has a 32-bit volume address limitation. This limitation
has been circumvented by the addition of a new 64-bit extended volume API
(

PBXGetVolInfo

) and 64-bit data types (

uint64

,

XVolumeParam

, and

XIOParam

).

For the definitions of the new API and data types, please see “The API Modifications” in
Chapter 6, “Large Volume Support.”

System-Level Software 5

Several system components have been modified to use the 64-bit API to correctly
calculate true volume sizes and read and write data to and from large disks. The
modified system components are

■

virtual memory code

■

Disk Init

■

FSM Init

C H A P T E R 5

Software Features

System Software

67

■

Apple disk drivers

■

HFS ROM code

Application-Level Software 5

Current applications do not require modification to gain access to disk space beyond the
traditional 4 GB limit as long as they do not require the true size of the large partition.
Applications that need to obtain the true partition size will have to be modified to use
the new 64-bit API and data structures. Typical applications include utilities for disk
formatting, partitioning, initialization, and backup.

The following application-level components of the system software have been modified
to use the 64-bit API:

■

Finder

■

Finder extensions (AppleScript, AOCE Mailbox, and Catalogs)

■

HDSC Setup

■

Disk First Aid

In the past, the sum of the sizes of the files and folders selected in the Finder was limited
to the largest value that could be stored in a 32-bit number—that is, 4 GB. By using the
new 64-bit API and data structures, the Finder can now operate on selections whose total
size exceeds that limit. Even with very large volumes, the Finder can display accurate
information in the Folder and Get Info windows and can obtain the true volume size for
calculating available space when copying.

The Finder extensions AppleScript, AOCE Mailbox, and Catalogs have been modified
in the same way as the Finder because their copy-engine code is similar to that in
the Finder.

A later section describes the modified Drive Setup application.

Limitations 5

The software modifications that support large partition sizes do not solve all the
problems associated with the use of large volumes. In particular, the modifications
do not address the following attributes of the file system:

■

HFS file sizes are still limited to 2 GB or less.

■

Large allocation block sizes cause inefficient storage. On a 2 GB volume, the minimum
file size is 32 KB; on a 2-terabyte volume, the minimum file size is a whopping 32 MB.

■

Drives with the new large volume driver will not mount on older Macintosh models.

Drive Setup 5

The software for the Macintosh PowerBook 190 computer includes a new disk setup
utility named Drive Setup that replaces the old HDSC Setup utility. In addition to the

C H A P T E R 5

Software Features

68

System Software

ability to support large volumes, the Drive Setup utility has several other enhancements,
including

■

an improved user interface

■

support for large volumes (larger than 2 GB)

■

support for chainable drivers

■

support for multiple HFS partitions

■

the ability to mount volumes from within the Drive Setup applications

■

the ability to start up (boot) from any HFS partition

■

support for removable media drives

Improved File Sharing 5

Version 7.6 of the file-sharing software incorporates many of the features of AppleShare,
including an API for servers.

The user can now set up shared files on ejectable media such as cartridge drives and
CD-ROM drives. The software keeps track of the status of the shared files when the
media are inserted and removed.

Math Library 5

The new math library (MathLib) is an enhanced version of the floating-point library
included in the ROM in the first generation of Power Macintosh computers.

The new math library is bit compatible in both results and floating-point exceptions with
the math library in the first-generation ROM. The only difference is in the speed of
computation.

The application interface and header files for the math library have not been changed.

QuickDraw Acceleration API 5

The QuickDraw acceleration API is the current accelerator interface for the PowerPC
version of native QuickDraw. It allows a patch chaining mechanism for decisions on
categories of blit operations and also specifies the format and transport of the data to the
accelerator.

Display Manager 5

Until now, system software has used the NuBus-specific Slot Manager to get and set
information about display cards and drivers. New system software removes this explicit
software dependency on the architecture of the expansion bus. The Display Manager
provides a uniform API for display devices regardless of the implementation details of
the devices.

C H A P T E R 6

Large Volume Support 6Figure 6-0
Listing 6-0
Table 6-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 6

Large Volume Support

70

Overview of the Large Volume File System

This chapter describes the large volume file system for the Macintosh PowerBook 190
computer. The large volume file system is a version of the hierarchical file system (HFS)
that has been modified to support volume sizes larger than the current 4 GB limit. It
incorporates only the changes required to achieve that goal.

Overview of the Large Volume File System 6

The large volume file system includes

■

modifications to the HFS ROM code, Disk First Aid, and Disk Init

■

a new extended API that allows reporting of volume size information beyond
the current 4 GB limit

■

new device drivers and changes to the Device Manager API to support devices
larger than 4 GB

■

a new version of HDSC Setup that supports large volumes and chainable
drivers (Chainable drivers are needed to support booting large volumes on
earlier Macintosh models.)

API Changes 6

The system software on the Macintosh PowerBook 190 computer allows all current
applications to work without modifications. Unmodified applications that call the file
system still receive incorrect values for large volume sizes. The Finder and other utility
programs that need to know the actual size of a volume have been modified to use the
new extended

PBXGetVolInfo

 function to obtain the correct value.

The existing low-level driver interface does not support I/O to a device with a range of
addresses greater than 4 GB because the positioning offset (in bytes) for a read or write
operation is a 32-bit value. To correct this problem, a new extended I/O parameter block
record has been defined. This extended parameter block has a 64-bit positioning offset.
The new parameter block and the extended

PBXGetVolInfo

 function are described in
“The API Modifications” beginning on page 71.

Allocation Block Size 6

The format of HFS volumes has not changed. What has changed is the way the HFS
software handles the allocation block size. Existing HFS code treats the allocation block
as a 16-bit integer. The large volume file system uses the full 32 bits of the allocation
block size parameter. In addition, any software that deals directly with the allocation
block size from the volume control block must now treat it as a true 32-bit value.

Even for the larger volume sizes, the number of allocation blocks is still defined by a
16-bit integer. As the volume size increases, the size of the allocation block also increases.
For a 2 GB volume, the allocation block size is 32 KB, and therefore the smallest file on
that disk will occupy at least 32 KB of disk space. This inefficient use of disk space is not
addressed by the large volume file system.

C H A P T E R 6

Large Volume Support

The API Modifications

71

The maximum number of files will continue to be less than 65,000. This limit is directly
related to the fixed number of allocation blocks.

File Size Limits 6

The HFS has a maximum file size of 2 GB. The large volume file system does not remove
that limit because doing so would require a more extensive change to the current API
and would incur more compatibility problems.

Compatibility Requirements 6

The large volume file system requires at least a 68020 microprocessor or a Power
Macintosh model that emulates it. In addition, the file system requires a Macintosh IIci
or more recent model. On a computer that does not meet both those requirements, the
large volume file system driver will not load.

The large volume file system requires System 7.5 or higher and a new Finder that
supports volumes larger than 4 GB (using the new extended

PBXGetVolInfo

 function).

The API Modifications 6

The HFS API has been modified to support volume sizes larger than 4 GB. The
modifications consist of two extended data structures and a new extended

PBXGetVolInfo

 function.

Data Structures 6

This section describes the two modified data structures used by the large volume
file system:

■

the extended volume parameter block

■

the extended I/O parameter block

Extended Volume Parameter Block 6

In the current

HVolumeParam

 record, volume size information is clipped at 2 GB.
Because HFS volumes can now exceed 4 GB, a new extended volume parameter block
is needed in order to report the larger size information. The

XVolumeParam

 record
contains 64-bit integers for reporting the total bytes on the volume and the number
of free bytes available (parameter names

ioVTotalBytes

 and

ioVFreeBytes

). In
addition, several of the fields that were previously signed are now unsigned (parameter
names

ioVAtrb

,

ioVBitMap

,

ioAllocPtr

,

ioVAlBlkSiz

,

ioVClpSiz

,

ioAlBlSt

,

ioVNxtCNID

,

ioVWrCnt

,

ioVFilCnt

, and

ioVDirCnt

).

C H A P T E R 6

Large Volume Support

72

The API Modifications

struct XVolumeParam {

ParamBlockHeader

unsigned long ioXVersion; // XVolumeParam version == 0

short ioVolIndex; // volume index

unsigned long ioVCrDate; // date and time of creation

unsigned long ioVLsMod; // date and time of last modification

unsigned short ioVAtrb; // volume attributes

unsigned short ioVNmFls; // number of files in root directory

unsigned short ioVBitMap; // first block of volume bitmap

unsigned short ioAllocPtr; // first block of next new file

unsigned short ioVNmAlBlks; // number of allocation blocks

unsigned long ioVAlBlkSiz; // size of allocation blocks

unsigned long ioVClpSiz; // default clump size

unsigned short ioAlBlSt; // first block in volume map

unsigned long ioVNxtCNID; // next unused node ID

unsigned short ioVFrBlk; // number of free allocation blocks

unsigned short ioVSigWord; // volume signature

short ioVDrvInfo; // drive number

short ioVDRefNum; // driver reference number

short ioVFSID; // file system identifier

unsigned long ioVBkUp; // date & time of last backup

unsigned short ioVSeqNum; // used internally

unsigned long ioVWrCnt; // volume write count

unsigned long ioVFilCnt; // number of files on volume

unsigned long ioVDirCnt; // number of directories on volume

long ioVFndrInfo[8]; // information used by the Finder

uint64 ioVTotalBytes; // total number of bytes on volume

uint64 ioVFreeBytes; // number of free bytes on volume

};

Field descriptions

ioXVersion

The version of

XVolumeParam

; set to 0.

ioVolIndex

An index for use with the

PBHGetVInfo

 function (described in

Inside Macintosh: Files

).

ioVCrDate

The date and time of volume initialization.

ioVLsMod

The date and time the volume information was last modified. (This
field is not changed when information is written to a file and does
not necessarily indicate when the volume was flushed.)

ioVAtrb

The volume attributes.

ioVNmFls

The number of files in the root directory.

ioVBitMap

The first block of the volume bitmap.

ioAllocPtr

The block at which the next new file starts. Used internally.

ioVNmAlBlks

The number of allocation blocks.

C H A P T E R 6

Large Volume Support

The API Modifications

73

ioVAlBlkSiz

The size of allocation blocks.

ioVClpSiz

The clump size.

ioAlBlSt

The first block in the volume map.

ioVNxtCNID

The next unused catalog node ID.

ioVFrBlk

The number of unused allocation blocks.

ioVSigWord

A signature word identifying the type of volume; it’s $D2D7 for
MFS volumes and $4244 for volumes that support HFS calls.

ioVDrvInfo

The drive number of the drive containing the volume.

ioVDRefNum

For online volumes, the reference number of the I/O driver for the
drive identified by

ioVDrvInfo

.

ioVFSID

The file system identifier. It indicates which file system is servicing
the volume; it’s zero for File Manager volumes and nonzero for
volumes handled by an external file system.

ioVBkUp

The date and time the volume was last backed up (it’s 0 if never
backed up).

ioVSeqNum

Used internally.

ioVWrCnt

The volume write count.

ioVFilCnt

The total number of files on the volume.

ioVDirCnt

The total number of directories (not including the root directory) on
the volume.

ioVFndrInfo

Information used by the Finder.

ioVTotalBytes

The total number of bytes on the volume.

ioVFreeBytes

The number of free bytes on volume.

Extended I/O Parameter Block 6

The extended I/O parameter block is needed for low-level access to disk addresses
beyond 4 GB. It is used exclusively by

PBRead

 and

PBWrite

 calls when performing I/O
operations at offsets greater than 4 GB. To indicate that you are using an

XIOParam

record, you should set the

kUseWidePositioning bit in the ioPosMode field.

Because file sizes are limited to 2 GB, the regular IOParam record should always be
used when performing file-level I/O operations. The extended parameter block is
intended only for Device Manager I/O operations to large block devices at offsets
greater than 4 GB.

The only change from the parameter block defined on page 2-91 of Inside Macintosh: Files
is the parameter ioWPosOffset, which is of type int64.

Note
The first eight fields are the generic HFS parameter
block fields defined in Inside Macintosh: Files. ◆

struct XIOParam {

QElemPtr qLink; // next queue entry

short qType; // queue type

C H A P T E R 6

Large Volume Support

74 The API Modifications

short ioTrap; // routine trap

Ptr ioCmdAddr; // routine address

ProcPtr ioCompletion;// pointer to completion routine

OSErr ioResult; // result code

StringPtr ioNamePtr; // pointer to pathname

short ioVRefNum; // volume specification

short ioRefNum; // file reference number

char ioVersNum; // not used

char ioPermssn; // read/write permission

Ptr ioMisc; // miscellaneous

Ptr ioBuffer; // data buffer

unsigned long ioReqCount; // requested number of bytes

unsigned long ioActCount; // actual number of bytes

short ioPosMode; // positioning mode (wide mode set)

int64 ioPosOffset;// wide positioning offset

};

Field descriptions

ioRefNum The file reference number of an open file.
ioVersNum A version number. This field is no longer used; you should always

set it to 0.
ioPermssn The access mode.
ioMisc Depending on the routine called, this field contains either a new

logical end-of-file, a new version number, a pointer to an access
path buffer, or a pointer to a new pathname. Because ioMisc is of
type Ptr, you’ll need to perform type coercion to interpret the value
of ioMisc correctly when it contains an end-of-file (a LongInt
value) or version number (a SignedByte value).

ioBuffer A pointer to a data buffer into which data is written by _Read calls
and from which data is read by _Write calls.

ioReqCount The requested number of bytes to be read, written, or allocated.
ioActCount The number of bytes actually read, written, or allocated.
ioPosMode The positioning mode for setting the mark. Bits 0 and 1 of this field

indicate how to position the mark; you can use the following
predefined constants to set or test their value:

CONST

fsAtMark = 0; {at current mark}

fsFromStart = 1; {from beginning of file}

fsFromLEOF = 2; {from logical end-of-file}

fsFromMark = 3; {relative to current mark}

You can set bit 4 of the ioPosMode field to request that the data be
cached, and you can set bit 5 to request that the data not be cached.
You can set bit 6 to request that any data written be immediately
read; this ensures that the data written to a volume exactly matches

C H A P T E R 6

Large Volume Support

The API Modifications 75

the data in memory. To request a read-verify operation, add the
following constant to the positioning mode:

CONST

rdVerify = 64; {use read-verify mode}

You can set bit 7 to read a continuous stream of bytes, and place the
ASCII code of a newline character in the high-order byte to
terminate a read operation at the end of a line.

ioPosOffset The offset to be used in conjunction with the positioning mode.

New Extended Function 6
This section describes the extended PBXGetVolInfo function that provides volume size
information for volumes greater than 4 GB.

Before using the new extended function, you should check for availability by calling
the Gestalt function. Make your call to Gestalt with the gestaltFSAttr selector
to check for new File Manager features. The response parameter has the
gestaltFSSupports2TBVolumes bit set if the File Manager supports large volumes
and the new extended function is available.

PBXGetVolInfo 6

You can use the PBXGetVolInfo function to get detailed information about a volume. It
can report volume size information for volumes up to 2 terabytes.

pascal OSErr PBXGetVolInfo (XVolumeParam paramBlock, Boolean async);

paramBlock A pointer to an extended volume parameter block.
async A Boolean value that specifies asynchronous (true) or synchronous

(false) execution.

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both:

Arrow Meaning

→ Input

← Output

↔ Both

C H A P T E R 6

Large Volume Support

76 The API Modifications

Parameter block

→ ioCompletion ProcPtr Pointer to a completion routine.

← ioResult OSErr Result code of the function.

↔ ioNamePtr StringPtr Pointer to the volume’s name.

↔ ioVRefNum short On input, a volume specification;
on output, the volume reference
number.

→ ioXVersion unsigned long Version of XVolumeParam
(value = 0).

→ ioVolIndex short Index used for indexing through
all mounted volumes.

← ioVCrDate unsigned long Date and time of initialization.

← ioVLsMod unsigned long Date and time of last
modification.

← ioVAtrb unsigned short Volume attributes.

← ioVNmFls unsigned short Number of files in the
root directory.

← ioVBitMap unsigned short First block of the volume bitmap.

← ioVAllocPtr unsigned short Block where the next
new file starts.

← ioVNmAlBlks unsigned short Number of allocation blocks.

← ioVAlBlkSiz unsigned long Size of allocation blocks.

← ioVClpSiz unsigned long Default clump size.

← ioAlBlSt unsigned short First block in the volume
block map.

← ioVNxtCNID unsigned long Next unused catalog node ID.

← ioVFrBlk unsigned short Number of unused
allocation blocks.

← ioVSigWord unsigned short Volume signature.

← ioVDrvInfo short Drive number.

← ioVDRefNum short Driver reference number.

← ioVFSID short File system handling this volume.

← ioVBkUp unsigned long Date and time of last backup.

← ioVSeqNum unsigned short Used internally.

← ioVWrCnt unsigned long Volume write count.

← ioVFilCnt unsigned long Number of files on the volume.

← ioVDirCnt unsigned long Number of directories
on the volume.

C H A P T E R 6

Large Volume Support

The API Modifications 77

DESCRIPTION

The PBXGetVolInfo function returns information about the specified volume. It is
similar to the PBHGetVInfo function described in Inside Macintosh: Files except that it
returns additional volume space information in 64-bit integers.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBXGetVolInfo are

RESULT CODES

← ioVFndrInfo[8] long Used by the Finder.

← ioVTotalBytes uint64 Total number of bytes
on the volume.

← ioVFreeBytes uint64 Number of free bytes
on the volume.

Trap macro Selector

_HFSDispatch $0012

noErr 0 Successful completion; no error occurred
nsvErr –35 No such volume
paramErr –50 No default volume

C H A P T E R 7

Software for ATA Devices 7Figure 7-0
Listing 7-0
Table 7-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 7

Software for ATA Devices

80

Introduction to the ATA Software

This chapter describes the system software that controls ATA devices in the Macintosh
PowerBook 190 computer. To use the information in this chapter, you should already be
familiar with writing programs for the Macintosh computer that call device drivers to
manipulate devices directly. You should also be familiar with the ATA/IDE specification,
ANSI proposal X3T10/0948D, Revision 2K or later (ATA-2).

Introduction to the ATA Software 7

In the Macintosh PowerBook 190 computer, the ATA software supports not only the
internal ATA hard disk drive but also ATA drives installed in the expansion bay and in
the PCMCIA slot. In addition to traditional Macintosh partitioned drives, the ATA
software also supports other file formats such as DOS through the Macintosh PC
Exchange application.

The ATA software in the Macintosh PowerBook 190 computer conforms to the Macintosh
driver model. File systems communicate with the driver by way of the Device Manager,
as shown in Figure 7-1. The ATA software consists of the ATA Manager and the ATA disk
driver. For an ATA drive in the PCMCIA slot, the ATA software uses the Card Services
software to configure the PCMCIA hardware and obtain access to the drive.

Figure 7-1

ATA software model

At the system level, the ATA disk driver and the ATA Manager work in the same way
that the SCSI Manager and associated SCSI device drivers work. The ATA disk driver
provides drive partition, data management, and error-handling services for the
operating system as well as support for determining device capacity and controlling

HFS
PC

exchange

Device Manager

ATA disk driver

ATA Manager

Card Services

ATA
controller

PCMCIA
controller

Other file
system

C H A P T E R 7

Software for ATA Devices

Introduction to the ATA Software

81

device-specific features. The ATA Manager provides data transport services between the
ATA hard disk drive and the system. The ATA Manager handles interrupts from the
drives and manages the interface timing.

ATA hard disk drives appear on the desktop the same way SCSI hard disk drives
currently do. Except for applications that perform low-level services such as formatting
and partitioning of disk drives, applications interact with the ATA hard disk drives in a
device-independent manner through the File Manager or by calling the Device Manager.

ATA Disk Driver 7

The ATA disk driver for the Macintosh PowerBook 190 computer has the following
features:

■

supports all ATA drives that comply with the ANSI ATA specification X3T10

■

uses the ATA Manager for system and bus independence

■

supports multiple drives and multiple partitions (volumes)

■

recognizes both partitioned and non-partitioned media

■

supports Macintosh PC Exchange for DOS file compatibility

■

adheres to the driver rules described in

Designing PCI Cards and Drivers for Power
Macintosh Computers

■

supports both synchronous and asynchronous requests from the file system

■

supports manual or powered ejection of PCMCIA cards

The ATA disk driver resides in ROM and supports all ATA drives that adhere to the
ANSI ATA/IDE specification X3T10. The driver can support any number of ATA drives,
either internal or installed in the expansion bay or the PCMCIA slot.

The ATA disk driver relies on the services of the ATA Manager, which provides the ATA
protocol engine and relieves the driver of system and bus dependencies. The main
functions of the driver are managing the media and monitoring the status of the drive.

The ATA disk driver is responsible for providing block-oriented access to the storage
media. The file systems treat the media as one or more logical partitions or volumes in
which data at any address can be read or written indefinitely.

The ATA disk driver provides status and control functions. In addition, the driver’s
functionality has been augmented to support Macintosh PC Exchange and the new Drive
Setup application. The functions are described in “ATA Disk Driver Reference”
beginning on page 83.

The ATA disk driver supports both synchronous and asynchronous requests from the file
system. The driver executes synchronous requests without relinquishing control back to
the caller until completion. The driver queues asynchronous calls and returns control to
the caller; it then executes the requested task in the background during interrupt time.

C H A P T E R 7

Software for ATA Devices

82

Introduction to the ATA Software

Drives on PC Cards 7

It might seem that the system should treat drives on PC cards like floppy disks because
they are removable. On closer examination, the floppy disk model is not appropriate for
such drives. The Mac OS assumes that a floppy disk is not partitioned and has a single
HFS volume. Drives on PC cards can be quite large, making multiple partitions
desirable, and they can be used in multiple platforms, so they may have formats other
than HFS. For those and other reasons having to do with the way the Mac OS works, the
ATA disk driver uses the hard disk storage model for PC card drives.

The hard disk model in the Mac OS assumes that the media is fixed, that is, not ejectable.
The Disk Eject option in the Finder’s Special menu is disabled for fixed media, but the
driver can still request that an eject call be given when a volume is unmounted from the
desktop (that is, when its icon is dragged to the Trash). The driver can use this eject call
to eject the PC card drive when the last volume on the drive has been unmounted.

Having only the single eject call is a problem for PC card drives that have removable
media because there is no way to distinguish between ejecting the media and ejecting the
drive. That being the case, the ATA disk driver does not support ejection of removable
media in PC card drives. It supports such drives as hard disks if the media is inserted
before the drive is installed in the PCMCIA socket.

Note

The hard disk model does not permit a single drive copy. This lack
should only be noticeable with single-socket systems or with a single
type III drive in a stacked type II socket configuration.

◆

The PC card drive media may contain one or more individual file system partitions
(volumes) displayed as icons on the desktop. The ATA disk driver mounts the volumes
automatically when the PC card is inserted into a socket.

The ATA disk driver in the Macintosh PowerBook 190 computer supports both
partitioned and nonpartitioned media. Partitioned media must contain a Macintosh
Partition Map, or the driver treats it as nonpartitioned. The driver searches the partition
map and posts disk-inserted events for all HFS, ProDOS, and other valid file system
partitions it finds. If there are no valid file system partitions in the partition map or if the
partition map itself does not exist, the disk driver posts a disk-inserted event for the
entire media as a single partition of unknown system type. The HFS file system and
installed foreign file systems such as Macintosh PC Exchange can then inspect the media
to determine whether it is formatted.

Power management for PC card drives is similar to that for the internal drive, which
uses an internal spindown timer to reduce power to the drive after a period of inactivity.
Instead of removing power to the drive, the driver’s spindown manager issues low
power commands to the drive. This approach provides power conservation without
incurring the performance slowdown associated with turning the drive on and off.

The driver maintains independent spindown timers for each PC card drive, allowing it
to provide maximum power conservation when one or more drives is inactive. The
spindown time, which can be set from the PowerBook control panel, is the same for
all drives.

C H A P T E R 7

Software for ATA Devices

ATA Disk Driver Reference

83

Control panels and control strip modules currently provide manual control of spindown
for the internal drive by means of calls to the Power Manager. That approach doesn’t
work for the PC card drives. Instead, the ATA disk driver provides a new control
function (

SetPowerMode

) and a new ststaus function (

GetPowerMode

) that software
can use to provide manual control of spindown.

Drives in the Expansion Bay 7

The ATA disk driver treats drives installed in the expansion bay the same as PC card
drives except that drives in the expansion bay cannot be power ejected and the media
icon on the desktop is the generic hard disk icon.

ATA Manager 7

The ATA Manager manages the ATA controller and its protocol. It provides data
transport services between ATA devices and the system, directing commands to the
appropriate device and handling interrupts from the devices.

The ATA Manager schedules I/O requests from the ATA disk driver, the operating
system, and applications. The ATA Manager can handle both synchronous and
asynchronous requests. When making asynchronous requests, the calling program
must provide a completion routine.

The ATA Manager’s internal processing of requests can be either by polling or by
interrupts. When it is polling, the ATA Manager continually monitors for the next state
of the protocol by looping. When it is interrupt driven, the ATA Manager is notified of
the next protocol state by an interrupt. The ATA Manager determines which way to
process each request as it is received; if interrupts are disabled, it processes the request
by polling.

Note

The ATA Manager does not provide an access mechanism for tuples on
the PCMCIA device. Any client can request tuple information from the
Card Services software described in Chapter 8, “PC Card Services.”

◆

The functions and data structures of the ATA Manager are described in “ATA Manager
Reference” beginning on page 98.

ATA Disk Driver Reference 7

This section describes the routines provided by the ATA disk driver. The information in
this section assumes that you are already familiar with how to use device driver routines
on the Macintosh computer. If you are not familiar with Macintosh device drivers, refer
to the chapter “Device Manager” in

Inside Macintosh: Devices

 for additional information.

C H A P T E R 7

Software for ATA Devices

84

ATA Disk Driver Reference

Standard Device Routines 7

The ATA disk driver provides the standard control and status routines described in the
chapter “Device Manager” of

Inside Macintosh: Devices

. Those routines are described in
this section. The specific control and status functions supported in the ATA disk driver
are defined in “Control Functions” beginning on page 86 and “Status Functions”
beginning on page 93.

Note

The ATA disk driver resides in ROM and is not
opened or closed by applications.

◆

The Control Routine 7

The control routine sends control information to the ATA disk driver. The type of control
function to be performed is specified in

csCode

.

The ATA disk driver implements many of the control functions supported by the SCSI
hard disk device driver and defined in

Inside Macintosh: Devices

 plus several new ones
that are defined in

Designing PCI Cards and Drivers for Power Macintosh computers.

 The
control functions are listed in Table 7-1 and described in “Control Functions” beginning
on page 86.

Table 7-1

Control functions

Value of

csCode

Definition

5 verify media

6 format media

7 eject drive

21 get drive icon

22 get media icon

23 get drive information

44 set startup partition

45 set partition mounting

46 set partition write protect

48 clear partition mounting

49 clear partition write protect

50 register partition

51 get a new drive

60 mount volume

70 set power-mode

C H A P T E R 7

Software for ATA Devices

ATA Disk Driver Reference

85

RESULT CODES

The Status Routine 7

The status routine returns status information about the ATA disk driver. The type of
information returned is specified in the

csCode

 field, and the information itself is
pointed to by the

csParamPtr

 field.

The ATA disk driver implements many of the status functions supported by the SCSI
hard disk device driver and defined in

Inside Macintosh: Devices,

 plus several new ones
that are defined in

Designing PCI Cards and Drivers for Power Macintosh computers

. The
status functions are listed in Table 7-2 and described in “Status Functions” beginning on
page 93.

RESULT CODES

noErr

Successful completion; no error occurred

controlErr

Unimplemented control call; could not
complete requested operation

nsDrvErr

No such drive installed

Table 7-2

Status functions

Value of

csCode

Definition

8

drive status

43 driver gestalt

44 get boot partition

45 get partition mount status

46 get partition write protect status

51 get partition information

70 get power mode

noErr

Successful completion; no error occurred.

statusErr

Unimplemented status call; could not complete
requested operation.

nsDrvErr

No such drive is installed.

C H A P T E R 7

Software for ATA Devices

86

ATA Disk Driver Reference

Control Functions 7

The Control routine in the ATA disk driver supports a standard set of control functions.
The functions are used for control, status, and power management.

In the function definitions, an arrow preceding a parameter indicates whether the
parameter is an input parameter, an output parameter, or both, as follows:

verify 7

The

verify

 function requests a read verification of the data on the ATA hard drive
media. This function performs no operation and returns

noErr

 if the logical drive
number is valid.

Parameter block

RESULT CODES

format 7

Because ATA hard drives are low-level formatted at the factory, this function does not
perform any operation. The driver returns

noErr

 if the logical drive number is valid.

Parameter block

RESULT CODES

Arrow Meaning

→

Input

←

Output

↔

Both

→

csCode

A value of 5.

→

ioVRefNum

The logical drive number.

→

csParam[]

None defined.

←

ioResult

See result codes.

noErr

Successful completion; no error occurred.

nsDrvErr

The specified logical drive number does not exist.

→

csCode

A value of 6.

→

ioVRefNum

The logical drive number.

→

csParam[]

None defined.

←

ioResult

See result codes.

noErr

Successful completion; no error occurred.

nsDrvErr

The specified logical drive number does not exist.

C H A P T E R 7

Software for ATA Devices

ATA Disk Driver Reference 87

eject 7

The eject function notifies the driver when a volume is no longer required by the file
system. The driver performs no action unless the drive itself is ejectable (for example, a
PC card drive). If the drive is ejectable and there is no other mounted volume for the
drive, then the driver initiates the eject operation. When the driver is notified that the
drive has been removed from the bus, the driver removes all associated logical drives
from the drive queue and updates its internal records.

Parameter block

RESULT CODES

get drive icon 7

The get drive icon function returns a pointer to the device icon and the device name
string to be displayed on the desktop when the media is initialized. If no physical icon is
available the function returns the media icon. The icon is an 'ICN#' resource and varies
with the system. The device name string is in Pascal format.

Parameter block

RESULT CODES

→ csCode A value of 7.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.
offLinErr The specified drive is not on the bus.

→ csCode A value of 21.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[0–1] Pointer to the drive icon and name string.
← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

C H A P T E R 7

Software for ATA Devices

88 ATA Disk Driver Reference

get media icon 7

The get media icon function returns a pointer to the media icon and the device name
string to be displayed on the desktop for an HFS volume and in the Get Info command
of the Finder. The icon is an 'ICN#' resource and varies with the type of drive or media.
The device name string is in Pascal format.

Parameter block

RESULT CODES

get drive information 7

The get drive information function returns information about the specified drive
as defined on page 470 of Inside Macintosh, Volume V.

Note
This information is not in Inside Macintosh: Devices. ◆

Because ATA devices are not designated, all drives are designated as unspecified. Also,
all drives are specified as SCSI because the only other option is IWM, which applies only
to certain floppy disk drives. The internal ATA drive is specified as primary and all
others as secondary. Drives on PC cards and in the expansion bay are specified as
removable (meaning the drive itself, not the media).

Parameter block

RESULT CODES

→ csCode A value of 22.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[0–1] Address of drive icon and name string

(information is in ICN# format).
← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 23.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[0–1] Drive information value (long).

$0601 = primary, fixed, SCSI, internal.
$0201 = primary, removable, SCSI, internal.

← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

C H A P T E R 7

Software for ATA Devices

ATA Disk Driver Reference 89

set startup partition 7

The set startup partition function sets the specified partition to be the startup
partition. The partition is specified either by its logical drive or by its block address on
the media. The current startup partition is cleared. A result code of controlErr is
returned if the partition does not have a partition map entry on the media or if the
partition could not be set to be the startup partition.

Parameter block

RESULT CODES

set partition mounting 7

The set partition mounting function enables the specified partition to be
mounted. The partition is specified either by its logical drive or by its block address on
the media. A result code of controlErr is returned if the partition does not have a
partition map entry on the media or if the partition could not be enabled to be mounted.

Parameter block

RESULT CODES

→ csCode A value of 44.
→ ioVRefNum The logical drive number, or

0 if using the partition’s block address.
→ csParam[0–1] The partition’s block address (long) if ioVRefNum is 0.
← ioResult See result codes.

noErr Successful completion; no error occurred.
controlErr Unimplemented control call; could not complete

requested operation
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 45.
→ ioVRefNum The logical drive number, or

0 if using the partition’s block address.
→ csParam[0–1] The partition’s block address (long) if ioVRefNum is 0.
← ioResult See result codes.

noErr Successful completion; no error occurred.
controlErr Unimplemented control call; could not complete

requested operation
nsDrvErr The specified logical drive number does not exist.

C H A P T E R 7

Software for ATA Devices

90 ATA Disk Driver Reference

set partition write protect 7

The set partition write protect function sets the specified partition to be
(software) write protected. The partition is specified either by its logical drive or by its
block address on the media. A result code of controlErr is returned if the partition
does not have a partition map entry on the media or if the partition could not be set to be
write protected.

Parameter block

RESULT CODES

clear partition mounting 7

The clear partition mounting function prevents the specified partition from
being mounted. The partition is specified either by its logical drive or by its block
address on the media. A result code of controlErr is returned if the partition does
not have a partition map entry on the media or if the partition could not be set so as
not to be mounted.

Parameter block

RESULT CODES

→ csCode A value of 46.
→ ioVRefNum The logical drive number, or

0 if using the partition’s block address.
→ csParam[0–1] The partition’s block address (long) if ioVRefNum is 0.
← ioResult See result codes.

noErr Successful completion; no error occurred.
controlErr Unimplemented control call; could not complete

requested operation
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 48.
→ ioVRefNum The logical drive number, or

0 if using the partition’s block address.
→ csParam[0–1] The partition’s block address (long) if ioVRefNum is 0.
← ioResult See result codes.

noErr Successful completion; no error occurred.
controlErr Unimplemented control call; could not complete

requested operation
nsDrvErr The specified logical drive number does not exist.

C H A P T E R 7

Software for ATA Devices

ATA Disk Driver Reference 91

clear partition write protect 7

The clear partition write protect function disables the (software) write
protection on the specified partition. The partition is specified either by its logical drive
or by its block address on the media. A result code of controlErr is returned if the
partition does not have a partition map entry on the media or if write protection could
not be disabled.

Parameter block

RESULT CODES

register partition 7

The register partition function supports Macintosh PC Exchange. It requests the
driver to redefine the starting block offset and capacity of an existing partition.

A pointer to the drive queue element is passed in along with the new physical offset and
capacity. The pointer has the following form:

struct {

DrvQElPte theDrive; // partition to be registered

long phyStart; // new start offset

long phySize; // new capacity (blocks)

}

Parameter block

RESULT CODES

→ csCode A value of 49.
→ ioVRefNum The logical drive number, or

0 if using the partition’s block address.
→ csParam[0–1] The partition’s block address (long) if ioVRefNum is 0.
← ioResult See result codes.

noErr Successful completion; no error occurred.
controlErr Unimplemented control call; could not

complete requested operation
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 50.
→ ioVRefNum The logical drive number.
→ csParam[0-1] Pointer to new driver information.
← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

C H A P T E R 7

Software for ATA Devices

92 ATA Disk Driver Reference

get a drive 7

The get a drive function supports Macintosh PC Exchange. It requests the driver to
create a new logical drive (partition) in the system drive queue. A pointer to the
DrvQElPtr variable is passed in; this variable contains the pointer to a valid partition
on the physical drive to which the new partition is to be added. Upon completion, the
function returns the new DrvQElPtr in the variable. The DrvQElPtr variable is
defined as follows:

DrvQElPtr *theDrive; //pointer to existing partition

Parameter block

RESULT CODES

mount volume 7

The mount volume function instructs the driver to post a disk-inserted event for the
specified partition. The partition is specified either by its logical drive or by its block
address on the media.

Parameter block

RESULT CODES

→ csCode A value of 51.
→ ioVRefNum The logical drive number.
→ csParam[] Pointer to existing partition.
← csParam[] Pointer to new partition.
← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 48.
→ ioVRefNum The logical drive number, or

0 if using the partition’s block address.
→ csParam[0–1] The partition’s block address (long) if ioVRefNum is 0.
← ioResult See result codes.

noErr Successful completion; no error occurred.
controlErr Unimplemented control call; could not complete

requested operation
nsDrvErr The specified logical drive number does not exist.

C H A P T E R 7

Software for ATA Devices

ATA Disk Driver Reference 93

set power mode 7

The set power mode function changes the drive’s power mode to one of four modes:
active, standby, idle, and sleep. It can be used to reduce drive power consumption and
decrease system noise levels.

IMPORTANT

Although the power modes have the same names as the ones in the
ATA/IDE specification, they do not have the same meanings. ▲

■ Active: The fully operational state with typical power consumption.

■ Standby: The state with minimal power savings. The device can return to the active
state in less than 5 seconds.

■ Idle: The state with moderate power savings. The device can return to the active state
within 15 seconds.

■ Sleep: The state with minimum power consumption. The device can return to the
active state within 30 seconds.

Parameter block

RESULT CODES

Status Functions 7
The Status routine in the ATA disk driver supports a standard set of status functions.
These functions are used to obtain information about a partition (volume) in an ATA
hard disk drive.

→ csCode A value of 70.
→ ioVRefNum The logical drive number.
→ csParam[0] The most significant byte contains one of the

following codes:
0 = enable the active mode
1 = enable the standby mode
2 = enable the idle mode
3 = enable the sleep mode
(least significant byte = don’t care)

← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

C H A P T E R 7

Software for ATA Devices

94 ATA Disk Driver Reference

drive status 7

The drive status function returns the same type of information that disk drivers are
required to return for the Status routine, as described on page 215 of Inside Macintosh,
Volume II.

Note
This information is not in Inside Macintosh: Devices. ◆

Parameter block

RESULT CODES

driver gestalt 7

The driver gestalt function provides the application with information about the
ATA hard disk driver and the attached device. Several calls are supported under this
function. A gestalt selector is used to specify a particular call.

The DriverGestaltParam data type defines the ATA gestalt parameter block:

struct DriverGestaltParam

{

ataPBHdr // see definition on page 99

SInt16 ioVRefNum; // refNum of device

SInt16 csCode; // driver gestalt code

OSType driverGestaltSelector; // gestalt selector

driverGestaltInfo driverGestaltResponse; // returned result

};

typedef struct DriverGestaltParam DriverGestaltParam;

→ csCode A value of 8.
→ ioVRefNum The logical drive number.
→ csParam[] Not used.
← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

C H A P T E R 7

Software for ATA Devices

ATA Disk Driver Reference 95

The fields driverGestaltSelector and driverGestaltResponse are 32-bit fields.

Parameter block

→ csCode A value of 43.
→ ioVRefNum The logical drive number.
→ driverGestaltSelector Gestalt function selector. This is a 32-bit

ASCII field containing one of the following
selectors:
'sync' Indicates synchronous or

asynchronous driver.
'devt' Specifies type of device the

driver is controlling.
'intf' Specifies the device interface.
'boot' Specifies PRAM value to

designate this driver or device.
'vers' Specifies the version number of

the driver.
'lpwr' Indicates support for

low-power mode.
'dAPI' Indicates support for Macintosh

PC Exchange calls.
'purg' Indicates driver can be closed or

purged.
'wide' Indicates large volume support.
'ejec' Eject-call requirements.

← driverGestaltResponse Returned result based on the driver gestalt
selector. The possible return values are
'sync' TRUE (1), indicating that the

driver is synchronous.
'devt' 'disk' indicating a hard disk

driver.
'intf' 'ide ' for an IDE (ATA) drive,

or 'pcmc' for a PC card drive.
'boot' PRAM value (long).
'vers' Current version number of the

driver.
'lpwr' TRUE (1).
'dAPI' TRUE (1)
'purg' Indicates dri.ver can be closed

or purged.
'wide' TRUE (1).
'ejec' Eject call requirements (long):

bit 0: if set, don’t issue eject call
on restart.
bit 1: if set, don’t issue eject call
on shutdown.

← ioResult See result codes.

C H A P T E R 7

Software for ATA Devices

96 ATA Disk Driver Reference

RESULT CODES

get boot partition 7

The get boot partition function returns 1 if the specified partition is the boot
partition, 0 if it is not. The partition is specified either by its associated logical drive or
the partition’s block address on the media.

Parameter block

RESULT CODES

get partition mount status 7

The get partition mount status function returns 1 if the specified partition has
mounting enabled and 0 if not enabled or if the partition does not have a partition map
entry on the media. The partition is specified either by its associate logical drive or the
partition’s block address on the media.

Parameter block

RESULT CODES

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.
statusErr Unknown selector was specified.

→ csCode A value of 44.
→ ioVRefNum The logical drive number or

0 if using the partition’s block address.
→ csParam[] The partition’s block address (long) if

ioVRefNum = 0.
← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 45.
→ ioVRefNum The logical drive number or

0 if using the partition’s block address.
→ csParam[] The partition’s block address (long) if

ioVRefNum = 0.
← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

C H A P T E R 7

Software for ATA Devices

ATA Disk Driver Reference 97

get partition write protect status 7

The get partition write protect status function returns 1 if the specified
partition is write protected (software) and 0 if it is not. The partition is specified either by
its associate logical drive or by the partition’s block address on the media.

Parameter block

RESULT CODES

get partition information 7

The get partition information function supports Macintosh PC Exchange. It
requests the driver to return information about the partition specified by ioVRefNum.

The csParam field contains a pointer to the device information element for the return
information. The pointer has the following form:

struct {

DeviceIdent SCSIID; // device ID

// physical start of partition

unsigned long physPartitionLoc;

// partition identifier

unsigned long partitionNumber;

} partInfoRec, *partInfoRecPtr;

Parameter block

RESULT CODES

→ csCode A value of 46.
→ ioVRefNum The logical drive number or

0 if using the partition’s block address.
→ csParam[] The partition’s block address (long) if

ioVRefNum = 0.
← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 51.
→ ioVRefNum The logical drive number.
→ csParam[] The information data structure.
← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

C H A P T E R 7

Software for ATA Devices

98 ATA Manager Reference

get power mode 7

The get power mode function returns the current power mode state of the internal
hard disk. The power modes are defined on page 93.

Parameter block

RESULT CODES

ATA Manager Reference 7

This section defines the data structures and functions that are specific to the
ATA Manager.

The ATA Manager has a single entry point through the trap $AAF1. Functions are
dispatched within the ATA Manager based on the manager function code defined in
the parameter block header.

When making calls to the ATA Manager, you have to pass and retrieve parameter
information through a parameter block. The size and content of the parameter block
depend on the function being called. However, all calls to the ATA Manager have a
common parameter block header structure. The structure of the ataPBHdr parameter
block is common to all ATA parameter block data types. Several additional ATA
parameter block data types have been defined for the various functions of the
ATA Manager.

→ csCode A value of 70.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[] The most significant byte contains one of the

following codes:
0 = active mode
1 = standby mode
2 = idle mode
3 = sleep mode
(least significant byte = don’t care)

← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.
statusErr The power management information couldn’t be

returned, due to a manager error.

C H A P T E R 7

Software for ATA Devices

ATA Manager Reference 99

The ATA Parameter Block 7
This section defines the fields that are common to all ATA Manager functions that use the
ATA parameter block. The fields used for specific functions are defined in the description
of the functions to which they apply. You use the ATA parameter block for all calls to the
ATA Manager. The ataPBHdr data type defines the ATA parameter block.

The parameter block includes a field, MgrFCode, in which you specify the function
selector for the particular function to be executed; you must specify a value for this field.
Each ATA function may use different fields of the ATA parameter block for parameters
specific to that function.

An arrow preceding the comment indicates whether the parameter is an input parameter,
an output parameter, or both, as follows:

The ATA parameter block header structure is defined as follows:

struct ataPBHdr // ATA Manager parameter block

 header structure

{

Ptr ataLink; // reserved

SInt16 ataQType; // type byte

UInt8 ataPBVers; // → parameter block version number

UInt8 hdrReserved; // reserved

Ptr hdrReserved2; // reserved

ProcPtr ataCompletion; // completion routine

OSErr ataResult; // ← returned result

UInt8 MgrFCode; // → manager function code

UInt8 ataIOSpeed; // → I/O timing class

UInt16 ataFlags; // → control options

SInt16 hdrReserved3; // reserved

UInt32 deviceID; // → device ID

UInt32 TimeOut; // → transaction timeout value

Ptr ataPtr1; // client storage pointer 1

Ptr ataPtr2; // client storage pointer 2

UInt16 ataState; // reserved, initialize to 0

SInt16 intSemaphores; // internal semaphores

Sint32 hdrReserved4; // reserved

};

typedef struct ataPBHdr ataPBHdr;

Arrow Meaning
→ Input
← Output
↔ Both

C H A P T E R 7

Software for ATA Devices

100 ATA Manager Reference

Field descriptions

ataLink This field is reserved for use by the ATA Manager. It is used
internally for queuing I/O requests. It must be initialized to 0
before calling the ATA Manager.

ataQType This field is the queue type byte. It should be initialized to 0 before
calling the ATA Manager.

ataPBVers This field contains the parameter block version number. Values of 1
and 2 are the only values currently supported. Any other value
results in a result code of paramErr. For individual differences
between versions 1 and 2, refer to the individual functions.

hdrReserved Reserved for future use. To ensure future compatibility, all reserved
fields should be set to 0.

hdrReserved2 Reserved for future use. To ensure future compatibility, all reserved
fields should be set to 0.

ataCompletion This field contains the completion routine pointer to be called upon
completion of the request. When this field is set to zero, it indicates
a synchronous I/O request; a nonzero value indicates an
asynchronous I/O request. The routine this field points to is called
when the request has finished without error or when the request
has terminated due to an error. This field is valid for any manager
request. The completion routine is called as follows:

pascal void (*RoutinePtr) (ataIOPB *);

The completion routine is called with the associated manager
parameter block in the stack.

ataResult Completion status. This field is returned by the ATA Manager after
the request has been completed. Refer to Table 7-13 on page 139 for
a list of the possible error codes returned in this field.

MgrFCode This field is the function selector for the ATA Manager. The
functions are defined in Table 7-4 on page 104. An invalid code in
this field results in an ATAFuncNotSupported error.

ataIOSpeed This field specifies the I/O cycle timing requirement of the specified
ATA drive. This field should contain word 51 of the drive
identification data. Currently values 0 through 3 are supported, as
defined in the ATA/IDE specification. See the ATA/IDE
specification for the definitions of the timing values. If a timing
value higher than one supported is specified, the manager operates
in the fastest timing mode supported by the manager. Until the
timing value is determined by examining the drive identification
data returned by the ATA_Identify function, the client should
request operations using the slowest mode (mode 0).

ataFlags This 16-bit field contains control settings that indicate special
handling of the requested function. The control bits are defined in
Table 7-3 on page 101.

hdrReserved3 Reserved for future use. To ensure future compatibility, all reserved
fields should be set to 0.

C H A P T E R 7

Software for ATA Devices

ATA Manager Reference 101

deviceID A short word that uniquely identifies an ATA device. The field
consists of the following structure:

struct deviceIdentification
{
UInt16 Reserved; // the upper word is reserved
UInt16 deviceNum; // consists of device ID and bus ID
};
typedef struct deviceIdentification

deviceIdentification;

Bit 15 of the deviceNum field indicates master (=0) /slave (=1)
selection. Bits 14 through 0 contain the bus ID (for example,
$0 = master unit of bus 0, $80 = slave unit of bus 0). The present
implementation allows only one device in the master configuration.
This value is always 0.

TimeOut This field specifies the transaction timeout value in milliseconds. A
value of 0 disables the transaction timeout detection.

ataPtr1 This pointer field is available for application use. It is not modified
by the ATA Manager.

ataPtr2 This pointer field is available for application use. It is not modified
by the ATA Manager.

ataState This field is used by the ATA Manager to keep track of the current
bus state. This field must contain 0 when calling the ATA Manager.

intSemaphores This field is used internally by the ATA Manager. It should be set to
0 before calling the ATA Manager.

hdrReserved4 Reserved for future use. To ensure future compatibility, all reserved
fields should be set to 0.

Table 7-3 describes the functions of the control bits in the ataFlags field.

Table 7-3 Control bits in the ataFlags field

Name Bit Definition

LED Enable 0 Some systems are equipped with an activity LED
controlled by software. Setting this bit to 1 indicates
that the LED should be turned on for this transaction.
The LED is automatically turned off at the end of the
transaction. Setting the bit to 0 indicates that the LED
should not be turned on for this transaction. This bit
has no effect in systems with no activity LED.

— 1–2 Reserved.

continued

C H A P T E R 7

Software for ATA Devices

102 ATA Manager Reference

RegUpdate 3 When set to 1, this bit indicates that a set of device
registers should be reported back upon completion of
the request. This bit is valid for the ATA_ExecIO
function only. Refer to the description on page 113
for details. The following device registers are
reported back:

sector count register
sector number register
cylinder register(s)
SDH register

ProtocolType 4–5 These 2 bits specify the type of command. The
following command types are defined:

$0 = standard ATA
$1 = reserved
$2 = ATAPI
These bits are used to indicate special protocol
handling.

For ATA command values of $A0 or $A1, this field
must contain the ATAPI setting. For all other ATA
commands, this field must contain the standard ATA
setting.

— 6–7 Reserved.

SGType 8–9 This 2-bit field specifies the type of scatter gather list
passed in. This field is only valid for read/write
operations.

The following types are defined:

00 = scatter gather disabled
01 = scatter gather type I enabled
10 = reserved
11 = reserved
When set to 0, this field indicates that the ioBuffer
field contains the host buffer address for this transfer,
and the ioReqCount field contains the byte transfer
count.

When set to 1, this field indicates that the ioBuffer
and the ioReqCount fields of the parameter block for
this request point to a host scatter-gather list and the
number of scatter-gather entries in the list,
respectively.

continued

Table 7-3 Control bits in the ataFlags field (continued)

Name Bit Definition

C H A P T E R 7

Software for ATA Devices

ATA Manager Reference

103

The format of the scatter-gather list is a series of the
following structure definition:

struct IOBlock // SG entry structure
{

UInt8* ioBuffer; //

→

 data buffer pointer
UInt32 ioReqCount;//

→

 byte count
};
typedef struct IOBlock IOBlock;

QLockOnError

10 When set to 0, this bit indicates that an error during
the transaction should not freeze the I/O queue for
the device. When an error occurs on an I/O request
with this bit set to 0, the next queued request is
processed without interruption. If an error occurs
when this bit is set, however, any subsequent request
without the Immediate bit set is held off until an I/O
Queue Release command is received. This allows the
ATA Manager to preserve the error state so that a
client can examine it.

When this bit is set, only those requests with the
Immediate bit set are processed. Use this bit with
caution; it can cause the system to hang if not handled
correctly.

Immediate

11 When this bit is set to 1, it indicates that the request
must be executed as soon as possible and that the
status of the request must be returned. It forces the
request to the head of the I/O queue for immediate
execution. When this bit is set to 0, the request is
queued in the order it is received and is executed
according to that order.

ATAioDirection

12–13 This bit field specifies the direction of data transfer. Bit
values are binary and are defined as follows:

00 = no data transfer

10 = data direction in (read)

01 = data direction out (write)

11 = reserved

Note: These bits do not need to be set to reflect the
direction of the command packet bytes.

continued

Table 7-3

Control bits in the

ataFlags

 field (continued)

Name Bit Definition

C H A P T E R 7

Software for ATA Devices

104 ATA Manager Reference

Functions 7
This section describes the ATA Manager functions that are used to manage and perform
data transfers. Each function is requested through a parameter block specific to that
service. A request for an ATA function is specified by a function code within the
parameter block. The entry point for all the functions is the same.

The function names and ATA Manager function codes are shown in Table 7-4.

— 14 Reserved.

ByteSwap 15 When set to 1, this bit indicates that every byte of data
prior to transmission on write operations and upon
reception on read operations is to be swapped. When
this bit is set to 0, it forces bytes to go out in the
LSB-MSB format that is compatible with IBM clones.
Typically, this bit should be set to 0. Setting this bit has
performance implications because the byte swap is
performed by the software. Use this bit with caution.

Caution: Setting this bit to 1 causes the bytes in ATAPI
command packets to be swapped.

Table 7-4 ATA Manager functions

Function name Code Description

ATA_Abort $10 Terminate the command.

ATA_BusInquiry $03 Get bus information.

ATA_DrvrRegister $85 Register the driver reference number.

ATA_DrvrDeregister $87 Deregister the driver reference number.

ATA_EjectDrive $89 Auto-eject the drive.

ATA_ExecIO $01 Execute ATA I/O.

ATA_FindRefNum $86 Look up the driver reference number.

ATA_GetDevConfig $8A Get the device configuration.

ATA_GetDevLocationIcon $8C Get the device location icon and string.

ATA_Identify $13 Get the drive identification data.

ATA_MgrInquiry $90 Get information about the ATA Manager
and the system configuration.

ATA_ModifyDrvrEventMask $88 Modify the driver event mask.

continued

Table 7-3 Control bits in the ataFlags field (continued)

Name Bit Definition

C H A P T E R 7

Software for ATA Devices

ATA Manager Reference 105

ATA_Abort 7

You can use the ATA_Abort function to terminate a queued I/O request. This function
applies to asynchronous I/O requests only. The ATA_Abort function searches through
the I/O queue associated with the selected device and aborts the matching I/O request.
The current implementation does not abort if the found request is in progress. If the
specified I/O request is not found or has started processing, an ATAUnableToAbort
status is returned. If aborted, the ATAReqAborted status is returned.

It is up to the application that called the ATA_Abort function to clean up the aborted
request. Cleaning up includes deallocation of the parameter block and OS reporting.

The manager function code for the ATA_Abort function is $10.

The parameter block associated with this function is defined as follows:

struct ATA_Abort // ATA abort structure

{

ataPBHdr // see definition on page 99

ATA_PB* AbortPB // address of the parameter

// block to be aborted

UInt16 Reserved // reserved

};

typedef struct ATA_Abort ATA_Abort;

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 99.
AbortPB This field contains the address of the I/O parameter block to

be aborted.
Reserved This field is reserved. To ensure future compatibility, all reserved

fields should be set to 0.

ATA_NOP $00 Perform no operation.

ATA_QRelease $04 Release the I/O queue.

ATA_RegAccess $12 Obtain access to an ATA device register.

ATA_ResetBus $11 Reset the ATA bus.

ATA_SetDevConfig $8B Set the device configuration.

Table 7-4 ATA Manager functions (continued)

Function name Code Description

C H A P T E R 7

Software for ATA Devices

106 ATA Manager Reference

RESULT CODES

ATA_BusInquiry 7

You can use the ATA_BusInquiry function to gets information about a specific ATA
bus. This function is provided for possible future expansion of the Macintosh ATA
architecture.

The manager function code for the ATA_BusInquiry function is $03.

The parameter block associated with this function is defined below:

struct ATA_BusInquiry // ATA bus inquiry structure

{

ataPBHdr // see definition on page 99

UInt16 ataEngineCount; // ← TBD; 0 for now

UInt16 ataReserved; // reserved

UInt32 ataDataTypes; // ← TBD; 0 for now

UInt16 ataIOpbSize; // ← size of ATA I/O PB

UInt16 ataMaxIOpbSize; // ← TBD; 0 for now

UInt32 ataFeatureFlags; // ← TBD

UInt8 ataVersionNum; // ← HBA Version number

UInt8 ataHBAInquiry; // ← TBD; 0 for now

UInt16 ataReserved2; // reserved

UInt32 ataHBAPrivPtr; // ← pointer to HBA private data

UInt32 ataHBAPrivSize; // ← size of HBA private data

UInt32 ataAsyncFlags; // ← capability for callback

UInt32 ataReserved3[4]; // reserved

UInt32 ataReserved4; // reserved

SInt8 ataReserved5[16]; // TBD

SInt8 ataHBAVendor[16]; // ← HBA Vendor ID

SInt8 ataContrlFamily[16]; // ← family of ATA controller

SInt8 ataContrlType[16]; // ← controller model number

SInt8 ataXPTversion[4]; // ← version number of XPT

SInt8 ataReserved6[4]; // reserved

SInt8 ataHBAversion[4]; // ← version number of HBA

UInt8 ataHBAslotType; // ← type of slot

UInt8 ataHBAslotNum; // ← slot number of the HBA

UInt16 ataReserved7; // reserved

UInt32 ataReserved8; // reserved

};

typedef struct ATA_BusInquiry ATA_BusInquiry;

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present
ATAMgrNotInitialized ATA Manager not initialized
ATAReqAborted The request was aborted
ATAUnableToAbort Request to abort couldn’t be honored

C H A P T E R 7

Software for ATA Devices

ATA Manager Reference 107

Field descriptions

ataPBHdr See the definition of ataPBHdr on page 99.
ataEngineCount Currently set to 0.
ataReserved Reserved. All reserved fields are set to 0.
ataDataTypes Returns a bitmap of data types supported by this host bus adapter

(HBA). The data types are numbered from 0 to 30; 0 through 15
are reserved for Apple definition, and 16 through 30 are available
for vendor use. This field is currently not supported; it returns a
value of 0.

ataIOpbSize This field contains the size of the I/O parameter block supported.
ataMaxIOpbSize This field specifies the maximum I/O size for the HBA. This field is

currently not supported and returns 0.
ataFeatureFlags

This field specifies supported features. This field is not supported; it
returns a value of 0.

ataVersionNum The version number of the HBA is returned. The current version
returns a value of 1.

ataHBAInquiry Reserved.
ataHBAPrivPtr This field contains a pointer to the HBA’s private data area. This

field is not currently supported; it contains a value of 0.
ataHBAPrivSize This field contains the byte size of the HBA’s private data area. This

field is currently not supported; it contains a value of 0.
ataAsyncFlags These flags indicate which types of asynchronous events the HBA is

capable of generating. This field is currently not supported; it
contains a value of 0.

ataHBAVendor This field contains the vendor ID of the HBA. This is an ASCII text
field.

ataContrlFamily
Reserved.

ataContrlType This field identifies the specific type of ATA controller.
ataXPTversion Reserved.
ataHBAversion This field specifies the version of the HBA. This field is currently

not supported; it contains a value of 0.
ataHBAslotType This field specifies the type of slot. This field is currently not

supported; it contains a value of 0.
ataHBAslotNum This field specifies the slot number of the HBA. This field is

currently not supported; it contains a value of 0.

RESULT CODES

noErr Successful completion; no error occurred
ATAMgrNotInitialized ATA Manager not initialized

C H A P T E R 7

Software for ATA Devices

108 ATA Manager Reference

ATA_DrvrDeregister 7

You can use the ATA_DrvrDeregister function to deregister the selected drive. After
successful completion of this function, the driver reference number for the drive is set to
0, indicating that no driver is in control of this device.

This function should be called when the controlling device is no longer available to the
registered driver (device ejection) or the device driver is being closed down. Typically,
this call is embedded in the Close() function of the driver.

The manager function code for the ATA_DrvrDeregister function is $87.

There are two versions of the data structure for registration. The version is identified by
the ataPBVers field in the parameter block.

Two versions of the parameter block associated with this function are defined below:

// version 1 (ataPBVers = 1)

structataDrvrRegister // parameter block structure

// for ataPBVers = 1

{

ataPBHdr // header information

SInt16 drvrRefNum; // not used

UInt16 FlagReserved; // reserved

UInt16 deviceNextID; // not used

SInt16 Reserved[21]; // reserved for future expansion

};

typedef struct ataDrvrRegister ataDrvrRegister;

// version 2(ataPBVers = 2)

structataDrvrRegister // parameter block structure

// for ataPBVers = 2

{

ataPBHdr // header information

SInt16 drvrRefNum; // → driver reference number

UInt16 drvrFlags; // → driver flags; set to 0

UInt16 deviceNextID; // not used

SInt16 Reserved; // reserved -> should be 0

ProcPtr ataEHandlerPtr // → event handler routine ptr

SInt32 drvrContext; // → value to pass in along

// with the event handler

UInt32 ataEventMask; // → masks of various events

// for event handler

SInt16 Reserved[14]; // reserved for future expansion

};

typedef struct ataDrvrRegister ataDrvrRegister;

C H A P T E R 7

Software for ATA Devices

ATA Manager Reference 109

In deregistration of a notify-all driver, the ataEHandlerPtr field is used to match the
entry (because the deviceID field is invalid for registration and deregistration of the
notify-all driver). If the driver is registered as both notify-all and for a specific device, the
driver must deregister for each separately.

IMPORTANT

Notify-all device drivers must deregister using parameter version 2. ▲

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 99.
drvrRefNum This field is not used with the deregister function.
drvrFlags No bit definition has been defined for the field. This field shall be

set to 0 to ensure compatibility in the future.
deviceNextID Not used for this function.
Reserved Reserved. Should be set to 0
ataEHandlerPtr A pointer to driver’s event handler routine. This field is only used

for notify-all driver deregistration. This field is not used for all other
deregistration. Because this field is used to identify the correct
notify-all driver entry, this field must be valid for notify-all driver
deregistration.

drvrContext Not used for this function.
ataEventMask Not used for this function.

RESULT CODES

ATA_DrvrRegister 7

You can use the ATA_DrvrRegister function to register the driver and an event
handler for the drive whose reference number is passed in. Any active driver that
controls one or more devices through the ATA Manager must register with the manager
to insure proper operation and notification of events. The ATA_DrvrRegister function
should be called only at noninterrupt time.

The first driver to register for the device gets it. All subsequent registrations for the
device are rejected. The registration mechanism is used for manager to notify the
appropriate driver when events occur. Refer to Table 7-5 on page 112 for possible events.

The manager function code for the ATA_DrvrRegister function is $85.

There are two versions of the data structure for registration. The version is identified by
the ataPBVers field in the parameter block.

Version two allows a driver to register as a notify-all driver. Registration of a notify-
all driver is signaled by a value of –1 in the deviceID field of the header and bit 0 of

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present

C H A P T E R 7

Software for ATA Devices

110 ATA Manager Reference

drvrFlags set to 0. Notify-all driver registration is used if notification of all device
insertions is desired. Registered default drivers will be called if no media driver is found
on the media. Typically, an INIT driver registers as a notify-all driver. The single driver
may register as a notify-all driver, then later register for one or more devices on the bus.

Note
To ensure proper operation, all PCMCIA/ATA and notify-all
device drivers must register using version two, which provides
event-handling capability. ◆

Two versions of the parameter block associated with this function are defined below:

// version 1 (ataPBVers = 1)

struct ataDrvrRegister // parameter block structure

// for ataPBVers = 1

{

ataPBHdr // header information

SInt16 drvrRefNum; // → driver reference number

UInt16 FlagReserved; // reserved -> should be 0

UInt16 deviceNextID; // not used

SInt16 Reserved[21]; // reserved for future expansion

};

typedef struct ataDrvrRegister ataDrvrRegister;

// version 2(ataPBVers = 2)

struct ataDrvrRegister // parameter block structure

// for ataPBVers = 2

{

ataPBHdr // header information

SInt16 drvrRefNum; // → driver reference number

UInt16 drvrFlags; // → driver flags; set to 0

UInt16 deviceNextID; // not used

SInt16 Reserved; // reserved; set to 0

ProcPtr ataEHandlerPtr // → event handler routine pointer

SInt32 drvrContext; // → value to pass in along with

// the event handler

UInt32 ataEventMask; // → masks of various events for

// the event handler

SInt16 Reserved[14]; // reserved for future expansion

};

typedef struct ataDrvrRegister ataDrvrRegister;

C H A P T E R 7

Software for ATA Devices

ATA Manager Reference 111

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 99.
drvrRefNum This field specifies the driver reference number to be registered.

This value must be less than 0 to be valid. This field is a don’t-care
field for registration of a notify-all driver.

FlagReserved Reserved.
deviceNextID Not used by this function.
Reserved[21] This field is reserved. To ensure future compatibility, all reserved

fields should be set to 0.
ataEHandlerPtr A pointer to driver’s event handler routine. This routine will be

called whenever an event happens, and the mask bit for the
particular event is set in the ataEventMask field. The calling
convention for the event handler is

pascal SInt16 (ataEHandlerPtr) (ATAEventRec*);

where ATAEventRec is defined as follows:

typedef struct

{

UInt16 eventCode; // → ATA event code

UInt16 phyDrvRef; // → ID associated with

// the event

SInt32 drvrContext; // → context passed in

// by the driver

} ATAEventRec;

See “Notification of Device Events” beginning on page 132 for a list
of the ATA event codes.

drvrContext A value to be passed in when the event handler is called. This value
will be loaded into ATAEventRec before calling the event handler.

ataEventMask The mask defined in this field is used to indicate whether the event
handler should be called or not, based on the event. The event
handler will be called only if the mask for the event has been set. If
the mask is not set for an event, the ATA Manager will take no
action. Table 7-5 lists the masks have been defined.

C H A P T E R 7

Software for ATA Devices

112 ATA Manager Reference

RESULT CODES

ATA_EjectDrive 7

You can use the ATA_EjectDrive function to eject a device from a selected socket. You
must make sure that all partitions associated with the device have been dismounted
from the desktop.

The manager function code for the ATA_EjectDrive function is $89.

The data structure of the function is as follows:

struct ataEject // configuration parameter block
{

ataPBHdr // header information
UInt16 Reserved[24]; // reserved

};
typedef struct ataEject ataEject;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 99.
Reserved[24] Field reserved for future use. To ensure future compatibility, all

reserved fields should be set to 0.

RESULT CODES

Table 7-5 Event masks

Bits Event mask

$00 Null event

$01 Online event: a device has come online

$02 Offline event: a device has gone offline

$03 Device removed event: a device has been removed (taken out)

$04 Reset event: a device has been reset

$05 Offline request event: a request to take the drive offline

$06 Eject request event: a request to eject the drive

$07 Configuration update event: the system configuration has changed

$08–$1F Reserved for future expansion

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present
paramErr Parameter error detected

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present

C H A P T E R 7

Software for ATA Devices

ATA Manager Reference 113

ATA_ExecIO 7

You can use the ATA_ExecIO function to perform data I/O transfers to or from an ATA
device. Your application must provide all the parameters needed to complete the
transaction prior to calling the ATA Manager. Upon return, the parameter block contains
the result of the request.

The manager function code for the ATA_ExecIO function is $01.

The parameter block associated with the ATA_ExecIO function is defined below:

struct ATA_ExecIO // ATA_ExecIO structure

{

ataPBHdr // see definition on page 99

SInt8 ataStatusReg; // ← last device status register image

SInt8 ataErrorReg; // ← last device error register

// (valid if bit 0 of status field set)

SInt16 ataReserved; // reserved

UInt32 BlindTxSize; // → data transfer size

UInt8* ioBuffer; // ↔ data buffer ptr

UInt32 ataActualTxCnt;// ← actual number of bytes

// transferred

UInt32 ataReserved2; // reserved

devicePB RegBlock; // → device register images

UInt8* packetCDBPtr; // ATAPI packet command block pointer

UInt16 ataReserved3[6];// Reserved

};

typedef struct ATA_ExecIO ATA_ExecIO;

Field descriptions

ataPBHdr See the parameter block definition on page 99.
ataStatusReg This field contains the last device status register image. See the

ATA/IDE specification for status register bit definitions.
ataErrorReg This field contains the last device error register image. This field is

valid only if the error bit (bit 0) of the status register is set. See the
ATA/IDE specification for error register bit definitions.

ataReserved Reserved. All reserved fields are set to 0 for future compatibility.
BlindTxSize This field specifies the maximum number of bytes that can be

transferred for each interrupt or detection of a data request. Bytes
are transferred in blind mode (no byte-level handshake). Once an
interrupt or a data request condition is detected, the ATA Manager
transfers up to the number of bytes specified in the field from or to
the selected device. The typical number is 512 bytes.

ioBuffer This field contains the host buffer address for the number of bytes
specified in the ioReqCount field. Upon returning, this field is
updated to reflect data transfers. When the SGType bits of the

C H A P T E R 7

Software for ATA Devices

114 ATA Manager Reference

ataFlags field are set, this field points to a scatter gather list. The
scatter gather list consists of series of IOBlk entries defined as
follows:

struct IOBlk

{

UInt8*ioBuffer; // ↔ data buffer ptr

UInt32ioReqCount; // ↔ transfer length

};

typedef struct IOBlk IOBlk;

ioReqCount This field contains the number of bytes to transfer either from or to
the buffer specified in ioBuffer. Upon returning, the
ioReqCount field is updated to reflect data transfers (0 if
successful; otherwise, the number of bytes that remained to be
transferred prior to the error condition). When the SGType bits of
the ataFlags field are set, the ioReqCount field contains the
number of scatter gather entries in the list pointed to by the
ioBuffer field.

ataActualTxCnt This field contains the total number of bytes transferred for this
request.

ataReserved2 This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

RegBlock This field contains the ATA device register image structure. Values
contained in this structure are written out to the device during the
command delivery state. The caller must provide the image before
calling the ATA Manager. The ATA device register image structure
is defined as follows:

struct Device_PB // device register images

{

UInt8 Features; // → features register image

UInt8 Count; // ↔ sector count

UInt8 Sector; // ↔ sector start/finish

UInt8 Reserved; // reserved

UInt16 Cylinder; // ↔ cylinder 68000 format

UInt8 SDH; // ↔ SDH register image

UInt8 Command; // → Command register image

};

typedef struct Device_PB Device_PB;

For ATAPI commands, the cylinder image must contain the
preferred PIO DRQ packet size to be writtern out to the cylinder
high/low registers during the command phase.

C H A P T E R 7

Software for ATA Devices

ATA Manager Reference 115

packetCDBPtr This field contains the packet pointer for ATAPI. The ATAPI bit of
the protocol type field must be set for this field to be valid. Setting
the ATAPI protocol bit also signals the manager to initiate the
transaction without the DRDY bit set in the status register of the
device. For ATA commands, this field should contain 0 to ensure
future compatibility. The packet structure for the ATAPI command
is defined as follows:

struct ATAPICmdPacket// ATAPI command packet structure

{

SInt16 packetSize;// size of command packet

// in bytes (exclude size)

SInt16 command[8]; // the ATAPI command packet

};

typedef struct ATAPICmdPacket ATAPICmdPacket;

ataReserved3[6] These fields are reserved. To ensure future compatibility, all
reserved fields should be set to 0.

RESULT CODES

noErr Successful completion; no error occurred
nsDrvErr Specified logical drive number does not exist
AT_AbortErr Command aborted bit set in error register
AT_RecalErr Track 0 not found bit set in error register
AT_WrFltErr Write fault bit set in status register
AT_SeekErr Seek complete bit not set upon completion
AT_UncDataErr Uncorrected data bit set in error register
AT_CorDataErr Data corrected bit set in status register
AT_BadBlkErr Bad block bit set in error register
AT_DMarkErr Data mark not found bit set in error register
AT_IDNFErr ID-not-found bit set in error register
ATABusy Selected device busy (BUSY bit set)
ATAMgrNotInitialized ATA Manager not initialized
ATAPBInvalid Invalid device base address detected (= 0)
ATAQLocked I/O queue locked—cannot proceed
ATAReqInProg I/O channel in use—cannot proceed
ATATransTimeOut Timeout: transaction time-out detected
ATAUnknownState Device in unknown state

C H A P T E R 7

Software for ATA Devices

116 ATA Manager Reference

ATA_FindRefNum 7

You can use the ATA_FindRefNum function to determine whether a driver has been
installed for a given device. You pass in a device ID, and the function returns the current
driver reference number registered for the given device. A value of 0 indicates that no
driver has been registered. The deviceNextID field contains a device ID of the next
device in the list. The end of the list is indicated with a value of $FF.

To create a list of all drivers for the attached devices, pass in $FF for deviceID. This
causes deviceNextID to be filled with the first device in the list. Each successive driver
can be found by moving the value returned in deviceNextID into deviceID until the
function returns $FF in deviceNextID, which indicates the end of the list.

The manager function code for the ATA_FindRefNum function is $86.

Two versions of the parameter block associated with this function are defined below:

// version 1 (ataPBVers = 1)

structataDrvrRegister // parameter block structure

// for ataPBVers = 1

{

ataPBHdr // header information

SInt16 drvrRefNum; // ← driver reference number

UInt16 FlagReserved; // reserved; set to 0

UInt16 deviceNextID; // ← used to specify the

// next drive ID

SInt16 Reserved[21]; // reserved for future expansion

};

typedef struct ataDrvrRegister ataDrvrRegister;

// version 2(ataPBVers = 2)

structataDrvrRegister // parameter block structure

// for ataPBVers = 2

{

ataPBHdr // header information

SInt16 drvrRefNum; // ← driver reference number

UInt16 drvrFlags; // → reserved; set to 0

UInt16 deviceNextID; // ← used to specify the

// next drive ID

SInt16 Reserved; // reserved -> should be 0

ProcPtr ataEHandlerPtr // ← event handler routine pointer

SInt32 drvrContext; // ← value to pass in along with

// the event handler

UInt32 ataEventMask; // ← current setting of the mask

// of events for the event handler

SInt16 Reserved[14]; // reserved for future expansion

};

typedef struct ataDrvrRegister ataDrvrRegister;

C H A P T E R 7

Software for ATA Devices

ATA Manager Reference 117

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 99.
drvrRefNum Upon return, this field contains the reference number for the device

specified in the deviceID field of the ataPBHdr data.
FlagReserved This field is reserved. To ensure future compatibility, all reserved

fields should be set to 0.
deviceNextID Upon return, this field contains the deviceID value of the next

device on the list.
Reserved[21] This field is reserved. To ensure future compatibility, all reserved

fields should be set to 0.

RESULT CODES

ATA_GetDevConfig 7

You can use the ATA_GetDevConfig function to get the current configuration of a
device. The configuration includes current voltage settings and access characteristics.
This function can be issued to any bus that the ATA Manager supports. However, some
fields returned may not be valid for the particular device type (for example, the voltage
settings for the internal device are invalid).

The manager function code for the ATA_GetDevConfig function is $8A.

The data structure for the function is as follows:

struct ataGetDevConfig // parameter block

{

ataPBHdr // header information

SInt32 ConfigSetting; // ↔ socket configuration setting

UInt8 ataIOSpeedMode; // reserved for future expansion

UInt8 Reserved3; // reserved for word alignment

UInt16 pcValid; // ↔ mask indicating which

// PCMCIA-unique fields

// are valid, when set

UInt16 RWMultipleCount; // reserved for future expansion

UInt16 SectorsPerCylinder;// reserved for future expansion

UInt16 Heads; // reserved for future expansion

UInt16 SectorsPerTrack; // reserved for future expansion

UInt16 socketNum; // ← socket number used by

// Card Services

UInt8 socketType; // ← specifies the socket type

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present

C H A P T E R 7

Software for ATA Devices

118 ATA Manager Reference

UInt8 deviceType; // ← specifies the active

// device type

// fields below are valid according to the bit mask

// in pcValid (PCMCIA unique fields)

UInt8 pcAccessMode; // ↔ access mode of the socket:

// memory or I/O

UInt8 pcVcc; // ↔ Vcc voltage in tenths

UInt8 pcVpp1; // ↔ Vpp 1 voltage in tenths

UInt8 pcVpp2; // ↔ Vpp 2 voltage in tenths

UInt8 pcStatus; // ↔ card status register setting

UInt8 pcPin; // ↔ card pin register setting

UInt8 pcCopy; // ↔ card socket/copy register

// setting

UInt8 pcConfigIndex; // ↔ card option register setting

UInt16 Reserved[10]; // reserved

};

typedef struct ataGetDevConfiguration ataGetDevConfiguration;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 99.
ConfigSetting This field indicates various configuration settings. The following

bits have been defined:
Bits 5–0: Reserved for future expansion (set to 0)
Bit 6: ATAPI packet DRQ handling setting (only applies to ATAPI)
1: The function waits for an interrupt to happen before sending the
ATAPI command packet.
0: The function waits for the assertion of DRQ bit in the status
register before sending the ATAPI command packet. This is the
default setting.
Bits 7–31: Reserved (set to 0)

ataIOSpeedMode This field is reserved for future expansion.
pcValid This field indicates which of the PCMCIA unique fields contain

valid values. Table 7-6 on page 119 lists the fields corresponding to
each bit.

RWMultipleCount This field is reserved for future expansion.
SectorsPerCylinder

This field is reserved for future expansion.
Heads This field is reserved for future expansion.
SectorsPerTrack

This field is reserved for future expansion.
socketNum This field contains the socket number used by Card Services for the

device. This value will be needed to request services directly from
Card Services (such as GetTuple). A value of $FF indicates that the
selected device is not a Card Services client.

C H A P T E R 7

Software for ATA Devices

ATA Manager Reference 119

socketType This field specifies the type of the socket. Possible values are
$00 = unknown socket type
$01 = internal ATA bus
$02 = media bay socket
$03 = PCMCIA socket

deviceType This field specifies the type of the device. Possible values are
$00 = unknown type or no device present
$01 = standard ATA device
$02 = ATAPI device
$03 = PCMCIA ATA device

pcAccessMode This field specifies the current access mode of the device; it is valid
only if bit 0 of the pcValid field is set, and only for
ATA_GetDeviceConfiguration, not for
ATA_SetDeviceConfiguration. Possible values are:
0 = I/O mode
1 = memory mode

pcVcc This field indicates the current voltage setting of Vcc in tenths of a
volt. It is valid only if bit 1 of the pcValid field is set.

pcVpp1 This field indicates the current voltage setting of Vpp1 in tenths of a
volt. It is valid only if bit 2 of the pcValid field is set.

pcVpp2 This field indicates the current voltage setting of Vpp2 in tenths of a
volt. It is valid only if bit 3 of the pcValid field is set.

pcStatus This field indicates the current card register setting of the PCMCIA
device. It is valid only if bit 4 of the pcValid field is set.

pcPin This field indicates the current card pin register setting of the
PCMCIA device. It is valid only if bit 5 of the pcValid field is set.

pcCopy This field indicates the current card socket/copy register setting of
the PCMCIA device. It is valid only if bit 6 of the pcValid field is
set.

pcConfigIndex This field indicates the current card option register setting of the
PCMCIA device. It is valid only if bit 7 of the pcValid field is set.

Table 7-6 Bits in pcValid field

Bits Field validity indicated

0 pcAccessMode field is valid, when set

1 pcVcc field is valid, when set

2 pcVpp1 field is valid, when set

3 pcVpp2 field is valid, when set

4 pcStatus field is valid, when set

5 pcPin field is valid, when set

continued

C H A P T E R 7

Software for ATA Devices

120

ATA Manager Reference

RESULT CODES

ATA_GetDevLocationIcon 7

You can use the

ATA_GetDevLocationIcon

 function to get the location icon data and
the icon string for the selected device. The length of the icon data returned is fixed at 256
bytes; the string is delimited by the null character. Both the icon data and location string
are copied to buffers pointed to by the structure. Data is not copied if the corresponding
pointer is set to 0.

The

locationString

 field is in C string format. You may have to call

c2pstr()

function to convert to a Pascal string before returning the string to the operating system.

The manager function code for the

ATA_GetDevLocationIcon

function is $8C.

The data structure for the

DrvLocationIcon

 function is as follows:

struct DrvLocationIcon

{

ataPBHdr // see above definition

SInt16 ataIconType; //

→

 icon type specifier

SInt16 ataIconReserved; // reserved; set to 0

SInt8 *ataLocationIconPtr;

//

→

 pointer to icon data buffer

SInt8 *ataLocationStringPtr;

//

→

 pointer to location string

// data buffer

SInt16 Reserved[18]; // reserved

};

typedef struct DrvLocationIcon DrvLocationIcon;

6

pcCopy

 field is valid, when set

7

pcConfigIndex

 field is valid, when set

8–14 Reserved (set to 0)

15 Reserved

noErr

Successful completion; no error occurred

nsDrvErr

Specified device is not present

Table 7-6

Bits in

pcValid

 field (continued)

Bits Field validity indicated

C H A P T E R 7

Software for ATA Devices

ATA Manager Reference 121

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 99.
ataIconType This field defines the type of icon desired as follows:

$01 = large black-and-white icon with mask
$81 = same as 1, but ProDOS icon

ataIconReservedReserved to be longword aligned. This field should be set to 0 for
future compatibility.

ataLocationIconPtr
A pointer to the location icon buffer. When the pointer is nonzero,
the function copies the icon data to the buffer.

ataLocationStringPtr
A pointer to the location string buffer. When the pointer is nonzero,
the function copies the string data to the buffer.

RESULT CODES

ATA_Identify 7

You can use the ATA_Identify function to obtain device identification data from the
selected device. The identification data contains information necessary to perform I/O to
the device. Refer to the ATA/IDE specification for the format and the information
description provided by the data.

The manager function code for the ATA_Identify function is $13.

If the ATAPI bit is set in the protocol type field of the header, the ATA Manager performs
the ATAPI identify command ($A1).

The parameter block associated with this function is defined below:

struct ataIdentify // parameter block structure

{

ataPBHdr // see definition on page 99

SInt8 ataStatusReg; // ← last ATA status image

SInt8 ataErrorReg; // ← last ATA error image;

// valid if error bit set

SInt16 ataReserved; // reserved

UInt32 BlindTxSize; // ← this field is set to 512

// upon returning

UInt8 *DataBuf; // buffer for the identify data

// (512 bytes)

noErr Successful completion; no error occurred
ATAInternalErr The icon data and string could not be found

C H A P T E R 7

Software for ATA Devices

122 ATA Manager Reference

UInt32 ataRequestCount; // ← indicates remaining

// byte count

UInt32 ataActualTxCnt; // ← actual transfer count

UInt32 ataReserved2; // reserved

devicePB RegBlock; // ← task file image sent for

// the command

UInt16 Reserved3[8]; // used internally by ATA Manager

};

typedef struct ataIdentify ataIdentify;

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 99.
ataStatusReg Status register image for the last ATA task file.
ataErrorReg Error register image for the last ATA task file. This field is only valid

if the LSB (error bit) of the ataStatusReg field is set.
BlindTxSize Byte size of the identifying data.
DataBuf Pointer to the data buffer for the device identifying data. The length

of the buffer must be at least 512 bytes.
ataReserved, ataReserved2, Reserved3[8]

These fields are reserved. To ensure future compatibility, all
reserved fields should be set to 0.

RESULT CODES

ATA_MgrInquiry 7

You can use the ATA_MgrInquiry function to get information, such as the version
number, about the ATA Manager. This function may be called before initialization of
the manager; however, the system configuration information may be invalid.

The manager function code for the ATA_MgrInquiry function is $90.

The parameter block associated with this function is defined below:

struct ATA_MgrInquiry // ATA inquiry structure

{

ataPBHdr // see definition on page 99

NumVersion MgrVersion // ← manager version number

UInt8 MGRPBVers; // ← manager PB version number

// supported

UInt8 Reserved1; // reserved

UInt16 ataBusCnt; // ← number of ATA buses in system

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present

C H A P T E R 7

Software for ATA Devices

ATA Manager Reference 123

UInt16 ataDevCnt; // ← number of ATA devices detected

UInt8 ataMaxMode; // ← maximum I/O speed mode

UInt8 Reserved2; // reserved

UInt16 IOClkResolution; // ← I/O clock resolution in ns

UInt16 Reserved[17]; // reserved

};

typedef struct ATA_MgrInquiry ATA_MgrInquiry;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 99.
MgrVersion Upon return, this field contains the version number of the

ATA Manager.
MGRPBVers This field contains the number corresponding to the latest version

of the parameter block supported. A client may use any parameter
block definition up to this version.

Reserved1 Reserved. All reserved fields are set to 0 for future compatibility.
ataBusCnt Upon return, this field contains the total number of ATA buses in

the system. This field contains 0 if the ATA Manager has not been
initialized.

ataDevCnt Upon return, this field contains the total number of ATA devices
detected on all ATA buses. The current architecture allows only one
device per bus. This field will contain 0 if the ATA Manager has not
been initialized.

ataMaxMode This field specifies the maximum I/O speed mode that the ATA
Manager supports. Refer to the ATA/IDE specification for
information on mode timing.

IOClkResolution
This field contains the I/O clock resolution in nanoseconds. The
current implementation doesn’t support the field (returns 0).

Reserved[17] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

RESULT CODES

ATA_ModifyDrvrEventMask 7

You can use the ATA_ModifyDrvrEventMask function for modifying an existing driver
event mask that has been specified by the ATA_DrvrRegister function. Modifying the
mask for a nonregistered bus has no effect.

This function is only available with ataPBVers of two (2).

The manager function code for the ATA_ModifyDrvrEventMask function is $88.

noErr 0 Successful completion; no error occurred

C H A P T E R 7

Software for ATA Devices

124 ATA Manager Reference

The data structure of the function is as follows:

struct ataModifyEventMask

{

ataPBHdr // header information

UInt32 modifiedEventMask;// → new event mask value

SInt16 Reserved[22]; // reserved for future expansion

};

typedef struct ataModifyEventMask ataModifyEventMask;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 99.
modifiedEventMask

New event mask setting. The definitions of the subfields are given
in Table 7-5 on page 112.

Reserved[22] Field reserved for future use. To ensure future compatibility, all
reserved fields should be set to 0.

RESULT CODES

ATA_NOP 7

The ATA_NOP function performs no operation across the interface and does not
change the state of either the manager or the device. It returns noErr if the drive
number is valid.

The manager function code for the ATA_NOP function is $00.

The parameter block associated with this function is defined below:

lstruct ataNOP // parameter block structure

{

ataPBHdr // see definition on page 99

UInt16 Reserved[24]; // reserved

};

typedef struct ataNOP ataNOP;

Field descriptions

ataPBHdr See the definition of ataPBHdr on page 99.

There are no additional function-specific variations on ataPBHdr for this function.

noErr Successful completion; no error occurred
ATAInternalErr The icon data and string could not be found

C H A P T E R 7

Software for ATA Devices

ATA Manager Reference 125

RESULT CODES

ATA_QRelease 7

You can use the ATA_QRelease function to release a frozen I/O queue.

When the ATA Manager detects an I/O error and the QLockOnError bit of the
parameter block is set for the request, the ATA Manager freezes the queue for the
selected device. No pending or new requests are processed or receive status until the
queue is released through the ATA_QRelease command. Only those requests with
the Immediate bit set in the ATAFlags field of the ataPBHdr parameter block are
processed. Consequently, for the ATA I/O queue release command to be processed, it
must be issued with the Immediate bit set in the parameter block. An ATA I/O queue
release command issued while the queue isn’t frozen returns the noErr status.

The manager function code for the ATA_QRelease function is $04.

The parameter block associated with this function is defined as follows:

struct ataQRelease // parameter block structure

{

ataPBHdr // see definition on page 99

UInt16 Reserved[24]; // reserved

};

typedef struct ataQRelease ataQRelease;

Field descriptions

ataPBHdr See the definition of ataPBHdr on page 99.

There are no additional function-specific variations on ataPBHdr for this function.

RESULT CODES

ATA_RegAccess 7

You can use the ATA_RegAccess function to gain access to a particular device register
of a selected device. This function is used for diagnostic and error recovery processes.

The manager function code for the ATA_RegAccess function is $12.

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present
ATAMgrNotInitialized ATA Manager not initialized

C H A P T E R 7

Software for ATA Devices

126 ATA Manager Reference

Two versions of the parameter block associated with this function are defined below:

// version 1 (ataPBVers = 1)

struct ataRegAccess // parameter block structure

// for ataPBVers of 1

{

ataPBHdr // see definition on page 99

UInt16 RegSelect; // → device register selector

union {

UInt8 byteRegValue; // ↔ byte register value read

// or to be written

UInt16 wordRegValue; // ↔ word register value read

// or to be written

} registerValue;

UInt16 Reserved[22]; // reserved

};

typedef struct ataRegAccess ataRegAccess;

// version 2 (ataPBVers = 2)

struct ataRegAccess // parameter block structure

// for ataPBVers of 2

{

ataPBHdr // see definition on page 99

UInt16 RegSelect; // → device register selector

union {

UInt8 byteRegValue; // ↔ register value read or

// to be written

UInt16 wordRegValue; // ↔ word register value read

// or to be written

} registerValue;

// The following fields are valid only if RegSelect = $FFFF

UInt16 regMask; // → mask indicating which

// combination of registers

// to access.

devicePB ri; // ↔ register images

// (feature - command)

UInt8 altStatDevCntrReg; // ↔ alternate status (R) or

// device control (W) register

UInt8 Reserved3; // reserved (set to 0)

UInt16 Reserved[16]; // reserved

};

typedef struct ataRegAccess ataRegAccess;

C H A P T E R 7

Software for ATA Devices

ATA Manager Reference 127

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 99.
RegSelect This field specifies which of the device registers to access. The

selectors for the registers supported by the ATA_RegAccess
function are listed in Table 7-7.

registerValue This field represents the value to be written (ATAioDirection =
01 binary) or the value read from the selected register
(ATAioDirection = 10 binary). For the data register, this field is a
16-bit field; for other registers, an 8-bit field. In the case where the
RegSelect field is set to $FFFF (ataPBVers = 2 or higher), this field
is sued to store the upper byte of the data register image.

Reserved[22] This field is unused except in the cases where RegSelect is set to
either 0 (data register selected) or $FFFF (more than one register
selected). In those two cases, this field contains the lower byte of the
data register image.

regMask This field is only valid for an ataPBVers value of 2 or higher. This
field indicates what combination of the taskfile registers should be
accessed. A bit set to one indicates either a read or a write to the
register. A bit set to zero performs no operation to the register. Bit
assignments are as shown in Table 7-8.

ri This field is only valid for an ataPBVers value of 2 or higher. This
field contains register images for error/features, sector count, sector
number, cylinder low, cylinder high, SDH, and status/command.
Only those register images indicated in the regMask field are
valid. See “ATA_ExecIO” on page 113 for the structure definition.

altStatDevCntrReg
This field is only valid for ataPBVers value of 2 or higher. This
field contains the register image for alternate status (R) or device
control (W) register. This field is valid if the alternate status/device
control register bit in the regMask field is set to 1.

Table 7-7 ATA register selectors

Selector name Selector Register description

DataReg 0 Data register (16-bit access only)

ErrorReg 1 Error register (R) or features register (W)

SecCntReg 2 Sector count register

SecNumReg 3 Sector number register

CylLoReg 4 Cylinder low register

CylHiReg 5 Cylinder high register

SDHReg 6 SDH register

StatusReg
CmdReg

7 Status register (R) or command register (W)

continued

C H A P T E R 7

Software for ATA Devices

128 ATA Manager Reference

When reading or writing ATA registers, use the following order:

1. Data register

2. Alternate status register (R) or device control register (W)

3. Error register (R) or feature register (W)

4. Sector count register

5. Sector number register

6. Cylinder low register

7. Cylinder high register

8. Status register (R) or command register (W)

RESULT CODES

AltStatus
DevCntr

$0E Alternate status (R) or device control (W)

$FFFF More than one register access (valid only for
ataPBVers = 2 or higher)

Table 7-8 Register mask bits

Bit
number Definition

0 Data register

1 Error register (R) or feature register (W)

2 Sector count register

3 Sector number register

4 Cylinder low register

5 Cylinder high register

6 SDH register

7 Status register (R) or command register (W)

8–13 Reserved (set to 0)

14 Alternate status register (R) or device control register (W)

15 Reserved (set to 0)

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present

Table 7-7 ATA register selectors (continued)

Selector name Selector Register description

C H A P T E R 7

Software for ATA Devices

ATA Manager Reference 129

ATA_ResetBus 7

You can use the ATA_ResetBus function to reset the specified ATA bus. This function
performs a soft reset operation to the selected ATA bus. The ATA interface doesn’t
provide a way to reset individual units on the bus. Consequently, all devices on the
bus will be reset.

The manager function code for the ATA_ResetBus function is $11.

IMPORTANT

You should avoid calling this function under interrupt because it may
take up to several seconds to complete. ▲

▲ W A R N I N G

Use this function with caution; it may terminate
any active requests to devices on the bus. ▲

If the ATAPI bit is set in the protocol type field of the header, the ATA Manager will
perform the ATAPI reset command ($08).

Upon completion, this function flushes all I/O requests for the bus in the queue. Pending
requests are returned to the client with the ATAAbortedDueToRst status.

The parameter block associated with this function is defined below:

struct ATA_ResetBus // ATA reset structure

{

ataPBHdr // see definition on page 99

SInt8 Status; // ← last ATA status register image

SInt8 Reserved; // reserved

UInt16 Reserved[23]; // reserved

};

typedef struct ATA_ResetBus ATA_ResetBus;

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 99.
Status This field contains the last device status register image following

the bus reset. See the ATA/IDE specification for definitions of the
status register bits.

Reserved[23] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

RESULT CODES

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present

C H A P T E R 7

Software for ATA Devices

130 ATA Manager Reference

ATA_SetDevConfig 7

You can use the ATA_SetDevConfig function to set the configuration of a device. It
contains the current voltage setting and access characteristics. This function can be
issued to any bus that the ATA Manager controls. However, some field settings may be
inappropriate for the particular device type (for example, setting the voltage for the
internal device).

The manager function code for the ATA_SetDevConfig function is $8B.

The ataSetDevConfiguration data structure of the ATA_SetDevConfig function is
as follows:

struct ataSetDevConfiguration // configuration parameter block

{

ataPBHdr // header information

SInt32 ConfigSetting; // ↔ socket configuration setting

UInt8 ataIOSpeedMode; // reserved for future expansion

UInt8 Reserved3; // reserved for word alignment

UInt16 pcValid; // ↔ mask indicating which

// PCMCIA-unique fields are valid

UInt16 RWMultipleCount; // reserved for future expansion

UInt16 SectorsPerCylinder;// reserved for future expansion

UInt16 Heads; // reserved for future expansion

UInt16 SectorsPerTrack; // reserved for future expansion

UInt16 Reserved4[2]; // reserved

// fields below are valid according to the bit mask

// in pcValid (PCMCIA unique fields)

UInt8 pcAccessMode; // ↔ access mode of the socket:

// memory or I/O

UInt8 pcVcc; // ↔ Vcc voltage

UInt8 pcVpp1; // ↔ Vpp 1 voltage

UInt8 pcVpp2; // ↔ Vpp 2 voltage

UInt8 pcStatus; // ↔ card status register setting

UInt8 pcPin; // ↔ card pin register setting

UInt8 pcCopy; // ↔ card socket/copy register

// setting

UInt8 pcConfigIndex; // ↔ card option register setting

UInt16 Reserved[10]; // reserved

};

typedef struct ataSetDevConfiguration ataSetDevConfiguration;

C H A P T E R 7

Software for ATA Devices

ATA Manager Reference 131

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 99.
ConfigSetting This field controls various configuration settings. The following bits

have been defined:
Bits 0–5: Reserved for future expansion (set to 0)
Bit 6: ATAPI packet DRQ handling setting (applies only to ATAPI)
1 = The function waits for an interrupt to happen before sending the
ATAPI command packet.
0 = The function waits for the assertion of the DRQ bit in the status
register before sending the ATAPI command packet. This is the
default setting.
Bits 7–31: Reserved (set to 0)

ataIOSpeedMode This field is reserved for future expansion.
pcValid This field indicates which of the PCMCIA unique fields contain

valid values. Table 7-6 on page 119 lists the fields corresponding to
each bit.

RWMultipleCount This field is reserved for future expansion.
SectorsPerCylinder

This field is reserved for future expansion.
Heads This field is reserved for future expansion.
SectorsPerTrack

This field is reserved for future expansion.
pcAccessMode This field is valid only if the bit 0 of the pcValid field is set. The

value is written to the access mode control. Possible values are
0 = I/O mode
1 = memory mode

pcVcc This field indicates the new voltage setting of Vcc in tenths of a volt.
It is valid only if bit 1 of the pcValid field is set.

pcVpp1 This field indicates the new voltage setting of Vpp1 in tenths of a
volt. It is valid only if bit 2 of the pcValid field is set.

pcVpp2 This field indicates the new voltage setting of Vpp2 in tenths of a
volt. It is valid only if bit 3 of the pcValid field is set.

pcStatus This field indicates the new card register setting of the PCMCIA
device. It is valid only if bit 4 of the pcValid field is set.

pcPin This field indicates the new card pin register setting of the PCMCIA
device. It is valid only if bit 5 of the pcValid field is set.

pcCopy This field indicates the new card socket/copy register setting of the
PCMCIA device. It is valid only if bit 6 of the pcValid field is set.

pcConfigIndex This field indicates the new card option register setting of the
PCMCIA device. It is valid only if bit 7 of the pcValid field is set.

RESULT CODES

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present

C H A P T E R 7

Software for ATA Devices

132 Using the ATA Manager With Drivers

Using the ATA Manager With Drivers 7

This section describes several operations dealing with drivers:

■ notification of device events

■ loading a device driver

■ old and new driver entry points

■ loading a driver from the media

■ notification of notify-all drivers

■ notification of the ROM driver

Notification of Device Events 7
Due to the asynchronous event-reporting mechanism of the Card Services Manager, the
ATA Manager notifies its clients by a callback mechanism using the client’s event
handler. Each client that is to be notified of device events must register its event handler
at the time of driver registration. Refer to the section “ATA_DrvrRegister” beginning on
page 109 for the calling convention of the event handler.

The event codes that have been defined are listed in Table 7-9.

Table 7-9 Event codes send by the ATA Manager

Event
code Event description

$00 Null event; signifies no real event. The client should simply return with no
error code.

$01 Online event; signifies that a device has come online. This event may happen
as a result of the following actions:
■ A device has been inserted into the socket.
■ A device has been repowered from sleep/low power.

The client should let the operating system know about the presence of the
device (if it has not done so already), verify the device type, and upload any
device characteristics.

$02 Offline event; signifies that the device has gone offline. This event may
happen as a result of a device being manually removed from the socket.

The client should let the operating system know that the device has gone
offline by setting the offline bit, if appropriate.

$03 Device-removed event; signifies that the device has been ejected gracefully.
The client should clean up the internal variables to reflect
the latest state of the socket. The client may notify the operating system
of the event.

continued

C H A P T E R 7

Software for ATA Devices

Using the ATA Manager With Drivers 133

Device Driver Loading 7
This section describes the sequence and method of driver installation and the
recommended driver initialization sequence.

The operating system attempts to install a device driver for a given ATA device in the
following instances:

■ during system startup or restart

■ during accRun, following the drive insertion

■ each time it is called to register a notify-all driver

Three classes of drivers are identified and discussed below. The driver loading and
initialization sequence is as follows:

1. Media driver. The driver on the media is given the highest priority.

2. notify-all drivers. Any INIT drivers are given the next priority.

3. ROM driver. The built-in ROM driver is loaded if no other driver is found.

The initialization sequences for the three driver classes are described in “Loading a
Driver From the Media” on page 135.

Once the driver loading and intitialization sequence has been performed for a particular
device, the process is not repeated until one of the following situations occurs:

■ system restart

■ device ejection followed by an insertion

■ shutdown and reinitialization of the manager; but only if the existingGlobalPtr
field of the parameter block is invalid

■ a notify-all driver registration occurs. In this case, only the registering driver is
notified of the drive online.

$04 Reset event; signifies that the device has been reset. This indicates that any
pending request or the settings may have been aborted.

$05 Offline request event; requests permission for the device to go offline.

$06 Eject request event; requests permission to eject the drive.

$07 Configuration update event; signifies that the system configuration related to
I/O subsystems may have changed. This event may imply that the number of
ATA buses and devices has changed. Consequently, if the client is a driver
capable of handling more than one device, it may want to query the manager
for the current configuration.

Table 7-9 Event codes send by the ATA Manager (continued)

Event
code Event description

C H A P T E R 7

Software for ATA Devices

134 Using the ATA Manager With Drivers

New API Entry Point for Device Drivers 7

Two entry points into each ATA driver are currently defined, for the old API and the new
API. Use of the new API is strongly recommended. The differences between the two
APIs are as follows:

■ Entry point: In the old API, the entry point is offset 0 bytes from the start of the driver;
in the new API, it is offset 8 bytes from the start of the driver (the same as with SCSI
drivers).

■ D5 register: In the old API, the input parameter in the D5 register contains just the bus
ID; in the new API, the D5 register contains the devIdent parameters.

Table 7-10 shows the contents of the D5 register, high-order bits first, for the old API
(calls offset 0 bytes into the driver).

Table 7-11 shows the contents of the D5 register, high-order bits first, for the new API
(calls offset 8 bytes into the driver).

Table 7-10 Input parameter bits for the old API

Bits Value Definition

31–24 0 Reserved; set to 0.

23–16 0 Reserved; set to 0.

15–8 0 Reserved; set to 0.

7–0 ATA bus ID The bus ID where the device resides. This is the ID used to
communicate with the ATA Manager.

Table 7-11 Input parameter bits for the new API

Bits Value Definition

31–24 Reserved In this byte, bits 29–31 are currently defined. All other bits
should be set to 0.

Bit 31 1 = load at run time (RAM based)
 0 = load at startup time (ROM based)

Bit 30 1 = mount volumes associated with this drive
0 = don’t mount any volume associated with
this drive

Bit 29 1 = new API entry (use 8-byte offset)
 0 = old API entry (use 0-byte offset)
This bit is set internally by each driver.

23–16 ATA bus ID The bus ID where the device resides. This is the ID used to
communicate with the ATA Manager.

15–8 Device ID The device ID within the given bus. This field is used to
identify the device on a particular bus. The current and
previous ATA Manager implementations assume that the
device ID field is always 0.

7–0 Reserved Reserved; set to 0.

C H A P T E R 7

Software for ATA Devices

Using the ATA Manager With Drivers 135

IMPORTANT

ATA Manager version 1.0 uses the old API; the ATA Manager
version 2.0 uses the new API. ▲

Loading a Driver From the Media 7

Upon detection of a device insertion, the driver loader, an extension of the ATA Manager,
initiates a driver load operation during accRun time. The driver loader searches the
DDM and partition maps of the media. If an appropriate driver is found, the driver
loader allocates memory in the system heap and loads the driver.

For the old API, the driver is opened by jumping to the first byte of the driver code with
the D5 register containing the bus ID of the device. For the new API, the driver is opened
by jumping to the eighth byte of the driver code with the D5 register containing the new
API definition.

The appropriate driver is identified by following fields:

■ ddType = $701 for Mac OS

■ partition name = Apple_Driver_ATA

The media driver should be capable of handling both old and new APIs. The Macintosh
Quadra 630 uses the old API; other Macintosh models use the new API.

The typical sequence of the media driver during the Open() call is as follows:

1. Allocate driver globals.

2. Initialize the globals.

3. Install any system tasks, such as VBL, time manager, shutdown procedure, and the
like. Initialize the device and its parameters.

4. Register the device with the ATA Manager. The driver is expected to fail the Open()
operation if an error is returned from the driver registration call for a given device.

The installed driver is expected to return the following information in D0:

■ The upper 16-bit word contains the driver reference number corresponding to the unit
table entry. This field is only valid when the lower 16-bits of D0 is 0. The reference
number returned must be less than 0 to be valid.

■ The lower 16-bit word contains the status of the driver Open() operation. A value of
0 indicates no error.

Notify-all Driver Notification 7

When an error is returned from the media driver loading, the driver load function then
calls the notify-all drivers, one by one. This driver type is determined from the driver
registration (–1 in the deviceID field of the driver registration parameter block). Unlike
the media driver, this driver is notified of a device insertion by means of the callback
mechanism at accRun time, when the manager calls the driver with an online event.
Consequently, each notify-all driver must provide a callback routine pointer in the driver
registration. The driver may get a series of online event notifications during the notify-all
registration. The driver is assumed to be installed in system (for example, the INIT

C H A P T E R 7

Software for ATA Devices

136 Using the ATA Manager With Drivers

driver). Refer to “Notification of Device Events” on page 132 for the event opcode and
the definition of the structure passed in.

Upon returning from the call, each notify-all driver must provide a status indicating
whether the driver controls the specified device or not. A status of 0 indicates that the
driver controls the device; a nonzero status indicates that the driver doesn’t control
the device.

The calling of the notify-all drivers continues until a 0 status is received from one of the
registered drivers or until the end of the list is reached.

The typical sequence of the notify-all driver during the online event handling is
as follows:

1. Check for the presence and the device type.

2. If the driver controls this device, allocate and initialize global variables.

3. Initialize the device and its parameters.

4. Perform driver registration for the device with the manager. The driver should release
its ownership of the device and return a nonzero status if the driver registration fails.

ROM Driver Notification 7

If no driver indicates that it controls the device, the ATA Manager calls the ATA hard
disk driver in the system ROM. The ROM driver is called only for a hard disk device. For
the Macintosh Quadra and LC 630 models, as in the case of the media driver, the called
address is the first byte of the driver. For all other Macintosh models, the called address
is offset by 8 bytes. The input and the output of the driver and the Open() sequence are
the same for both the media driver and the ROM driver.

Device Driver Purging 7
When a device removal event is detected, an attempt is made to close the device, to
remove it from the unit table, and to dispose of the corresponding driver in memory. A
key function in supporting this feature is a new driver gestalt call. Driver support for
this call is strongly recommended.

The driver gestalt selector for the function is 'purg'. The call provides following
information to the driver loader:

■ the starting location of the driver

■ the purge permissions: close(), DrvrRemove(), and DisposePtr()

C H A P T E R 7

Software for ATA Devices

Using the ATA Manager With Drivers 137

The following structure describes the response associated with the purge call. The
description of this and other driver gestalt calls can be found in the Driver Gestalt
documentation in Designing PCI Cards and Drivers for Power Macintosh computers.

struct DriverGestaltPurgeResponse

// driver purge permission structure

{

SInt16 purgePermission; // <--: purge response

// 0 = do not change the

// state of the driver

// 3 = close and remove

// this driver refnum,

// but don't deallocate

// driver code

// 7 = close,remove, and

// dispose of pointer

SInt16 purgeReserved;

UniversalProcPtr purgeDrvrPointer;// <--: starting address

// of the driver

// (valid only if disposePtr

// permission is given)

};

The driver must either return a status error indicating that the call is not supported, or
return one of the three values defined in the purgePermission field of the response
structure described above. If an error or an illegal value is returned in response to the
call, then the manager treats as if the response of 0 is received. The three possible purge
permissions are listed in Table 7-12. All other response values are reserved and should
not be used.

Table 7-12 Purge permissions and responses

Purge permissions

Response Close() DrvrRemove() DisposePtr()

7 √ √ √

3 √ √

0

C H A P T E R 7

Software for ATA Devices

138 Using the ATA Manager With Drivers

Upon receiving a response, the manager purge sequence is as follows:

if a response of 3 or 7

if ((err = PBClose()) == noErr)

/* close the driver down*/

{

if (a response of 7)

DisposePtr (); /* dispose the driver memory*/

DrvrRemove (); /* remove the driver from

the unit table*/

}

The driver Close() permission applies only to the corresponding unit table entry. In
other words, if the driver is used to control multiple devices (such as multiple unit table
entries), then Close() should apply only to the particular device with the matching
driver reference number. The other devices must remain operational.

The registered driver must make the decision as to what value to return in response to
the call. Some examples are listed below:

■ If the driver is in control of any other device, it should return a response of 3; the
driver closes the particular device down, but the driver stays resident for other
devices.

■ If the driver must remain available for other potential device insertion, it should
return a response of 3.

■ If the driver is a media driver controlling the particular device, it should return a
response of 7. Another media driver will become active when a device is inserted.

Setting the I/O Speed 7
The ATA controllers used in Macintosh systems have their I/O cycle time adjustable to
optimize data transfers. There are two mechanisms for setting the I/O cycle time: the
ataIOSpeed field of the parameter block header (this field is only valid when a data
transfer is involved: and the ataIOSpeedMode field of the ATA_SetDevConfig
function. The speed setting via the ATA_SetDevConfig function is considered the
default setting. In other words, if the current speed bit of the ataFlags field in the
parameter block header is set, then the default speed setting previously set through
the ATA_SetDevConfig function is used as the I/O speed mode of the particular
transaction.

If the current speed bit is cleared, then the speed setting specified in the ataIOSpeed
field of the transaction parameter block is used. The initial speed setting prior to the first
call to ATA_SetDevConfig is mode 0.

Because the current PC card specification defines the ATA I/O timing of 0 for all
PCMCIA/ATA devices, the speed setting field has no effect on the I/O speed for those
devices. Currently the field is hard-coded to mode 0.

C H A P T E R 7

Software for ATA Devices

Error Code Summary 139

Error Code Summary 7

Table 7-13 lists two sets of error codes for ATA drivers: old error codes, used with the
Macintosh PowerBook 150 and the Macintosh Quadra and LC 630 series computers; and
new error codes, to be used with all future Macintosh models. The choice of error codes
is determined by the ataPBVers field in the ataPBHdr structure, defined on page 99. If
ataPBVers is set to 1, then the old error codes are used; if ataPBVers is set to 2, then
the new error codes are used.

Table 7-13 ATA driver error codes

Error code
(new)

Error code
(old) Error name Error description

0 0 noErr No error was detected on the
requested operation.

$FFCE
(–50)

$FFCE
(–50)

paramErr Error in parameter block.

$FFC8
(–56)

$FFC8
(–56)

nsDrvErr No such drive; no device is attached to
the specified port.

$DB43
(–9405)

$F901
(–1791)

AT_NRdyErr Drive ready condition was not detected.

$DB44
(–9404)

$F904
(–1788)

AT_IDNFErr Sector ID not-found error reported
by device.

$DB45
(–9403)

$F905
(–1787)

AT_DMarkErr Data mark not-found error was
reported by the device.

$DB46
(–9402)

$F906
(–1786)

AT_BadBlkErr A bad block was detected by the device.

$DB47
(–9401)

$F907
(–1785)

AT_CorDataErr Notification that data was corrected
(good data).

$DB48
(–9400)

$F906
(–1784)

AT_UncDataErr Unable to correct data (possibly
bad data).

$DB49
(–9399)

$F909
(–1783)

AT_SeekErr A seek error was detected by the device.

$DB4A
(–9398)

$F90A
(–1782)

AT_WrFltErr A write fault was detected by the device.

$DB4B
(–9397)

$F90B
(–1781)

AT_RecalErr A recalibration failure was detected
by the device.

$DB4C
(–9396)

$F90C
(–1780)

AT_AbortErr A command was aborted by the device.

continued

C H A P T E R 7

Software for ATA Devices

140 Error Code Summary

$DB4D
(–9395)

$F90E
(–1778)

AT_MCErr Media-changed error detected
by the device.

$DB4E
(–9394)

$F90F
(–1777)

ATAPICheckErr The ATAPI check condition was detected.

$DB70
(–9360)

$F8F6
(–1802)

ATAMgrNotInitialized ATA Manager has not been initialized.
The request function cannot be
performed until the manager has
been initialized.

$DB71
(–9359)

$F8F5
(–1803)

ATAPBInvalid An invalid ATA port address was
detected (ATA Manager initialization
problem).

$DB72
(–9358)

$F8F4
(–1804)

ATAFuncNotSupported An unknown ATA Manager function
code has been specified.

$DB73
(–9357)

$F8F3
(–1805)

ATABusy The selected device is busy; it is not
ready to go to the next phase yet.

$DB74
(–9356)

$F8F2
(–1806)

ATATransTimeOut A timeout condition was detected. The
operation had not completed within
the user-specified time limit.

$DB75
(–9355)

$F8F1
(–1807)

ATAReqInProg Device busy; the device on the port is
busy processing another command.

$DB76
(–9354)

$F8F0
(–1808)

ATAUnknownState The device status register reflects an
unknown state.

$DB77
(–9353)

$F8EF
(–1809)

ATAQLocked I/O queue for the port is locked due to a
previous I/O error. It must be unlocked
prior to continuing.

$DB78
(–9352)

$F8EE
(–1810)

ATAReqAborted The I/O queue entry was aborted due to
an abort command.

$DB79
(–9351)

$F8ED
(–1811)

ATAUnableToAbort The I/O queue entry could not be
aborted. It was too late to abort or the
entry was not found.

$DB7A
(–9350)

$F8EC
(–1812)

ATAAbortedDueToRst The I/O queue entry aborted due to a
bus reset.

$DB7B
(–9349)

$F8EB
(–1813)

ATAPIPhaseErr Unexpected phase detected.

$DB7C
(–9348)

$F8EA
(–1814)

ATAPIExCntErr Warning: overrun/underrun condition
detected (the data is valid).

$DB7D
(–9347)

$F8E9
(–1815)

ATANoClientErr No client present to handle the event.

continued

Table 7-13 ATA driver error codes (continued)

Error code
(new)

Error code
(old) Error name Error description

C H A P T E R 7

Software for ATA Devices

Error Code Summary 141

$DB7E
(–9346)

$F8E8
(–1816)

ATAInternalErr Card Services returned an error.

$DB7F
(–9345)

$F8E7
(–1817)

ATABusErr A bus error was detected on I/O.

$DB80
(–9344)

$F90D
(–1818)

AT_NoAddrErr The task file base address is not valid.

$DB81
(–9343)

$F8F9
(–1799)

DriverLocked The current driver must be removed
before adding another.

$DB82
(–9342)

$F8F8
(–1800)

CantHandleEvent Particular event could not be handled.

$DB83
(–9341)

— ATAMgrMemoryErr ATA Manager memory allocation error.

$DB84
(–9340)

— ATASDFailErr ATA Manager shutdown process failed.

$DB90
(–9328)

— ATAInvalidDrvNum Invalid drive number from event.

$DB91
(–9327)

— ATAMemoryErr Memory allocation error.

$DB92
(–9326)

— ATANoDDMErr No driver descriptor map (DDM) was
found on the media.

$DB93
(–9325)

— ATANoDriverErr No driver was found on the media.

Table 7-13 ATA driver error codes (continued)

Error code
(new)

Error code
(old) Error name Error description

C H A P T E R 8

PC Card Services 8Figure 8-0
Listing 8-0
Table 8-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 8

PC Card Services

144

Client Information

This chapter describes the Card Services part of the PC Card Manager in the Macintosh
PowerBook 190 computer.

The PC Card Manager is a new part of Mac OS that lets software use PC cards. The PC
Card Manager helps client software recognize, configure, and view PC cards that are
inserted into PC card sockets on Macintosh PowerBook computers.

The PC Card Manager comprises two sets of system software:

■

Card Services, used by all PC card client software

■

Socket Services, used primarily by developers of new PC card hardware

This chapter covers only the Card Services functions. For descriptions of the other
functions of the PC Card Manager, see

Developing PC Card Software for the Mac OS.

Client Information 8

You can use the functions described in this section to get information about Card
Services clients.

The Card Services software keeps information about all its clients in a first-in, first-out
queue called the global client queue. You can use the

CSGetFirstClient

 and

CSGetNextClient

 functions to iterate through all the registered clients. Either of those
functions returns a handle that you can then use with the

CSGetClientInfo

 function
to obtain the corresponding client information.

In the definitions that follow, an arrow preceding a parameter indicates whether the
parameter is an input parameter, an output parameter, or both.

CSGetFirstClient 8

You can use the

CSGetFirstClient

 function to find the first client in the Card
Service’s global client queue.

pascal OSErr CSGetFirstClient(GetClientPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetClientPB GetClientPB;

struct GetClientPB

{

UInt32 clientHandle; //

←

 clientHandle for this client

Arrow Meaning

→

Input

←

Output

↔

Both

C H A P T E R 8

PC Card Services

Client Information

145

UInt16 socket; //

→

 logical socket number

UInt16 attributes; //

→

 bitmap of attributes

};

// 'attributes' field values

enum

{

csClientsForAllSockets = 0x0000,

csClientsThisSocketOnly = 0x0001

};

DESCRIPTION

The

CSGetFirstClient

 function returns a

clientHandle

 value to the first client in
Card Services’ global client queue. If the caller specifies

csClientsThisSocketOnly

and passes in a valid socket number, Card Services returns the first client whose event
mask for the given socket is not

NULL

.

RESULT CODES

SUCCESS

No error

BAD_SOCKET

Invalid socket specified

NO_MORE_ITEMS

No clients registered

CSGetNextClient 8

You can use the

CSGetNextClient

 function to find the next client in the Card Service’s
global client queue.

pascal OSErr CSGetNextClient(GetClientPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetClientPB GetClientPB;

struct GetClientPB

{

UInt32 clientHandle; //

↔

 clientHandle for this client

UInt16 socket; //

→

 logical socket number

UInt16 attributes; //

→

 bitmap of attributes

};

For

attributes

 field values, see “CSGetFirstClient” on page 144.

C H A P T E R 8

PC Card Services

146

Client Information

DESCRIPTION

The

CSGetNextClient

 function returns the next

clientHandle

 value in Card
Services’ global client queue. If the caller specifies

csClientsThisSocketOnly

 and
passes in a valid socket number, Card Services returns the next client whose event mask
for the given socket is not

NULL

.

RESULT CODES

CSGetClientInfo 8

You can use the

CSGetClientInfo

 function to get information from the Card Service’s
global client queue.

pascal OSErr CSGetClientInfo(GetClientInfoPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetClientInfoPB GetClientInfoPB;

struct GetClientInfoPB

{

UInt32 clientHandle; //

→

 clientHandle returned by RegisterClient

UInt16 attributes; //

↔

 subfunction + bitmapped client attributes

union

{

struct // upper byte of attributes is

// csClientInfoSubfunction

{

UInt16 revision; //

←

 BCD value of client's revision

UInt16 csLevel; //

←

 BCD value of CS release

UInt16 revDate; //

←

 revision date:

// y[15-9], m[8-5], d[4-0]

SInt16 nameLen; //

↔

 in: maximum length of

// client name string,

// out: actual length

SInt16 vStringLen; //

↔

 in: max length of vendor string,

// out: actual length

UInt8 *nameString; //

←

 pointer to client name string

// (zero-terminated)

UInt8 *vendorString; //

←

 pointer to vendor string

// (zero-terminated)

}

ClientInfo;

SUCCESS

No error

BAD_SOCKET

Invalid socket specified

NO_MORE_ITEMS

No clients registered

BAD_HANDLE

Invalid

clientHandle

C H A P T E R 8

PC Card Services

Client Information

147

struct // upper byte of attributes is

// csCardNameSubfunction,

{ // csCardTypeSubfunction,

// csHelpStringSubfunction

UInt16 socket; //

→

 logical socket number

UInt16 reserved; //

→

 zero

SInt16 length; //

↔

 in: max length of string,

// out: actual length

UInt8 *text; // <- pointer to string (zero-terminated)

}

AlternateTextString;

struct // upper byte of attributes is

// csCardIconSubfunction

{

UInt16 socket; //

→

 logical socket number

Handle iconSuite; //

←

 handle to suite containing all icons

}

AlternateCardIcon;

struct // upper byte of attributes is

// csActionProcSubfunction

{

UInt16 socket; //

→

 logical socket number

}

CustomActionProc;

} u;

};

// 'attributes' field values

enum {

csMemoryClient = 0x0001,

csIOClient = 0x0004,

csClientTypeMask = 0x0007,

csShareableCardInsertEvents = 0x0008,

csExclusiveCardInsertEvents = 0x0010,

csInfoSubfunctionMask = 0xFF00,

csClientInfoSubfunction = 0x0000,

csCardNameSubfunction = 0x8000,

csCardTypeSubfunction = 0x8100,

csHelpStringSubfunction = 0x8200,

csCardIconSubfunction = 0x8300,

csActionProcSubfunction = 0x8400

};

C H A P T E R 8

PC Card Services

148

Configuration

DESCRIPTION

The

CSGetClientInfo

 function is used to obtain information about a client from the
Card Service’s global client queue. The client is specified by passing in a

clientHandle

value previously obtained using

GetFirstClient

 or

GetNextClient

.

Note that in this case the caller does not pass in its own

clientHandle value, but that
of the client whose information is being requested.

The caller of the CSGetClientInfo function specifies the type of information being
requested by setting the requested information subfunction in the upper byte of the
attributes field. The Card Services software passes a CLIENT_INFO message to the
client pointed to by clientHandle. Called clients are expected to respond to the
CLIENT_INFO message by providing the data requested. When a client receives a
CLIENT_INFO message to perform a custom action, it needs to be aware that it is being
called from the Finder or a similar process environment.

Each time the Card Services software calls a client with a CLIENT_INFO message, Card
Services passes a client callback parameter block (ClientCallbackPB). The buffer field
of the ClientCallbackPB structure contains a pointer to the get client info parameter
block (GetClientInfoPB), which has the following structure:

ClientCallbackPB.function = CLIENT_INFO;

ClientCallbackPB.socket = 0;

ClientCallbackPB.info = 0;

ClientCallbackPB.misc = 0;

ClientCallbackPB.buffer = (Ptr) GetClientInfoPB;

ClientCallbackPB.clientData

= ((ClientQRecPtr) GetClientInfoPB->clientHandle)->clientDataPtr;

Before calling the CSGetClientInfo function, you should use GetFirstClient and
GetNextClient to iterate through the registered clients. Card Services returns
clientHandle to the caller of either function.

RESULT CODES

Configuration 8

The functions described in this section help you configure cards and sockets.

SUCCESS No error
BAD_HANDLE Invalid clientHandle value

C H A P T E R 8

PC Card Services

Configuration 149

CSGetConfigurationInfo 8

You can use the CSGetConfigurationInfo function to get the information needed to
initialize a CSModifyConfiguration parameter block.

pascal OSErr

CSGetConfigurationInfo(GetModRequestConfigInfoPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetModRequestConfigInfoPB GetModRequestConfigInfoPB;

struct GetModRequestConfigInfoPB

{

UInt32 clientHandle; // → clientHandle returned by RegisterClient

UInt16 socket; // → logical socket number

UInt16 attributes; // ← bitmap of configuration attributes

UInt8 vcc; // ← Vcc setting

UInt8 vpp1; // ← Vpp1 setting

UInt8 vpp2; // ← Vpp2 setting

UInt8 intType; // ← interface type (memory or memory+I/O)

UInt32 configBase; // ← card base address of config registers

UInt8 status; // ← card status register setting, if present

UInt8 pin; // ← card pin register setting, if present

UInt8 copy; // ← card socket/copy reg setting, if present

UInt8 configIndex; // ← card option register setting, if present

UInt8 present; // ← bitmap of which config regs are present

UInt8 firstDevType; // ← from DeviceID tuple

UInt8 funcCode; // ← from FuncID tuple

UInt8 sysInitMask; // ← from FuncID tuple

UInt16 manufCode; // ← from ManufacturerID tuple

UInt16 manufInfo; // ← from ManufacturerID tuple

UInt8 cardValues; // ← valid card register values

UInt8 padding[1];

};

// 'attributes' field values

enum

{

csExclusivelyUsed = 0x0001,

csEnableIREQs = 0x0002,

csVccChangeValid = 0x0004,

csVpp1ChangeValid = 0x0008,

csVpp2ChangeValid = 0x0010,

csValidClient = 0x0020,

// request that power be applied to socket during sleep

csSleepPower = 0x0040,

C H A P T E R 8

PC Card Services

150 Configuration

csLockSocket = 0x0080,

csTurnOnInUse = 0x0100

};

// 'intType' field values

enum

{

csMemoryInterface = 0x01,

csMemory_And_IO_Interface = 0x02

};

// 'present' field values

enum

{

csOptionRegisterPresent = 0x01,

csStatusRegisterPresent = 0x02,

csPinReplacementRegisterPresent = 0x04,

csCopyRegisterPresent = 0x08

};

// 'cardValues' field values

enum

{

csOptionValueValid = 0x01,

csStatusValueValid = 0x02,

csPinReplacementValueValid = 0x04,

csCopyValueValid = 0x08

};

DESCRIPTION

The CSGetConfigurationInfo function is generally called after a client has parsed a
tuple stream, identified an inserted card as its card, and is ready to initialize a
CSModifyConfiguration parameter block.

RESULT CODES

SUCCESS No error
BAD_HANDLE Invalid clientHandle value

C H A P T E R 8

PC Card Services

Configuration 151

CSRequestConfiguration 8

You can use the CSRequestConfiguration function to establish yourself as the
configuring client for a card and socket and to lock the configuration.

pascal OSErr

CSRequestConfiguration(GetModRequestConfigInfoPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetModRequestConfigInfoPB GetModRequestConfigInfoPB;

struct GetModRequestConfigInfoPB

{

UInt32 clientHandle;// → clientHandle returned by RegisterClient

UInt16 socket; // → logical socket number

UInt16 attributes; // → bitmap of configuration attributes

UInt8 vcc; // → Vcc setting

UInt8 vpp1; // → Vpp1 setting

UInt8 vpp2; // → Vpp2 setting

UInt8 intType; // → interface type (memory or memory+I/O)

UInt32 configBase; // → card base address of configuration registers

UInt8 status; // → card status register setting, if present

UInt8 pin; // → card pin register setting, if present

UInt8 copy; // → card socket/copy reg. setting, if present

UInt8 configIndex; // → card option register setting, if present

UInt8 present; // → bitmap of which config registers are present

UInt8 firstDevType;// ← from DeviceID tuple

UInt8 funcCode; // ← from FuncID tuple

UInt8 sysInitMask; // ← from FuncID tuple

UInt16 manufCode; // ← from ManufacturerID tuple

UInt16 manufInfo; // ← from ManufacturerID tuple

UInt8 cardValues; // ← valid card register values

UInt8 padding[1]; //

};

For attributes, intType, present, and cardValues field values, see
“CSGetConfigurationInfo” beginning on page 149.

DESCRIPTION

The CSRequestConfiguration function is used by a client to establish a locked
configuration on a socket and its card. A client calls CSRequestConfiguration after it
has parsed an inserted and ready card and has recognized the card as being usable.

Card Services uses clientHandle to lock in the configuration until the same client calls
CSReleaseConfiguration. Once a socket and card are configured no other client may
alter their configuration.

C H A P T E R 8

PC Card Services

152 Configuration

Configuring a socket and card consists of three operations:

■ establishing Vcc and Vpp for the socket

■ establishing the socket interface definition (memory only or I/O and memory)

■ writing the configuration registers on the card

When Card Services receives a CARD_INSERTION and subsequent CARD_READY event
for a socket, it configures the socket by setting Vcc, Vpp1, and Vpp2 to 5 volts;
configuring the interface to be memory only; and issuing RESET to the card. Card
Services then parses the CIS (card information structure) of the card. Once Card Services
has finished parsing the CIS, it issues a CARD_READY message to all registered clients. (It
has previously delivered a CARD_INSERTION message to the same clients.) Even if a
client parses and recognizes a card and intends to use the card without altering the
configuration, it should call CSRequestConfiguration to establish itself as the
configuring client.

RESULT CODES

CSModifyConfiguration 8

You can use the CSModifyConfiguration function to alter the configuration of a
socket or card.

pascal OSErr CSModifyConfiguration(GetModRequestConfigInfoPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetModRequestConfigInfoPB GetModRequestConfigInfoPB;

struct GetModRequestConfigInfoPB

{

UInt32 clientHandle; // → clientHandle returned by RegisterClient

UInt16 socket; // → logical socket number

UInt16 attributes; // → bitmap of configuration attributes

UInt8 vcc; // → Vcc setting

UInt8 vpp1; // → Vpp1 setting

UInt8 vpp2; // → Vpp2 setting

UInt8 intType; // → interface type (memory or memory+I/O)

SUCCESS No error
BAD_HANDLE Invalid clientHandle value
BAD_SOCKET Invalid socket number
CONFIGURATION_LOCKED Another client has already

locked a configuration
NO_CARD No card
OUT_OF_RESOURCE Card Services lacks enough resources

to complete this request
BAD_BASE Invalid base entered

C H A P T E R 8

PC Card Services

Configuration 153

UInt32 configBase; // → card base address of config registers

UInt8 status; // → card status register setting, if present

UInt8 pin; // → card pin register setting, if present

UInt8 copy; // → card socket/copy reg. setting, if present

UInt8 configIndex; // → card option register setting, if present

UInt8 present; // → bitmap of which config regs. are present

UInt8 firstDevType; // ← from DeviceID tuple

UInt8 funcCode; // ← from FuncID tuple

UInt8 sysInitMask; // ← from FuncID tuple

UInt16 manufCode; // ← from ManufacturerID tuple

UInt16 manufInfo; // ← from ManufacturerID tuple

UInt8 cardValues; // ← valid card register values

UInt8 padding[1]; //

};

For attributes, intType, present, and cardValues field values, see
“CSGetConfigurationInfo” beginning on page 149.

DESCRIPTION

The CSModifyConfiguration function is used by clients to alter any of the three
configuration elements of a socket or card. Only a client that has previously succeeded in
calling CSRequestConfiguration may call CSModifyConfiguration.

RESULT CODES

CSReleaseConfiguration 8

You can use the CSReleaseConfiguration function to release a previously locked
configuration.

pascal OSErr CSReleaseConfiguration(ReleaseConfigurationPB *pb);

SUCCESS No error
BAD_HANDLE Invalid clientHandle value
BAD_SOCKET Invalid socket number
CONFIGURATION_LOCKED Another client has already

locked a configuration
NO_CARD No card
OUT_OF_RESOURCE Card Services lacks enough resources

to complete this request
BAD_BASE Invalid base entered

C H A P T E R 8

PC Card Services

154 Configuration

The parameter block associated with this function is as follows:

typedef struct ReleaseConfigurationPB ReleaseConfigurationPB;

struct ReleaseConfigurationPB

{

UInt32 clientHandle;

UInt16 socket;

};

DESCRIPTION

The CSReleaseConfiguration function is used by clients to release a configuration
previously locked for a socket and card.

RESULT CODES

CSAccessConfigurationRegister 8

You can use the CSAccessConfigurationRegister function to modify a single
configuration register. This function is not normally used by clients.

pascal OSErr

CSAccessConfigurationRegister(AccessConfigurationRegisterPB *pb);

The parameter block associated with this function is as follows:

typedef struct AccessConfigurationRegisterPB

AccessConfigurationRegisterPB;

struct AccessConfigurationRegisterPB

{

UInt16 socket; // → global socket number

UInt8 action; // → read/write

UInt8 offset; // → offset from config register base

UInt8 value; // ↔ value to read/write

UInt8 padding[1];

};

SUCCESS No error
BAD_HANDLE Invalid clientHandle value
BAD_SOCKET Invalid socket number
CONFIGURATION_LOCKED Another client has already

locked a configuration
NO_CARD No card in specified socket

C H A P T E R 8

PC Card Services

Masks 155

// 'action' field values

enum {

CS_ReadConfigRegister = 0x00,

CS_WriteConfigRegister = 0x01

};

DESCRIPTION

The CSAccessConfigurationRegister function lets a client modify a single
configuration register. The location of the register is defined by adding
AccessConfigurationRegisterPB.offset to the configuration base address
(see CSModifyConfiguration on page 152). If the action parameter is set to
CS_ReadConfigRegister, then the configuration register value is returned in
AccessConfigurationRegisterPB.value. If the action parameter is set to
CS_WriteConfigRegister, then the configuration register is written with
AccessConfigurationRegisterPB.value.

IMPORTANT

The CSAccessConfigurationRegister function is not
normally used by clients. When clients want to set configuration
registers they usually call CSRequestConfiguration or
CSModifyConfiguration and set the appropriate registers
at that time. ▲

RESULT CODES

Masks 8

The functions described in this section get and set client event and socket masks.

CSGetClientEventMask 8

You can use the CSGetClientEventMask function to obtain your current event mask.

pascal OSErr CSGetClientEventMask(GetSetClientEventMaskPB *pb);

SUCCESS No error
BAD_SOCKET Invalid socket number

C H A P T E R 8

PC Card Services

156 Masks

The parameter block associated with this function is as follows:

typedef struct GetSetClientEventMaskPB GetSetClientEventMaskPB;

struct GetSetClientEventMaskPB

{

UInt32 clientHandle; // → clientHandle returned by RegisterClient

UInt16 attributes; // → bitmap of attributes

UInt16 eventMask; // ← bitmap of events to be passed to

 // client for this socket

UInt16 socket; // → logical socket number

};

// 'attributes' field values

enum

{

csEventMaskThisSocketOnly = 0x0001

};

// 'eventMask' field values

enum

{

csWriteProtectEvent = 0x0001,

csCardLockChangeEvent = 0x0002,

csEjectRequestEvent = 0x0004,

csInsertRequestEvent = 0x0008,

csBatteryDeadEvent = 0x0010,

csBatteryLowEvent = 0x0020,

csReadyChangeEvent = 0x0040,

csCardDetectChangeEvent = 0x0080,

csPMChangeEvent = 0x0100,

csResetEvent = 0x0200,

csSSUpdateEvent = 0x0400,

csFunctionInterrupt = 0x0800,

csAllEvents = 0xFFFF

};

DESCRIPTION

The CSGetClientEventMask function is used by a client to obtain its current
event mask. If the GetSetClientEventMaskPB.attributes field has
csEventMaskThisSocketOnly reset, the CSGetClientEventMask function
returns the client’s global event mask. If GetSetClientEventMaskPB.attributes
has csEventMaskThisSocketOnly set, then the event mask for the given socket
number is returned.

C H A P T E R 8

PC Card Services

Masks 157

RESULT CODES

CSSetClientEventMask 8

You can use the CSSetClientEventMask function to establish your event mask.

pascal OSErr CSSetClientEventMask(GetSetClientEventMaskPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetSetClientEventMaskPB GetSetClientEventMaskPB;

struct GetSetClientEventMaskPB

{

UInt32 clientHandle; // → clientHandle returned by RegisterClient

UInt16 attributes; // → bitmap of attributes

UInt16 eventMask; // → bitmap of events to pass to client

// for this socket

UInt16 socket; // → logical socket number

};

For eventMask field values, see “CSGetClientEventMask” on page 155.

DESCRIPTION

The CSSetClientEventMask function is used by a client to establish its
event mask. If the GetSetClientEventMaskPB.attributes field is reset,
CSSetClientEventMask sets the client’s global event mask. If the
GetSetClientEventMaskPB.attributes field has
csEventMaskThisSocketOnly set, then the event mask for the given
socket number is set.

After processing CARD_READY and determining that the card is not usable, clients
should clear their global event masks so that message processing with the system
is streamlined.

RESULT CODES

SUCCESS No error
BAD_HANDLE Invalid clientHandle value
BAD_SOCKET Invalid socket number

SUCCESS No error
BAD_HANDLE The clientHandle field of

GetClientInfoPB is invalid
BAD_SOCKET Invalid socket number

C H A P T E R 8

PC Card Services

158 Masks

CSRequestSocketMask 8

You can use the CSRequestSocketMask function to establish an event mask for a
specified socket.

pascal OSErr CSRequestSocketMask(ReqRelSocketMaskPB *pb);

The parameter block associated with this function is as follows:

typedef struct ReqRelSocketMaskPB ReqRelSocketMaskPB;

struct ReqRelSocketMaskPB

{

UInt32 clientHandle; // → clientHandle returned by RegisterClient

UInt16 socket; // → logical socket

UInt16 eventMask; // → bitmap of events to pass to client

// for this socket

};

For eventMask field values, see “CSGetClientEventMask” on page 155.

DESCRIPTION

The CSRequestSocketMask function is used to establish an event mask for the given
socket number.

RESULT CODES

CSReleaseSocketMask 8

You can use the CSReleaseSocketMask function to clear the event mask for a PC card
that you are no longer using.

pascal OSErr CSReleaseSocketMask(ReqRelSocketMaskPB *pb);

The parameter block associated with this function is as follows:

typedef struct ReqRelSocketMaskPB ReqRelSocketMaskPB;

struct ReqRelSocketMaskPB

{

UInt32 clientHandle; // → clientHandle returned by RegisterClient

UInt16 socket; // → logical socket

SUCCESS No error
BAD_HANDLE The clientHandle field of

GetClientInfoPB is invalid

C H A P T E R 8

PC Card Services

Tuples 159

UInt16 eventMask; // → bitmap of events to pass to client

// for this socket

};

For eventMask field values, see “CSGetClientEventMask” on page 155.

DESCRIPTION

The CSReleaseSocketMask function is used to clear the event mask for the specified
socket. This is the recommended way for clients to clear socket events when they are not
using a particular PC card.

RESULT CODES

Tuples 8

You can use the functions described in this section to obtain PC card information from
the corresponding tuples.

CSGetFirstTuple 8

You can use the CSGetFirstTuple function to obtain access to the first tuple associated
with a particular socket.

pascal OSErr CSGetFirstTuple(GetTuplePB *pb);

The parameter block associated with this function is as follows:

typedef struct GetTuplePB GetTuplePB;

struct GetTuplePB

{

UInt16 socket; // → logical socket number

UInt16 attributes; // → bitmap of attributes

UInt8 desiredTuple;// → desired tuple code value, or $FF for all

UInt8 tupleOffset; // → offset into tuple from link byte

UInt16 flags; // ↔ reserved for internal use

UInt32 linkOffset // ↔ reserved for internal use

UInt32 cisOffset; // ↔ reserved for internal use

SUCCESS No error
BAD_HANDLE The clientHandle field of

GetClientInfoPB is invalid

C H A P T E R 8

PC Card Services

160 Tuples

union

{

struct

{

UInt8 tupleCode; // ← tuple code found

UInt8 tupleLink; // ← link value for tuple found

} TuplePB;

struct

{

UInt16 tupleDataMax;// → maximum size of tuple data area

UInt16 tupleDataLen;// ← number of bytes in tuple body

TupleBody tupleData; // ← tuple data

} TupleDataPB;

} u;

};

// 'attributes' field values

enum

{

csReturnLinkTuples = 0x0001

};

RESULT CODES

CSGetNextTuple 8

You can use the CSGetNextTuple function to obtain access to each tuple associated
with a particular socket after you have used the CSGetFirstTuple function to obtain
access to the first tuple associated with that socket.

pascal OSErr CSGetNextTuple(GetTuplePB *pb);

SUCCESS No error
BAD_SOCKET Invalid socket number
NO_CARD No card in specified socket
IN_USE Card is configured and being used

by another client
READ_FAILURE Card cannot be read
BAD_CIS Card Services has encountered a

bad CIS structure
OUT_OF_RESOURCE Card Services is not able to obtain

resources to complete
NO_MORE_ITEMS There are no more tuples to process

C H A P T E R 8

PC Card Services

Tuples 161

The parameter block associated with this function is as follows:

typedef struct GetTuplePB GetTuplePB;

struct GetTuplePB

{

UInt16 socket; // → logical socket number

UInt16 attributes; // → bitmap of attributes

UInt8 desiredTuple;// → desired tuple code value, or $FF for all

UInt8 tupleOffset; // → offset into tuple from link byte

UInt16 flags; // ↔ reserved for internal use

UInt32 linkOffset; // ↔ reserved for internal use

UInt32 cisOffset; // ↔ reserved for internal use

union

{

struct

{

UInt8 tupleCode; // ← tuple code found

UInt8 tupleLink; // ← link value for tuple found

} TuplePB;

struct

{

UInt16 tupleDataMax; // → maximum size of tuple data area

UInt16 tupleDataLen; // ← number of bytes in tuple body

TupleBody tupleData; // ← tuple data

} TupleDataPB;

} u;

};

For attributes field values, see “CSGetFirstTuple” on page 159.

RESULT CODES

SUCCESS No error
BAD_SOCKET Invalid socket number
NO_CARD No card in specified socket
IN_USE Card is configured and being used

by another client
READ_FAILURE Card cannot be read
BAD_CIS Card Services has encountered a

bad CIS structure
OUT_OF_RESOURCE Card Services is not able to obtain

resources to complete function
NO_MORE_ITEMS There are no more tuples to process

C H A P T E R 8

PC Card Services

162 Tuples

CSGetTupleData 8

You can use the CSGetTupleData function to obtain information for the tuple
previously found using either the CSGetNextTuple or CSGetFirstTuple function.

pascal OSErr CSGetTupleData(GetTuplePB *pb);

The parameter block associated with this function is as follows:

typedef struct GetTuplePB GetTuplePB;

struct GetTuplePB

{

UInt16 socket; // → logical socket number

UInt16 attributes; // → bitmap of attributes

UInt8 desiredTuple;// → desired tuple code value, or $FF for all

UInt8 tupleOffset; // → offset into tuple from link byte

UInt16 flags; // ↔ internal use

UInt32 linkOffset; // ↔ internal use

UInt32 cisOffset; // ↔ internal use

union

{

struct

{

UInt8 tupleCode; // ← tuple code found

UInt8 tupleLink; // ← link value for tuple found

} TuplePB;

struct

{

UInt16 tupleDataMax; // → maximum size of tuple data area

UInt16 tupleDataLen; // ← number of bytes in tuple body

TupleBody tupleData; // ← tuple data

} TupleDataPB;

} u;

};

// 'attributes' field values

enum

{

csReturnLinkTuples = 0x0001

};

C H A P T E R 8

PC Card Services

Card and Socket Status 163

RESULT CODES

Card and Socket Status 8

The CSGetStatus function gets card and socket status information.

CSGetStatus 8

You can use the CSGetStatus function to get status information for the specified socket.

pascal OSErr CSGetStatus(GetStatusPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetStatusPB GetStatusPB;

struct GetStatusPB

{

UInt16 socket; // → logical socket number

UInt16 cardState; // ← current state of installed card

UInt16 socketState; // ← current state of the socket

};

// 'cardState' field values

enum

{

csWriteProtected = 0x0001,

csCardLocked = 0x0002,

csEjectRequest = 0x0004,

csInsertRequest = 0x0008,

csBatteryDead = 0x0010,

csBatteryLow = 0x0020,

csReady = 0x0040,

csCardDetected = 0x0080

};

// 'socketState' field values

SUCCESS No error
BAD_SOCKET Invalid socket number
NO_CARD No card in specified socket
OUT_OF_RESOURCE Card Services is not able to obtain

resources to complete function

C H A P T E R 8

PC Card Services

164 Access Window Management

enum

{

csWriteProtectChanged = 0x0001,

csCardLockChanged = 0x0002,

csEjectRequestPending = 0x0004,

csInsertRequestPending = 0x0008,

csBatteryDeadChanged = 0x0010,

csBatteryLowChanged = 0x0020,

csReadyChanged = 0x0040,

csCardDetectChanged = 0x0080

};

RESULT CODES

Access Window Management 8

The functions described in this section help you manage access windows.

CSRequestWindow 8

You can use the CSRequestWindow function to establish a new access window.

pascal OSErr CSRequestWindow(ReqModRelWindowPB *pb);

The parameter block associated with this function is as follows:

typedef struct ReqModRelWindowPB ReqModRelWindowPB;

struct ReqModRelWindowPB

{

UInt32 clientHandle;// → clientHandle returned by RegisterClient

UInt32 windowHandle;// ↔ window descriptor

UInt16 socket; // → logical socket number

UInt16 attributes; // → window attributes (bitmap)

UInt32 base; // ↔ system base address

UInt32 size; // ↔ memory window size

UInt8 accessSpeed; // → window access speed (bitmap)

// (not applicable for I/O mode)

UInt8 padding[1];

};

// 'attributes' field values

SUCCESS No error
BAD_SOCKET Invalid socket number

C H A P T E R 8

PC Card Services

Access Window Management 165

enum

{

csMemoryWindow = 0x0001,

csIOWindow = 0x0002,

csAttributeWindow = 0x0004, // not normally used by Card Services

// clients

csWindowTypeMask = 0x0007,

csEnableWindow = 0x0008,

csAccessSpeedValid = 0x0010,

csLittleEndian = 0x0020, // configure socket for

// little-endianness

cs16BitDataPath = 0x0040,

csWindowPaged = 0x0080,

csWindowShared = 0x0100,

csWindowFirstShared = 0x0200,

csWindowProgrammable = 0x0400

};

// 'accessSpeed' field values

enum

{

csDeviceSpeedCodeMask = 0x07,

csSpeedExponentMask = 0x07,

csSpeedMantissaMask = 0x78,

csUseWait = 0x80,

csAccessSpeed250nsec = 0x01,

csAccessSpeed200nsec = 0x02,

csAccessSpeed150nsec = 0x03,

csAccessSpeed100nsec = 0x04,

csExtAccSpeedMant1pt0 = 0x01,

csExtAccSpeedMant1pt2 = 0x02,

csExtAccSpeedMant1pt3 = 0x03,

csExtAccSpeedMant1pt5 = 0x04,

csExtAccSpeedMant2pt0 = 0x05,

csExtAccSpeedMant2pt5 = 0x06,

csExtAccSpeedMant3pt0 = 0x07,

csExtAccSpeedMant3pt5 = 0x08,

csExtAccSpeedMant4pt0 = 0x09,

csExtAccSpeedMant4pt5 = 0x0A,

csExtAccSpeedMant5pt0 = 0x0B,

csExtAccSpeedMant5pt5 = 0x0C,

csExtAccSpeedMant6pt0 = 0x0D,

csExtAccSpeedMant7pt0 = 0x0E,

csExtAccSpeedMant8pt0 = 0x0F,

C H A P T E R 8

PC Card Services

166 Access Window Management

csExtAccSpeedExp1ns = 0x00,

csExtAccSpeedExp10ns = 0x01,

csExtAccSpeedExp100ns = 0x02,

csExtAccSpeedExp1us = 0x03,

csExtAccSpeedExp10us = 0x04,

csExtAccSpeedExp100us = 0x05,

csExtAccSpeedExp1ms = 0x06,

csExtAccSpeedExp10ms = 0x07

};

DIVERGENCE FROM PCMCIA STANDARD

Apple has added another attribute (csIOTypeWindow) that lets a client request that
its new access window be an I/O cycle window. For an I/O cycle window, speed
characteristics are fixed and any speed-related parameters are ignored. Speed parameters
are only effective if the access window is of type Memory or Attribute.

In the PCMCIA standard, there is an implied window assignment when a client calls
CSRequestConfiguration because the client must have called RequestI/O first.
This assures the client that there is I/O cycle window support for the change.

RESULT CODES

CSModifyWindow 8

You can use the CSModifyWindow function to modify information about an
access window.

pascal OSErr CSModifyWindow(ReqModRelWindowPB *pb);

The parameter block associated with this function is as follows:

typedef struct ReqModRelWindowPB ReqModRelWindowPB;

struct ReqModRelWindowPB

{

UInt32 clientHandle;// → clientHandle returned by RegisterClient

UInt32 windowHandle;// ↔ window descriptor

UInt16 socket; // → logical socket number

UInt16 attributes; // → window attributes (bitmap)

UInt32 base; // ↔ system base address

SUCCESS No error
BAD_SOCKET Invalid socket number
OUT_OF_RESOURCE Card Services is unable to obtain

resources to complete function
BAD_BASE Invalid base address
BAD_ATTRIBUTE Invalid window attributes

C H A P T E R 8

PC Card Services

Access Window Management 167

UInt32 size; // ↔ memory window size

UInt8 accessSpeed; // → window access speed (bitmap)

// (not applicable for I/O mode)

UInt8 padding[1];

};

For attributes and accessSpeed field values, see “CSRequestWindow” on page 164.

DIVERGENCE FROM PCMCIA STANDARD

The CSModifyWindow function must have a valid clientHandle value (the one
passed in on CSRequestWindow); otherwise a BAD_HANDLE error is returned.

RESULT CODES

CSReleaseWindow 8

You can use the CSReleaseWindow function to clear an access window that is not
longer needed.

pascal OSErr CSReleaseWindow(ReqModRelWindowPB *pb);

The parameter block associated with this function is as follows:

typedef struct ReqModRelWindowPB ReqModRelWindowPB;

struct ReqModRelWindowPB

{

UInt32 clientHandle;// → clientHandle returned by RegisterClient

UInt32 windowHandle;// → window descriptor

UInt16 socket; // → logical socket number

UInt16 attributes; // not used

UInt32 size; // not used

UInt8 accessSpeed; // not used

UInt8 padding[1]; // not used

};

For attributes and accessSpeed field values, see “CSRequestWindow” on page 164.

SUCCESS No error
BAD_SOCKET Invalid socket number
OUT_OF_RESOURCE Card Services is unable to obtain

resources to complete function
BAD_BASE Invalid base address
BAD_ATTRIBUTE Invalid window attributes
BAD_HANDLE invalid clientHandle value

C H A P T E R 8

PC Card Services

168 Client Registration

DIVERGENCE FROM PCMCIA STANDARD

The CSReleaseWindow function must have a valid clientHandle value (the one
passed in on CSRequestWindow); otherwise a BAD_HANDLE error is returned.

RESULT CODES

Client Registration 8

The functions described in this section help you get information about Card Services and
register and deregister clients.

CSGetCardServicesInfo 8

You can use the CSGetCardServicesInfo function to get information from the Card
Services software about the PC cards currently installed.

pascal OSErr CSGetCardServicesInfo(GetCardServicesInfoPB *pb);

The parameter block associated with this function is as follows:

typedef struct GetCardServicesInfoPB GetCardServicesInfoPB;

struct GetCardServicesInfoPB

{

UInt8 signature[2]; // ← two ASCII chars 'CS'

UInt16 count; // ← total number of sockets installed

UInt16 revision; // ← BCD

UInt16 csLevel; // ← BCD

UInt16 reserved; // → zero

UInt16 vStrLen; // ↔ in: client's buffer size

out: vendor string length

UInt8 *vendorString; // ↔ in: pointer to buffer to hold CS vendor

// string (zero-terminated)

// out: CS vendor string copied to buffer

};

RESULT CODES

SUCCESS No error
BAD_SOCKET Invalid socket number
BAD_HANDLE invalid clientHandle value

SUCCESS No error

C H A P T E R 8

PC Card Services

Client Registration 169

CSRegisterClient 8

You can use the CSRegisterClient function to register yourself as a client of the Card
Services software.

pascal OSErr CSRegisterClient(RegisterClientPB *pb);

The parameter block associated with this function is as follows:

typedef struct RegisterClientPB RegisterClientPB;

struct RegisterClientPB

{

UInt32 clientHandle; // ← client descriptor

PCCardCSClientUPPclientEntry; // → UPP to client's event handler

UInt16 attributes; // → bitmap of client attributes

UInt16 eventMask; // → bitmap of events to notify client

Ptr clientData; // → pointer to client's data

UInt16 version; // → Card Services version

// client expects

};

// 'attributes' field values (see GetClientInfo)

// csMemoryClient = 0x0001,

// csIOClient = 0x0004,

// csShareableCardInsertEvents= 0x0008,

// csExclusiveCardInsertEvents= 0x0010

DESCRIPTION

Observe these cautions when using CSRegisterClient:

■ It must not be called at interrupt time.

■ You must specify the type of client for event notification order.

■ You must set the event mask for types of events client is interested in. The event mask
passed in during this call will be set for the global mask and all socket event masks.

DIVERGENCE FROM PCMCIA STANDARD

The CSRegisterClient function is synchronous. On returning from
CSRegisterClient, the clientHandle field is valid. Once this call is successful,
all clients are expected to support reentrancy. After CSRegisterClient, clients
normally call CSVendorSpecific with vsCode set to vsEnableSocketEvents.

C H A P T E R 8

PC Card Services

170 Miscellaneous Functions

RESULT CODES

CSDeregisterClient 8

You can use the CSDeregisterClient function to clear client information previously
registered with the Card Services software.

pascal OSErr CSDeregisterClient(RegisterClientPB *pb);

The parameter block associated with this function is as follows:

typedef struct RegisterClientPB RegisterClientPB;

struct RegisterClientPB

{

UInt32 clientHandle; // ← client descriptor

PCCardCSClientUPP clientEntry; // → UPP to client's event handler

UInt16 attributes; // → bitmap of client attributes

UInt16 eventMask; // → bitmap of events to notify

// client

Ptr clientData; // → pointer to client's data

UInt16 version; // → Card Services version

// client expects

};

For attributes field values, see “CSRegisterClient” on page 169.

RESULT CODES

Miscellaneous Functions 8

The functions described in this section help you with various Card Services
management tasks.

SUCCESS No error
OUT_OF_RESOURCE Card Services is unable to obtain

resources to complete function
BAD_ATTRIBUTE Invalid window attributes

SUCCESS No error
BAD_ATTRIBUTE Invalid window attributes
BAD_HANDLE Invalid clientHandle value

C H A P T E R 8

PC Card Services

Miscellaneous Functions 171

CSResetCard 8

You can use the CSResetCard function to reset a PC card in a specified socket.

pascal OSErr CSResetCard(ResetCardPB *pb);

The parameter block associated with this function is as follows:

typedef struct ResetCardPB ResetCardPB;

struct ResetCardPB

{

UInt32 clientHandle; // → clientHandle returned by RegisterClient

UInt16 socket; // → socket number

UInt16 attributes; // not used

};

DESCRIPTION

Calling clients will receive RESET_COMPLETE messages regardless of whether or not
their socket event mask and global event mask have csResetEvent set.

DIVERGENCE FROM PCMCIA STANDARD

Card Services does not issue CARD_RESET in place of CARD_READY. If a client is issuing
a reset to a card, then it should know whether the card will generate a CARD_READY or
not. If the card transitions from BSY to RDY, then the client will also know that it
shouldn’t access the card until it receives the CARD_READY event.

RESULT CODES

CSValidateCIS 8

You can use the CSValidateCIS function to find out whether a socket has a valid CIS.

pascal OSErr CSValidateCIS(ValidateCISPB *pb);

SUCCESS No error
BAD_SOCKET Invalid socket number
NO_CARD No card in specified socket
BAD_HANDLE Invalid clientHandle value or clientHandle

does not match configuring clientHandle

C H A P T E R 8

PC Card Services

172 Miscellaneous Functions

The parameter block associated with this function is as follows:

typedef struct ValidateCISPB ValidateCISPB;

struct ValidateCISPB

{

UInt16 socket; // → socket number

UInt16 chains; // → whether link/null tuples should be included

};

DIVERGENCE FROM PCMCIA STANDARD

The PCMCIA standard specifies that a BAD_CIS result is to be returned by setting the
pb->chains element to 0. To accommodate cards that don’t have any tuples, Card
Services uses the result code to return BAD_CIS (if the CIS is bad). If SUCCESS is
returned, then the value in pb->chains reflects the number of valid tuples, with link
tuples not counted.

RESULT CODES

CSVendorSpecific 8

You can use the CSVendorSpecific function to perform certain elements that are
Mac OS specific.

pascal OSErr CSVendorSpecific(VendorSpecificPB *pb);

The parameter block associated with this function is as follows:

typedef struct VendorSpecificPB VendorSpecificPB;

struct VendorSpecificPB

{

UInt32 clientHandle; // → clientHandle returned by RegisterClient

UInt16 vsCode;

UInt16 socket;

UInt32 dataLen; // → length of buffer pointed to by vsDataPtr

UInt8 *vsDataPtr; // → Card Services version this client expects

};

// 'vsCode' field values

SUCCESS No error
BAD_SOCKET Invalid socket number
NO_CARD No card in specified socket
BAD_CIS Card Services has detected a bad CIS

C H A P T E R 8

PC Card Services

Miscellaneous Functions 173

enum

{

vsAppleReserved = 0x0000,

vsEjectCard = 0x0001,

vsGetCardInfo = 0x0002,

vsEnableSocketEvents = 0x0003,

vsGetCardLocationIcon = 0x0004,

vsGetCardLocationText = 0x0005,

vsGetAdapterInfo = 0x0006

};

DESCRIPTION

The CSVendorSpecific function is provided to allow Apple Computer to extend the
interface definition of Card Services for elements that are Mac OS specific. This function
requires two parameters, clientHandle and vsCode. For each vsCode there may be
additional parameters required. The following sections describe the additional
parameters required for each vsCode selector.

RESULT CODES

EjectCard Parameter Block 8

You can use vendor-specific call #1 to eject a card.

// vendor-specific call #1

The parameter block associated with this function is as follows:

typedef struct VendorSpecificPB VendorSpecificPB;

struct VendorSpecificPB

{

UInt32 clientHandle; // → clientHandle returned by RegisterClient

UInt16 vsCode; // → vsCode = 1

UInt16 socket; // → desired socket number to eject

UInt32 dataLen; // not used

UInt8 *vsDataPtr; // not used

};

SUCCESS No error
UNSUPPORTED_FUNCTION The vsCode value is invalid

C H A P T E R 8

PC Card Services

174 Miscellaneous Functions

DESCRIPTION

Clients must pass in their clientHandle value to eject cards that they have configured.
Clients may not be able to eject cards that they did not configure unless the card is
previously unconfigured.

RESULT CODES

GetCardInfo Parameter Block 8

You can use vendor-specific call #2 to get information about a card in a socket.

// vendor-specific call #2

The parameter block associated with this function is as follows:

typedef struct GetCardInfoPB GetCardInfoPB;

struct GetCardInfoPB

{

UInt8 cardType; // ← type of card in socket

// (defined at top of file)

UInt8 subType; // ← detailed card type (defined at top of file)

UInt16 reserved; // ↔ reserved (should be set to 0)

UInt16 cardNameLen; // → maximum length of card name to be returned

UInt16 vendorNameLen;// → max. length of vendor name to be returned

UInt8 *cardName; // → ptr to card name string (from CIS), or nil

UInt8 *vendorName; // → ptr to vendor name (from CIS), or nil

};

// GetCardInfo card types

#define csUnknownCardType 0

#define csMultiFunctionCardType 1

#define csMemoryCardType 2

#define csSerialPortCardType 3

#define csSerialOnlyType 0

#define csDataModemType 1

#define csFaxModemType 2

#define csFaxAndDataModemMask (csDataModemType | csFaxModemType)

#define csVoiceEncodingType 4

#define csParallelPortCardType 4

SUCCESS No error
BAD_SOCKET Invalid socket number
NO_CARD No card in specified socket
IN_USE Another client refused the ejection request

C H A P T E R 8

PC Card Services

Miscellaneous Functions 175

#define csFixedDiskCardType 5

#define csUnknownFixedDiskType 0

#define csATAInterface 1

#define csRotatingDevice (0<<7)

#define csSiliconDevice (1<<7)

#define csVideoAdaptorCardType 6

#define csNetworkAdaptorCardType 7

#define csAIMSCardType 8

#define csNumCardTypes 9

RESULT CODES

EnableSocketEvents Parameter Block 8

You can use vendor-specific call #3 to enable events on every socket in the system.

// vendor-specific call #3

The parameter block associated with this function is as follows:

typedef struct VendorSpecificPB VendorSpecificPB;

struct VendorSpecificPB

{

UInt32 clientHandle;// → clientHandle returned by RegisterClient

UInt16 vsCode; // → vsCode = 3

UInt16 socket; // not used

UInt32 dataLen; // not used

UInt8 *vsDataPtr; // not used

};

DESCRIPTION

Calling this function is like calling the CSRequestSocketMask function for every
socket in the system, using the global event mask as the starting socket event mask.

DIVERGENCE FROM PCMCIA STANDARD

This function is not in the PCMCIA specification. After reentrancy into a client is
available, calling this function to enable events is better than making repeated calls to the
RequestSocketMask function.

SUCCESS No error
BAD_SOCKET Invalid socket number
NO_CARD No card in specified socket

C H A P T E R 8

PC Card Services

176 Miscellaneous Functions

RESULT CODES

GetAdapterInfo Parameter Block 8

You can use vendor-specific call #6 to get information about an adapter that interfaces to
a specified socket.

// vendor-specific call #6

The parameter block associated with this function is as follows:

typedef struct VendorSpecificPB VendorSpecificPB;

struct VendorSpecificPB

{

UInt32 clientHandle; // → clientHandle returned by RegisterClient

UInt16 vsCode; // → vsCode = 6

UInt16 socket; // → socket number

UInt32 dataLen; // → length of GetAdapterInfoPB plus space for

// voltages

UInt8 *vsDataPtr; // → GetAdapterInfoPB * (supplied by client)

};

typedef struct GetAdapterInfoPB GetAdapterInfoPB;

struct GetAdapterInfoPB

{

UInt32 attributes; // ← capabilities of socket's adapter

UInt16 revision; // ← revision ID of adapter

UInt16 reserved; //

UInt16 numVoltEntries; // ← number of valid voltage values

UInt8 *voltages; // <-> array of BCD voltage values

};

// 'attributes' field values

enum

{

csLevelModeInterrupts = 0x00000001,

csPulseModeInterrupts = 0x00000002,

csProgrammableWindowAddr = 0x00000004,

csProgrammableWindowSize = 0x00000008,

csSocketSleepPower = 0x00000010,

SUCCESS No error
BAD_HANDLE Invalid clientHandle value

C H A P T E R 8

PC Card Services

PC Card Manager Constants 177

csSoftwareEject = 0x00000020,

csLockableSocket = 0x00000040,

csInUseIndicator = 0x00000080

};

DESCRIPTION

There are many instances where Socket Services API elements are not brought out to the
Card Services API but the elements are required for normal card operation. This call
allows clients to query the capabilities of an adapter that interfaces to a given socket.
This information may be used to improve the operation of a client with a given socket
and card.

RESULT CODES

CSRequestExclusive and CSReleaseExclusive 8

The functions CSRequestExclusive and CSReleaseExclusive are not not
supported by the Macintosh PowerBook Card Services software.

PC Card Manager Constants 8

This section lists all the constants used by the PC Card Manager.

// miscellaneous

#define CS_MAX_SOCKETS 32 // a long is used as a socket bitmap

enum

{

gestaltCardServicesAttr = 'pccd', // Card Services attributes

gestaltCardServicesPresent = 0 // if set, Card Services is

present

};

enum

{

_PCCardDispatch = 0xAAF0 // Card Services entry trap

};

SUCCESS No error
BAD_SOCKET Invalid socket number

C H A P T E R 8

PC Card Services

178 PC Card Manager Constants

/*

The PC Card Manager will migrate toward a complete Macintosh name

space very soon. Part of that process will be to reassign result codes

to a range reserved for the PC Card Manager. The range will be -9050 to

-9305 (decimal inclusive).

*/

// result codes

enum

{

SUCCESS = 0x00, // request succeeded

BAD_ADAPTER = 0x01, // invalid adapter number

BAD_ATTRIBUTE = 0x02, // attributes field value is invalid

BAD_BASE = 0x03, // base system memory address is invalid

BAD_EDC = 0x04, // EDC generator specified is invalid

RESERVED_5 = 0x05, // «reserved for historical purposes»

BAD_IRQ = 0x06, // specified IRQ level is invalid

BAD_OFFSET = 0x07, // PC card memory array offset is invalid

BAD_PAGE = 0x08, // specified page is invalid

READ_FAILURE = 0x09, // unable to complete read request

BAD_SIZE = 0x0A, // specified size is invalid

BAD_SOCKET = 0x0B,// specified physical socket number is invalid

RESERVED_C = 0x0C, // «reserved for historical purposes»

BAD_TYPE = 0x0D, // window or interface type is invalid

BAD_VCC = 0x0E, // Vcc power level index is invalid

BAD_VPP = 0x0F,// Vpp1 or Vpp2 power level index is invalid

RESERVED_10 = 0x10, // «reserved for historical purposes»

BAD_WINDOW = 0x11, // specified window is invalid

WRITE_FAILURE = 0x12, // unable to complete write request

RESERVED_13 = 0x13, // «reserved for historical purposes»

NO_CARD = 0x14, // no PC card in the socket

UNSUPPORTED_FUNCTION= 0x15,// not supported by this implementation

UNSUPPORTED_MODE = 0x16, // mode is not supported

BAD_SPEED = 0x17, // specified speed is unavailable

BUSY = 0x18, // unable to process request at this time

GENERAL_FAILURE = 0x19, // an undefined error has occurred

WRITE_PROTECTED = 0x1A, // media is write protected

BAD_ARG_LENGTH = 0x1B, // ArgLength argument is invalid

BAD_ARGS = 0x1C, // values in argument packet are invalid

CONFIGURATION_LOCKED= 0x1D,// a configuration has already been locked

IN_USE = 0x1E, // resource is being used by a client

NO_MORE_ITEMS = 0x1F, // there are no more of the requested item

OUT_OF_RESOURCE = 0x20, // Card Services has exhausted the resource

BAD_HANDLE = 0x21, // clientHandle value is invalid

BAD_CIS = 0x22 // CIS on card is invalid

};

C H A P T E R 8

PC Card Services

PC Card Manager Constants 179

// messages sent to client's event handler

enum

{

NULL_MESSAGE = 0x00, // no messages pending

// (not sent to clients)

CARD_INSERTION = 0x01, // card has been inserted into the socket

CARD_REMOVAL = 0x02, // card has been removed from the socket

CARD_LOCK = 0x03, // card is locked into the socket with

// a mechanical latch

CARD_UNLOCK = 0x04, // card is no longer locked into the socket

CARD_READY = 0x05, // card is ready to be accessed

CARD_RESET = 0x06, // physical reset has completed

INSERTION_REQUEST = 0x07, // request to insert a card using

// insertion motor

INSERTION_COMPLETE = 0x08, // insertion motor has finished

// inserting

// a card

EJECTION_REQUEST = 0x09, // user or other client is requesting a

// card ejection

EJECTION_FAILED = 0x0A, // eject failure due to electrical or

// mechanical problems

PM_RESUME = 0x0B, // power management resume (TBD)

PM_SUSPEND = 0x0C, // power management suspend (TBD)

EXCLUSIVE_REQUEST = 0x0D, // client is trying to obtain exclusive

// card access

EXCLUSIVE_COMPLETE = 0x0E, // indicates whether or not

// RequestExclusive succeeded

RESET_PHYSICAL = 0x0F, // physical reset is about to occur

RESET_REQUEST = 0x10, // client has requested physical reset

RESET_COMPLETE = 0x11, // ResetCard() background reset has

// completed

BATTERY_DEAD = 0x12, // battery is no longer usable;

// data will be lost

BATTERY_LOW = 0x13, // battery is weak and should

// be replaced

WRITE_PROTECT = 0x14, // card is now write protected

WRITE_ENABLED = 0x15, // card is now write enabled

ERASE_COMPLETE = 0x16, // queued background erase request

// has completed

CLIENT_INFO = 0x17, // client is to return

// client information

SS_UPDATED = 0x18, // AddSocketServices/ReplaceSocket

// services has changed SS support

FUNCTION_INTERRUPT = 0x19, // card function interrupt

C H A P T E R 8

PC Card Services

180 PC Card Manager Constants

ACCESS_ERROR = 0x1A, // client bus errored on access

// to socket

CARD_UNCONFIGURED = 0x1B, // a CARD_READY was delivered to all

// clients and no client requested

// a configuration for the socket

STATUS_CHANGED = 0x1C // status change for cards in I/O mode

};

181

ADB

See

Apple Desktop Bus.

APDA

Apple Computer’s worldwide direct
distribution channel for Apple and third-party
development tools and documentation products.

API

See

application programming interface.

Apple Desktop Bus (ADB)

An asynchronous
bus used to connect relatively slow user-input
devices to Apple computers.

AppleTalk

Apple Computer’s local area
networking protocol.

application programming interface (API)

The calls and data structures that allow
application software to use the features of the
operating system.

Baboon

The custom IC that provides the
interface to the expansion bay in an Omega
computer.

big-endian

Data formatting in which each field
is addressed by referring to its most significant
byte. See also

little-endian.

blit

Block transfer operations, often used in
graphics software (from the opcode BLT).

Card Services

The part of the Macintosh PC
Card Manager that provides system services for
control software in PCMCIA cards.

client

A device driver or application program
that uses the Card Services software.

codec

A digital encoder and decoder.

color depth

The number of bits required to
encode the color of each pixel in a display.

Combo

The custom IC that supports the serial
I/O port and the external SCSI devices in an
Omega computer.

DAC

See

digital-to-analog converter.

data burst

Multiple longwords of data sent
over a bus in a single, uninterrupted stream.

digital-to-analog converter (DAC)

A device
that produces an analog electrical signal in
response to digital data.

direct memory access (DMA)

A process for
transferring data rapidly into or out of RAM
without passing it through a processor or buffer.

DLPI

Data Link Provider Interface, the
standard networking model used in Open
Transport.

DMA

See

direct memory access.

DRAM

See

dynamic random-access memory.

dynamic random-access memory (DRAM)

Random-access memory in which each storage
address must be periodically interrogated
(“refreshed”) to maintain its value.

ECSC

The enhanced

color support chip, a
custom IC that provides the data and control
interface to the flat panel display.

Ethernet

A high-speed local area network
technology that includes both cable standards
and a series of communications protocols.

GCR

See

group code recording.

global client queue

The first-in, first-out queue
where the Card Services software keeps
information about all its clients.

group code recording (GCR)

An Apple
recording format for floppy disks.

input/output (I/O)

Parts of a computer system
that transfer data to or from peripheral devices.

I/O

See

input/output.

little-endian

Data formatting in which each
field is addressed by referring to its least
significant byte. See also

big-endian.

LocalTalk

The cable terminations and other
hardware that Apple supplies for local area
networking from Macintosh serial ports.

Glossary

Thi d t t d ith F M k 4 0 4

G L O S S A R Y

182

Macintosh PC Exchange

An application that
runs on Macintosh computers and reads other
floppy disk formats, including DOS and ProDOS.

mini-DIN

An international standard form of
cable connector for peripheral devices.

nonvolatile RAM

RAM that retains its contents
even when the computer is turned off; also
known as parameter RAM.

NuBus

A bus architecture in Apple computers
that supports plug-in expansion cards.

PC card

An expansion card that conforms to
the PCMCIA standard.

PC Card Manager

The part of Mac OS that
supports PC cards in Macintosh PowerBook
computers.

PCMCIA standard

An industry standard for
computer expansion cards.

pixel

Contraction of

picture element

; the smallest
dot that can be drawn on a display.

Power Manager IC

A 68HC05 microprocessor
that provides several utility functions in the
Omega computer, including ADB support, power
control, and keyboard scanning.

Pratt

The custom IC that provides memory
control and also acts as the bridge between the
microprocessor bus on the secondary logic board
and the I/O bus on the main logic board.

SCC

See

Serial Communications Controller.

SCSI

See

Small Computer System Interface.

Serial Communications Controller (SCC)

Circuitry on the Curio IC that provides an
interface to the serial data ports.

Small Computer System Interface (SCSI)

An industry standard parallel bus protocol for
connecting computers to peripheral devices such
as hard disk drives.

socket

The hardware receptacle into which a
PC Card is inserted.

Socket Services

The layer of software that is
responsible for communication between Card
Services and the socket controller hardware.

TREX

The custom IC that provides the
interface and control signals for the PCMCIA
slots in the Omega computer.

tuple

 A parsable data group containing
configuration information for a PCMCIA card.

Versatile Interface Adapter (VIA)

The interface
for system interrupts that is standard on most
Apple computers.

VIA

See

Versatile Interface Adapter

.

video RAM (VRAM)

Random-access memory
used to store both static graphics and video
frames.

VRAM

See

video RAM

.

183

Index

Numerals

68HC05 microprocessor 13

A

AC adapter 6
access to internal components 24
access windows 164
active matrix display 25
ADB connector 28
ADB port 28
appearance 3
Apple Desktop Bus.

See

 ADB
Ariel CLUT-DAC IC 15

ATA_Abort

 function 105

ATA_BusInquiry

 function 106
ATA disk driver 81, 83–98

control functions 86–93
Control routine 84
Device Manager routines 84–85

driverGestalt

 parameter block 94
status functions 93–98
Status routine 85

ATA disk driver functions

clear partition mounting

90

clear partition write protect

91

driver gestalt

94

drive status

94

eject

87

format

86

get a drive

92

get boot partition

96

get drive icon

87

get drive information

88

get media icon

88

get partition information

97

get partition mount status

96

get partition write protect status

97

get power mode

98

mount volume

92

register partition

91

set partition mounting

89

set partition write protect

90

set power mode

93

set startup partition

89

verify

86

ATA_DrvrDeregister

 function 108

ATA_DrvrRegister

 function 109

ATA_EjectDrive

 function 112

ATA_ExecIO

 function 113

ATA_FindRefNum

 function 116

ATA_GetDevConfig

 function 117

ATA_GetDevLocationIcon

 function 120
ATA hard disk drives, compared with SCSI drives 81

ATA_Identify

 function 121
ATA/IDE specification 80
ATA interface 18
ATA Manager 98–139

making calls to 99
purpose of 81, 83

ATA Manager functions

ATA_Abort

105

ATA_BusInquiry

106

ATA_DrvrDeregister

108

ATA_DrvrRegister

109

ATA_EjectDrive

112

ATA_ExecIO

113

ATA_FindRefNum

116

ATA_GetDevConfig

117

ATA_GetDevLocationIcon

120

ATA_Identify

121

ATA_MgrInquiry

122

ATA_NOP

124

ATA_QRelease

125

ATA_RegAccess

125

ATA_ResetBus

129

ATA_SetDevConfig

130

ATA_MgrInquiry

 function 122

ATA_NOP

 function 124
ATA parameter block header 99

ataPBHdr

 structure 99–104

ATA_QRelease

 function 125

ATA_RegAccess

 function 125

ATA_ResetBus

 function 129

ATA_SetDevConfig

 function 130
ATA software

ATA disk driver 81
ATA Manager 83
error codes 139

Thi d t t d ith F M k 4 0 4

I N D E X

184

B

Baboon custom IC 14
back view 5
batteries 5, 6

C

Card Services software 144–180
access window functions

CSModifyWindow

166

CSReleaseWindow

167

CSRequestWindow

164
client information functions

CSGetClientInfo

146

CSGetFirstClient

144

CSGetNextClient

145
client registration functions

CSDeregisterClient

170

CSGetCardServicesInfo

168

CSRegisterClient

169
clients 144
configuration functions

CSAccessConfigurationRegister

154

CSGetConfigurationInfo

149

CSModifyConfiguration

152

CSReleaseConfiguration

153

CSRequestConfiguration

151
gestalt constant 177
masking functions
CSGetClientEventMask 155
CSReleaseSocketMask 158
CSRequestSocketMask 158
CSSetClientEventMask 157

messages 179
miscellaneous functions
CSResetCard 171
CSValidateCIS 171
CSVendorSpecific 172

result codes 178
status function, CSGetStatus 163
tuples functions
CSGetFirstTuple 159
CSGetNextTuple 160
CSGetTupleData 162

unsupported functions
CSReleaseExclusive 177
CSRequestExclusive 177

vendor-specific calls
EjectCard 173
EnableSocketEvents 175
GetAdapterInfo 176
GetCardInfo 174

clear partition mounting function 90

clear partition write protect function 91
clients, registration of 168
Combo custom IC 13
compatibility 6

sound sample rates 7
configurations 5
connectors

ADB 28
expansion bay 33
external video 50, 51
hard disk 21
RAM expansion 39, 42
RAM expansion card 47
SCSI 26
serial port 25
video 50

control functions, of the ATA disk driver 86–93
Control routine 84
CSAccessConfigurationRegister function 154
CSC custom IC 14, 24
CSDeregisterClient function 170
CSGetCardServicesInfo function 168
CSGetClientEventMask function 155
CSGetClientInfo function 146
CSGetConfigurationInfo function 149
CSGetFirstClient function 144
CSGetFirstTuple function 159
CSGetNextClient function 145
CSGetNextTuple function 160
CSGetStatus function 163
CSGetTupleData function 162
CSModifyConfiguration function 152
CSModifyWindow function 166
CSRegisterClient function 169
CSReleaseConfiguration function 153
CSReleaseExclusive function 177
CSReleaseSocketMask function 158
CSReleaseWindow function 167
CSRequestConfiguration function 151
CSRequestExclusive function 177
CSRequestSocketMask function 158
CSRequestWindow function 164
CSResetCard function 171
CSSetClientEventMask function 157
CSValidateCIS function 171
CSVendorSpecific function 172
custom ICs

Ariel 15
Baboon 14
Combo 13
CSC 14, 24
Keystone 15
Pratt 10, 11
Singer 13, 29
TREX 15
Whitney 12

I N D E X

185

D

Device Manager 73
display controller IC 14
Display Manager 68
displays

active matrix 24, 25
backlighting 24
dual mode 49
DualScan 25
external video monitors 48, 49

adapter cable 50
flat panel types 24
FSTN 25
mirror mode 7, 49
NuBus card emulation 24
number of colors 7, 25
passive matrix 24
supertwist 24, 25
TFT 25

driver gestalt function 94
driverGestalt parameter block 94
Drive Setup, modifications to 68
drive status function 94
dual mode 49
DualScan display 25

E

EjectCard vendor-specific call 173
eject function 87
EnableSocketEvents vendor-specific call 175
error codes 139
Ethernet driver 64
event mask 155
expansion bay 32–38

device installation 38
expansion bay connector 33–37

signal assignments 34
signal definitions 35–37

expansion bay controller IC 14
external video port 49

F

features summary 2
Finder modifications for large volume support 67, 70
flat panel displays 24
format function 86
FPU (floating-point unit) 11
front view 4
function-key software 64

G

Gestalt function 75
gestaltMachineType value 62
GetAdapterInfo vendor-specific call 176
get a drive function 92
get boot partition function 96
GetCardInfo vendor-specific call 174
get drive icon function 87
get drive information function 88
get media icon function 88
get partition information function 97
get partition mount status function 96
get partition write protect status

function 97
get power mode function 98

H

hard disk 18
dimensions 18
IDE data bus 21

hard disk capacity 5
hard disk connector 21

pin assignments on 21
signals on 22

HDI-30 connector 26
HFS volume format 70

I, J

IDE disk interface 18
IDE hard disk 18

connector 20
data bus 21
dimensions 18
signals 22

identifying the computers 62
IDE specification 80
infrared module 29
input/output subsystem 10

MC68030 bus 11
I/O ports

SCSI 26
serial 25
video 49, 50

I N D E X

186

K

keyboards 23
function keys 64
ISO layout 24
removing 24
United States layout 23

Keystone video timing IC 15

L

large partition support 66
large volume support 66, 70

allocation blocks 70
extended API 66
extended data structures 71
extended parameter block 71, 73
limitations 67
maximum file size 71
modified applications 67
requirements 71

M, N, O

MC68040 microprocessor 11
MC68LC040 microprocessor 11
memory controller software 63
memory expansion 6, 11
microprocessor

clock speed 11
type 11

mirror mode 7, 49
monitor sense codes 51
mount volume function 92

P

PBXGetVolInfo function 75
PC cards 57, 144

Finder extension for 57
software eject 57

PCMCIA cards. See PC cards
PCMCIA slots 15, 57–59

access windows 58
data access modes 58
features 57
power 59
signal definitions 58
specifications 58–59

peripheral devices 6
peripheral support IC 12
pointing device 23
Power Manager IC 13

trackpad registers in 65
Power Manager software 63

data structures 7
unsafe assumptions 8

Pratt custom IC, as bus bridge 12
Pratt memory controller 11
processor clock speed 5
processor/memory subsystem 10, 11

Q

QuickDraw acceleration API 68

R

RAM
expansion 39–47

addressing 43
DRAM devices 44
RAM banks 44
signals 39, 42

expansion card 11
refresh 12
size of 5

RAM expansion 6
RAM expansion card 39–47

connector 47
dimensions 46
DRAM devices 44
electrical limits 45
mechanical design of 46–47
RAM banks 44

reference documents xii
register partition function 91
ROM

address range 11
implementation of 11
software features 62

ROM software features 62

S

SCC IC 13
SCSI controller IC 13
SCSI port 26

I N D E X

187

secondary logic board 11
serial port 25
set partition mounting function 89
set partition write protect function 90
set power mode function 93
set startup partition function 89
Singer custom IC 13
Singer sound IC 29
68HC05 microprocessor 13
socket mask 155
sound circuits 29
sound features 63
sound IC 29
sound sample rates 7
status functions 93–98
Status routine 85
Supertwist display 25
System 7.5 66

T, U

TFT display 25
trackball 23
trackpad 23

software support for 65
TREX custom IC 15
tuple information 83, 159

V

VCB allocation block size 70
verify function 86
video adapter cable 50
video card 15, 48–57
video connector 50
video controller IC 15
video mirror mode 7, 49
video modes

dual 49
mirror 7, 49

video monitors 48, 49
adapter cable for 50
sense codes 51
VGA and SVGA 51

video output IC 15
video port 49

W

Whitney custom IC 12

X, Y, Z

XIOParam data structure 73
XVolumeParam parameter block 71

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages and final pages were created
on an Apple LaserWriter Pro printer.
Line art was created using
Adobe Illustrator

 and
Adobe Photoshop

. PostScript

, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino

 and display type is
Helvetica

. Bullets are ITC Zapf
Dingbats

. Some elements, such as
program listings, are set in Apple Courier.

WRITER

Allen Watson

DEVELOPMENTAL EDITORS

Wendy Krafft, Beverly Zegarski

ILLUSTRATOR

Sandee Karr

PRODUCTION EDITOR

Rex Wolf

Thi d t t d ith F M k 4 0 4

	Macintosh PowerBook 190 Computer
	Contents
	Figures and Tables
	About This Developer Note
	Contents of This Note
	Supplemental Reference Documents
	Apple Publications
	Other Publications

	Conventions and Abbreviations
	Typographical Conventions
	Standard Abbreviations

	Introduction
	Features
	Appearance
	Configurations
	Peripheral Devices
	Compatibility Issues
	RAM Expansion Cards
	Number of Colors
	Video Mirror Mode
	Sound Sample Rates
	Power Manager Interface

	Architecture
	Processor/Memory Subsystem
	Microprocessor
	RAM
	ROM
	Pratt Memory Controller IC

	Input/Output Subsystem
	Whitney Peripheral Support IC
	Combo IC
	Singer IC
	Power Manager IC
	Display Controller IC
	Baboon Custom IC
	TREX Custom IC

	Video Card
	Keystone Video Controller IC
	Ariel Video Output IC

	I/O Features
	Internal Hard Disk Drive
	Hard Disk Specifications
	Hard Disk Connectors

	Trackpad
	Keyboard
	Flat Panel Displays
	Flat Panel Display Circuitry
	Number of Colors

	Serial Port
	SCSI Port
	ADB Port
	Infrared Module
	Sound System
	Sound Inputs
	Sound Outputs

	Expansion Modules
	Expansion Bay
	Expansion Bay Design
	Expansion Bay Connector
	User Installation of an Expansion Bay Device

	RAM Expansion
	Electrical Design Guidelines for the RAM Expansion Card
	Mechanical Design of the RAM Expansion Card

	Video Card
	The Apple Video Card
	Video Card Design Guide

	PCMCIA Slot
	PCMCIA Features
	Summary Specifications

	Software Features
	ROM Software
	Machine Identification
	Memory Controller Software
	Power Manager Software
	Display Controller Software
	Sound Features
	ATA Storage Devices
	IDE Disk Mode
	Ethernet Driver
	Support for Function Keys
	Smart Battery Support
	Trackpad Support

	System Software
	Control Strip
	Support for ATA Devices
	Large Partition Support
	Drive Setup
	Improved File Sharing
	Math Library
	QuickDraw Acceleration API
	Display Manager

	Large Volume Support
	Overview of the Large Volume File System
	API Changes
	Allocation Block Size
	File Size Limits
	Compatibility Requirements

	The API Modifications
	Data Structures
	New Extended Function

	Software for ATA Devices
	Introduction to the ATA Software
	ATA Disk Driver
	ATA Manager

	ATA Disk Driver Reference
	Standard Device Routines
	Control Functions
	Status Functions

	ATA Manager Reference
	The ATA Parameter Block
	Functions

	Using the ATA Manager With Drivers
	Notification of Device Events
	Device Driver Loading
	Device Driver Purging
	Setting the I/O Speed

	Error Code Summary

	PC Card Services
	Client Information
	Configuration
	Masks
	Tuples
	Card and Socket Status
	Access Window Management
	Client Registration
	Miscellaneous Functions
	PC Card Manager Constants

	Glossary
	Index

