
Developer Note

May 1994
Developer Press
© Apple Computer, Inc. 1994

Developer Note

PowerBook Duo 280 and 280c
Computers

Apple Computer, Inc.
© 1994, Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.
The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, LaserWriter,
Macintosh, Macintosh Quadra, and
PowerBook are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.
Apple Desktop Bus, Finder, PowerBook
Duo, and QuickDraw are trademarks of
Apple Computer, Inc.
Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.
America Online is a service mark of
Quantum Computer Services, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
Internet is a trademark of Digital
Equipment Corporation.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Motorola is a registered trademark of
Motorola Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, APDA will replace
the media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Figures and Tables v

Preface About This Note vii

Contents of This Note vii
Supplementary Documents vii
Conventions and Abbreviations viii

Typographical Conventions viii
Abbreviations ix

Chapter 1 Introduction 1

Features 2
Configurations 3
Accessory Devices 4
Compatibility Issues 4

Number of Colors 4
Power Manager Interface 4
RAM Expansion 5
MacsBug Version 6.2.2 5
The PDS and the MC68030 Bus 5

Chapter 2 Hardware Features 7

Changes on the Main Logic Board 8
MC68LC040 Microprocessor 9
Bus Translator IC 10
Color Screen Controller IC 11
DRAM Locations 11
VRAM Locations 11

Displays 11
Grayscale Display 12
Color Display 12

240 MB Hard Disk Drive 13
Environmental Specifications 13
Installation 14
Hard Disk Interface 17

SCSI Connector 17
Terminator 19

Power Requirements 20
iii

Inverter/Speaker Board 20
Clamshell Case 21

Chapter 3 Software Features 23

ROM Software 24
MC68LC040 Microprocessor 24
Display Driver 24

Grayscale Display 25
8-Bit Color 25
16-Bit Color 26

Support for Extended DRAM 26
Extended Power Management Capabilities 26
Network Support 26

System Software 27
Identifying the PowerBook Duo 280 and 280c Computers 27
Control Strip 27
Control Panels 28

PowerBook Setup Control Panel 28
PowerBook Control Panel 29
Control Strip Control Panel 31

Adding Control Strip Modules 31
Contents of Module Files 32
Module Interface 32

Module Reentrancy 33
Control Strip Module Reference 33

Control Strip Module Messages 34
Utility Routines 38
Gestalt Selectors 44

Chapter 4 Power Manager Interface 45

About the Power Manager Interface 46
Things That May Change 46
Checking for Routines 47
Power Manager Interface Routines 47
Header File for Power Manager Dispatch 67

Appendix Color Lookup Table 75

Index 85
iv

Figures and Tables

Chapter 1 Introduction 1

Table 1-1 Models and configurations 3

Chapter 2 Hardware Features 7

Figure 2-1 Main logic board 8
Figure 2-2 Block diagram 9
Figure 2-3 Hard disk drive installation 15
Figure 2-4 Bracket for the hard disk drive 16
Figure 2-5 Connector for the hard disk drive 17
Figure 2-6 The computer in open position 21

Table 2-1 Environmental specifications for 240 MB hard disk drive 14
Table 2-2 Signal assignments on the hard disk drive connector 18
Table 2-3 Signal assignments on the SCSI ID connector 19
Table 2-4 SCSI ID encoding 19
Table 2-5 Hard disk power requirements 20

Chapter 3 Software Features 23

Figure 3-1 Color lookup table 25
Figure 3-2 Control strip 27
Figure 3-3 PowerBook Setup control panel 29
Figure 3-4 PowerBook control panel in easy mode 30
Figure 3-5 PowerBook control panel in custom mode 30
Figure 3-6 Control Strip control panel 31
Figure 3-7 Positioning a bar graph 43
Figure 3-8 Direction of a bar graph 43

Chapter 4 Power Manager Interface 45

Table 4-1 Interface routines and their selector values 48

Appendix Color Lookup Table 75

Table A-1 Color lookup table 75
v

P R E F A C E

About This Note

This developer note describes the PowerBook Duo 280 and PowerBook
Duo 280c computers, emphasizing the features that are new or different from
those of the original PowerBook Duo computers. This developer note is a
supplement to the Macintosh PowerBook Duo Developer Note, described in the
section “Supplementary Documents,” later in this preface.

This note provides the hardware or software developer with the information
needed to design hardware and software elements for the PowerBook
Duo 280 and 280c computers. The note is intended to help experienced
Macintosh hardware and software developers design compatible products.
If you are unfamiliar with Macintosh computers or would simply like
more technical information, you may wish to read the related technical
manuals listed in the section “Supplementary Documents.”

Contents of This Note 0

This developer note contains four chapters and an appendix:

■ Chapter 1, “Introduction,” describes the PowerBook Duo 280 and
PowerBook Duo 280c computers and compares them with other
PowerBook Duo models.

■ Chapter 2, “Hardware Features,” describes the hardware features that are
specific to the PowerBook Duo 280 and 280c computers.

■ Chapter 3, “Software Features,” describes the software features that are
specific to the PowerBook Duo 280 and 280c computers.

■ Chapter 4, “Power Manager Interface,” describes the individual calls in the
application programming interface for the Power Manager software.

■ The Appendix, “Color Lookup Table,” describes the color lookup table
used with the built-in color display.

The chapters and appendix are followed by an index.

Supplementary Documents 0

To supplement the information in this developer note, developers should
have copies of the appropriate Motorola reference books for the MC68040
microprocessor. Software developers should have a copy of Motorola’s
MC68040 Programmer’s Reference Manual. Hardware developers should
have copies of Motorola’s MC68040 User’s Manual and MC68040 Designer’s
Handbook.
vii

P R E F A C E

Developers should also have copies of the appropriate Apple reference books,
including Inside Macintosh: Overview; Inside Macintosh: Processes; Guide to the
Macintosh Family Hardware, second edition; and Designing Cards and Drivers
for the Macintosh Family, third edition. These Apple books are available in
technical bookstores and through APDA.

For information about the original Macintosh PowerBook Duo computers,
developers should have a copy of the Macintosh PowerBook Duo Developer Note,
available on Apple’s Developer CD Series as well as through APDA (order
Macintosh Developer Notes, Number 2, APDA publication number R0457LL/A).

APDA is Apple’s worldwide source for over three hundred development
tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Customers receive
the quarterly APDA Tools Catalog featuring all current versions of Apple
development tools and the most popular third-party development tools.
Ordering is easy; there are no membership fees, and application forms are not
required for most of our products. APDA offers convenient payment and
shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Conventions and Abbreviations 0

This developer note uses the following typographical conventions and
abbreviations.

Typographical Conventions 0
Computer-language text—any text that is literally the same as it appears in
computer input or output—appears in Courier font.

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com
viii

P R E F A C E

Hexadecimal numbers are preceded by a dollar sign ($). For example, the
hexadecimal equivalent of decimal 16 is written as $10.

A slash in front of a signal name (/RESET) indicates an active low signal.

Note
A note like this contains information that is of interest but is not
essential for an understanding of the text. ◆

IMPORTANT

A note like this contains information that is essential to an
understanding of the text or of the PowerBook Duo 280 and 280c
computers. ▲

▲ W A R N I N G

A note like this directs your attention to something that could cause
injury to staff, damage to equipment, or loss of data. ▲

Abbreviations 0
Standard units of measure used in this note include

Other abbreviations used in this note include

K 1024 mm millimeters

KB kilobytes ms milliseconds

mA milliamperes ns nanoseconds

MB megabytes V volts

MHz megahertz VRMS volts root-mean-square

$n hexadecimal value n

AC alternating current

ADB Apple Desktop Bus

API application programming interface

C capacitance

CAS column address strobe (a memory control signal)

CCFL cold cathode fluorescent lamp

CLUT color lookup table

CPU central processing unit (the main microprocessor)

Sidebar

about a related subject or technical details that are not
required reading.

A sidebar is used for information that is not part of the
main discussion. A sidebar may contain information
ix

P R E F A C E

When unusual abbreviations appear in this developer note, the corresponding
terms are spelled out. Standard units of measure and other widely used
abbreviations are not spelled out.

CRT cathode ray tube (video display device)

CSC color screen controller (a custom IC)

CTB Communications Toolbox

DC direct current

DRAM dynamic RAM

ECC error checking and correction

FPU floating-point unit

FSTN film supertwist nematic (a type of LCD)

GSC grayscale controller

IC integrated circuit

I/O input/output

LCD liquid crystal display

LED light-emitting diode

MBT microprocessor bus translator (a custom IC)

MMU memory management unit

MSC main system controller (a custom IC)

NiCad nickel cadmium

NiMH nickel metal hydride

PDS processor-direct slot

PRAM parameter RAM (non-volatile RAM)

RAM random-access memory

ROM read-only memory

SCC Serial Communications Controller

SCSI Small Computer System Interface

SIMM Single Inline Memory Module

TFT thin-film transistor (a type of LCD)

VRAM video RAM
x

C H A P T E R 1

Figure 1-0
Listing 1-0
Table 1-0
Introduction 1

C H A P T E R 1

Introduction

The Macintosh PowerBook Duo 280 and PowerBook Duo 280c computers are the first
of a new generation of PowerBook Duo computers using the powerful Motorola
MC68LC040 microprocessor. In addition to all the basic features of the PowerBook Duo
computer, the PowerBook Duo 280 and 280c computers also have certain new features
described in this developer note.

Note
Except for the MC68LC040 microprocessor and the modifications that
accompany it, the features of the PowerBook Duo 280 and 280c
computers are similar to those of the PowerBook Duo 250 and
PowerBook Duo 270c computers. ◆

Features 1

The following summary of features gives a general description of the PowerBook
Duo 280 and 280c computers. Those computers have several new features that
distinguish them from the original Macintosh Duo computers described in Macintosh
Developer Note Number 2. The new features are listed first and are described later in
this developer note.

■ new: a Motorola MC68LC040 microprocessor running at 66/33 MHz, described on
page 9 (see sidebar)

■ new: microprocessor bus translator (MBT), a custom IC that provides an MC68030 bus
for compatibility with existing docking modules

■ new: active matrix flat panel display, either grayscale or color, with backlight;
described beginning on page 11 (the same displays used in the PowerBook Duo 250
and Duo 270c.)

■ new: color screen controller (CSC) IC replaces the gray-scale controller; the CSC is
described on page 11

■ new: a 240 MB or a 320 MB hard disk, described on page 13

■ new: an inverter/speaker board compatible with both FSTN (film supertwist nematic)
and active matrix TFT color displays, described on page 20

■ new: enhanced system ROM, described beginning on page 24

■ new: software support for color video, described on page 24

■ new: software support for battery recharging, described on page 26

Two clock speeds

system bus clock of 33 MHz runs its internal processor
at 66 MHz.

The MC68LC040 uses two processor clocks: one for
the system bus and another, at twice the speed, for
its internal circuits. Thus, an MC68LC040 with a
2 Features

C H A P T E R 1

Introduction

■ main system controller (MSC): a custom IC that controls DRAM, ROM, built-in I/O,
sound, and some power-saving features

■ Power Manager IC: a custom microcontroller that provides intelligent power
management

■ 4 MB of RAM on the main logic board

■ 8 MB memory expansion card expands RAM capacity up to 12 MB; third-party
expansion card expands RAM up to 40 MB

■ 1 MB of ROM

■ Combo custom IC: includes the Serial Communications Controller (SCC) and Small
Computer System Interface (SCSI) controller

■ sound circuits: provide 8-bit monaural sound input and output

■ integral microphone and speakers

■ Express Modem: internal modem/fax card

■ keyboard: integral full-function keyboard with trackball

■ I/O ports: one 152-pin connector for expansion devices, one mini-DIN 8-pin serial
port, and one modem port

■ nickel metal hydride battery: 4.5 ampere-hour removable and rechargeable battery

Configurations 1

The PowerBook Duo 280 and 280c computers are available in two configurations each, as
shown in Table 1-1.

Table 1-1 Models and configurations

Model Display type Size of RAM
Size of
hard disk

Modem
included

PowerBook Duo 280 Grayscale,
active matrix

4 MB 200 MB No

PowerBook Duo 280 Grayscale,
active matrix

12 MB 200 MB Yes

PowerBook Duo 280 Grayscale,
active matrix

4 MB 240 MB No

PowerBook Duo 280 Grayscale,
active matrix

12 MB 240 MB Yes

PowerBook Duo 280c Color, active
matrix

4 MB 320 MB No

PowerBook Duo 280c Color, active
matrix

12 MB 320 MB Yes
Configurations 3

C H A P T E R 1

Introduction
Accessory Devices 1

In addition to the devices that are included with the PowerBook Duo 280 and 280c
computers, the following accessory devices are available:

■ The PowerBook Duo 8 MB Memory Expansion Kit expands the RAM in the
computers to 12 MB.

■ The PowerBook Duo Battery Type III is available separately as an additional or
replacement battery.

■ The Power Adapter II, the AC adapter that comes with the computers, is also
available separately.

All the other accessories for the PowerBook Duo family will work with the PowerBook
Duo 280 and 280c computers, including memory expansion, docking units, and modems.

Compatibility Issues 1

The PowerBook Duo 280 and 280c computers have several new features that distinguish
them from the first models in the PowerBook Duo family. This section highlights key
areas you should investigate in order to ensure that your hardware and software work
properly with these new computers.

Number of Colors 1
The controller circuitry for the flat panel display includes a 256-entry color lookup table
(CLUT) and is compatible with software that uses QuickDraw and the Palette Manager.
The controller supports a palette of 32,768 colors. However, due to the nature of color
LCD technology, some colors are dithered or exhibit noticeable flicker. Apple has
developed a new gamma table for the color displays that minimizes flicker and
optimizes the available colors. For the active matrix color display, the effective range
of the CLUT is about 4,000 colors.

Note
The color display on the PowerBook Duo 280c is similar
to the one on the PowerBook Duo 270c. ◆

See the section “Displays” beginning on page 11 for more information about the internal
display hardware and LCD screen.

Power Manager Interface 1
Starting with the PowerBook Duo 250 and 270c models and continuing with the
PowerBook Duo 280 and 280c, the system software includes interface routines for
program access to the functions of the Power Manager. Henceforth, developers should
4 Accessory Devices

C H A P T E R 1

Introduction
not depend on the Power Manager’s internal data structures being the same on different
PowerBook models. In particular, developers should beware of making any of the
following assumptions regarding different PowerBook models:

■ assuming that timeout values such as the hard disk spindown time reside at the same
locations in parameter RAM

■ assuming that the power cycling process works the same way or uses the same
parameters

■ assuming that direct commands to the Power Manager microcontroller are supported
on all models

For more information, see Chapter 4, “Power Manager Interface.”

RAM Expansion 1
In the PowerBook Duo 280 and 280c computers, the RAM expansion connector has
an additional signal, RAS(7) on pin 24, that provides addressing for up to 36 MB of
expansion RAM. A RAM expansion card for the newer machines also works in the older
machines, except that any RAM over 32 MB is ignored.

MacsBug Version 6.2.2 1
MacsBug version 6.2.2 does work on the PowerBook Duo 280 and 280c computers
because it assumes that all MC68040 microprocessors have built-in FPUs. That problem
is corrected in newer versions of MacsBug.

The PDS and the MC68030 Bus 1
Even though the PowerBook Duo 280 and 280c computers have MC68LC040 micro-
processors, they support processor-direct slot (PDS) cards designed for the MC68030
bus. The MBT custom IC provides the bus interface, as described in the section “Bus
Translator IC” on page 10. The MBT was designed to support the MC68030 bus, but
some subtle features are not supported. Here is a summary of the differences.

■ Late retry or late bus error operations are not supported. If a device asserts the /BERR
signal or /BERR and /HALT without other termination, those signals must conform
to the /DSACK timing. If a device asserts /BERR or /BERR and /HALT along with
/STERM, those signals must be valid on the same rising edge as /STERM.

■ A device should not assert the /HALT signal by itself; doing so does not halt the
processor.

■ When a device asserts the cache burst acknowledge signal, the device must perform a
burst of four longwords, wrapping addresses when necessary, unless it asserts the bus
error signal along with the /STERM signal.

■ A device must not assert retry after the initial cycle of a burst; the MBT and the
MC68LC040 interpret that condition as a bus error and abort the burst.
Compatibility Issues 5

C H A P T E R 1

Introduction
■ The MBT does not support burst cycles of one clock width. The fastest burst cycle
allowed consists of 2-2-2-2 clocks.

■ The MC68LC040 microprocessor and the MBT do not support the coprocessor
interface of the MC68030 microprocessor.

■ When the processor has the bus, the MBT drives the function code 0 signal high and
the function code 1 signal low, which designates all cycles as data space cycles.

■ The cache inhibit out signal on the PDS is low, preventing external caches.

■ Signals ECS, OCS, FC2, and DBEN are not provided; they have never been provided
on the PDS.

■ Interrupt acknowledge cycles are not present on the PDS.

■ Breakpoint acknowledge cycles are not present on the PDS.

Future models of the PowerBook Duo will continue to support the 152-pin PDS, but their
architecture may change such that some MC68030 modes may not be supported. The
following microprocessor modes may not be supported in future models.

■ The bus grant signal may not always be asserted within 3.5 clocks of the assertion of
the bus request signal even if /RMC is not asserted.

■ Ownership of the MC68030 bus extends to all other buses. Relinquish and retry opera-
tions will not be supported during dynamic bus sizing or while /RMC is asserted.

■ Burst mode from PDS space will not be possible; the computer will never assert the
cache burst request signal to the PDS.

■ Alternative bus masters will not receive a cache burst acknowledge when they read or
write to ROM or DRAM address space.
6 Compatibility Issues

C H A P T E R 2

Figure 2-0
Listing 2-0
Table 2-0
Hardware Features 2

C H A P T E R 2

Hardware Features
This chapter describes hardware features of the PowerBook Duo 280 and 280c computers
that make them different from the original Macintosh PowerBook Duo computers
described in Macintosh Developer Note Number 2. The new features include several
changes to the main logic board as well as changes to the display, the internal hard disk,
the inverter/speaker board, and the clamshell housing.

Changes on the Main Logic Board 2

The outline of the main logic board in the PowerBook Duo 280 and 280c computers is
identical to the outline of the main logic board in the original PowerBook Duo models.
However, there are several component changes, as described in the following section.
Figure 2-1 is a diagram of the main logic board, with the new components shaded.

The changes to the main logic board board are

■ replacement of the MC68030 microprocessor with the MC68LC040

■ addition of the MBT (microprocessor bus translator)

■ replacement of the GSC (grayscale controller) with the CSC (color screen controller)

Figure 2-1 Main logic board

DRAM
expansion
connector

Keyboard
connectors

Trackball
Backup
battery

Connectors

Modem
expansion
connector

Serial port
connector

Power
adapter

MSC
Combo

Transformer Transformer

DRAM

DFAC

152-pin main expansion connector

DRAM

DRAM

DRAM

V
R
A
M

Drawing not to scale
Components that are different from the Duo 270c

Power
Manager

Hard drive

CSC

PLL
clock

MBT ASIC
(bottom side)

ROM

Clamshell
(sleep)

Video
connector

Main
battery

MC68LC040
processor
8 Changes on the Main Logic Board

C H A P T E R 2

Hardware Features
■ rearrangement of the on-board DRAM

■ rearrangement of the on-board VRAM and ROM

Figure 2-2 is a block diagram showing the relationship of the microprocessor and the
MBT to the other ICs on the logic board.

Figure 2-2 Block diagram

MC68LC040 Microprocessor 2
The microprocessor used in the PowerBook Duo 280 and 280c computers is the
MC68LC040. The MC68LC040 includes a built-in MMU (memory management unit)
that performs the memory-mapping functions.

IMPORTANT

The MC68LC040 does not contain an FPU (floating-point unit).
There is no FPU upgrade for the PowerBook Duo 280 and 280c
computers and those computers cannot use the external FPU in
the Duo Dock and Duo Dock II. ▲

The MC68LC040 microprocessor runs at an internal clock rate that is double its external
clock rate. The MC68LC040 in the PowerBook Duo 280 and 280c computers has an
external clock rate of 33 MHz and an internal clock rate of 66 MHz.

BATT KBD TBALL MIC SPKR

DFAC

Power Manager

Expansion
RAM

2-36 MB

RAM
4 MB

Power
supply

SRAM
(32 KB)

Modem
(144DPL)

DAA

MSC II
(main system controller)

RJ-11

88921
PLL

MBT
(microprocessor
bus translator)

Combo
(SCC/SCSI)

ROM
(2 MB)

CSC
(LCD driver)

FPD SCSI

Port A

MC68LC040
(33 MHz)

PWR 152-pin PDS

VRAM
(512 KB)
Changes on the Main Logic Board 9

C H A P T E R 2

Hardware Features
The PowerBook Duo 280 and Duo 280c do not support external direct-mapped caches
and will not make use of the 32KB SRAM cache in the Duo Dock II.

Bus Translator IC 2
A custom IC called the MBT (microprocessor bus translator) provides the translation
necessary for the MC68LC040 to work with devices designed for the MC68030. The MBT
translates all MC68040 cycles except acknowledge cycles to MC68030 cycles.

Because the MC68LC040 does not support dynamic bus sizing as the MC68030 did, the
MBT generates the multiple MC68030 cycles needed to obtain longword data from byte
and word devices. For byte and word reads, the MC68LC040 obtains the data in the
appropriate byte lanes based on the low-order address lines. The MBT maps the MC68030
read data from the high byte lanes to the correct byte lanes. For write operations, the MBT
performs the byte smearing needed for byte and word operations.

The MBT handles retry requests without involving the MC68LC040. It also performs
relinquish and retry operations to prevent stalemate conditions that might arise with
alternate bus masters.

The MC68LC040 supports burst mode on both read and write operations. The MBT
supports burst-mode write operations to the first 64 MB of RAM because the MSC
acknowledges that address space and supports burst-mode writes. On the other hand,
the MC68030 did not support burst-mode writes, so devices designed for the MC68030
bus may not handle the /CBREQ signal on write operations. To avoid potential problems
with such devices, the MBT blocks burst writes to locations other than RAM.

Burst cycles must wrap to address four longwords. The MC68LC040 has one valid bit
per cache line and each cache line contains four longwords. The MC68LC040 looks at the
transfer burst inhibit signal at the first assertion of the transfer acknowledge signal to
determine whether the device indicates its ability to support a burst. If the transfer burst
inhibit signal is negated (high), the MC68LC040 requires the responding device either to
wrap the addresses around so that the entire four longwords in the cache line are filled
by the single operation or else to terminate early with a bus error.

On the MC68LC040, both the transfer acknowledge signal and the transfer error
acknowledge signal must be valid 10 ns before a rising clock edge. To avoid having the
MBT add an extra clock to every cycle, the corresponding signals on the MC68030 bus
must be valid on the previous rising edge. That means the MBT does not support late
retry or bus errors. If a device asserts the /BERR signal with /STERM, or /BERR and
/HALT with /STERM, those signals must meet the timing specification for /STERM
with respect to the rising clock edge. If a device asserts /BERR or /BERR and /HALT
by themselves or in combination with /DSACK, the signals must meet the timing
specification for /DSACK with respect to the falling clock edge. A device should not
assert the /HALT signal by itself; doing so does not terminate the cycle or halt
the MC68LC040.
10 Changes on the Main Logic Board

C H A P T E R 2

Hardware Features
Color Screen Controller IC 2
A custom IC called the color screen controller (CSC) replaces the grayscale controller
(GSC) used in the original PowerBook Duo. Figure 2-1 shows the location of the CSC on
the main logic board. The CSC can support either supertwist or active matrix displays, in
color or grayscale. The CSC operates in either of two display configurations: 640 by 480
and 640 by 400. It supports the following pixel depths:

■ 1 bit per pixel (black-and-white only)

■ 2 bits per pixel (4 colors or gray levels)

■ 4 bits per pixel (16 colors or gray levels)

■ 8 bits per pixel (256 colors or gray levels)

■ 16 bits per pixel (32K colors), with 640-by-400-pixel display

DRAM Locations 2
The main logic board in the PowerBook Duo 280 and 280c computers contains 8 DRAM
chips, which make up the 4 MB of onboard DRAM. Four of the DRAM chips are located
on the front of the main logic board, and four are located on the back of the board. This is
the same arrangement used in the PowerBook Duo 250 and 270 models.

The expansion RAM connector has one additional signal, RAS(7) on pin 24, that allows
the PowerBook Duo 280 and Duo 280c computers to address up to 36 MB of expansion
memory and gives them a total RAM capability of 40 MB. For information about the
expansion RAM connector, see pages 65–72 of Macintosh Developer Note Number 2.

VRAM Locations 2
The 512KB display buffer on the main logic board consists of 2 VRAM chips. One of the
VRAM chips is located on the front of the main logic board and one is located on the
back of the board.

Displays 2

The PowerBook Duo 280 computer has a grayscale display and the PowerBook Duo 280c
has a color display. Both are liquid-crystal flat panel displays using active-matrix TFT
(thin-film transistor) technology, and both have a built-in backlight using a CCFL (cold
cathode fluorescent) lamp.

The active matrix technology used in both displays provides a high contrast ratio (60:1)
and response time of approximately 60 milliseconds, for performance similar to a CRT
video display and with no cursor smearing or cursor submarining.
Displays 11

C H A P T E R 2

Hardware Features
Both displays normally display black characters on a white background, simulating the
appearance of a printed page. The next two sections describe the features of the two
types of displays.

Note
The grayscale display in the PowerBook Duo 280 computer is exactly
like the display in the PowerBook Duo 250; the color display in the
PowerBook Duo 280c computer is exactly like the display in the
PowerBook Duo 270c. ◆

Grayscale Display 2
The grayscale display in the PowerBook Duo 280 is an active matrix liquid crystal
display. It meets the same form factors as the basic PowerBook Duo display, so no
modifications are required to the computer housing. Each pixel in the grayscale display’s
640-by-400-pixel array is controlled by its corresponding transistor, for a total of 256,000
transistors.

Color Display 2
The color display in the PowerBook Duo 280c computer is an active matrix TFT color
display. It is 3.8 millimeters thicker than the grayscale display used in the original
PowerBook Duo, requiring the PowerBook Duo 280c computer’s case to be thicker than
that of the original PowerBook Duo. (See the section “Clamshell Case” on page 21.)

The color display can operate in either of two modes. In 8-bit mode the display has a
640-by-480-pixel area and can display up to 256 different colors at a time. In 16-bit mode
the display has a 640-by-400-pixel area and can display thousands of colors.

Note
The number of colors available in 16-bit mode is less than the theoretical
maximum due to the limitations in the color LCD technology. Many
color values exhibit noticeable flicker. The computer’s CLUT omits the
unsatisfactory colors, making about 4,000 available. See the Appendix,
“Color Lookup Table,” for more information. ◆

Types of Displays

give active matrix displays high contrast and fast
response time.

Passive matrix refers to a display technology that
does not have individual transistors. That technology
is also called FSTN, for film supertwist nematic,
sometimes shortened to just supertwist.

Flat-panel displays come in two types: TFT or active
matrix, and FSTN or passive matrix. The displays in
the PowerBook Duo 280 and 280c computers are the
active matrix type.

Active matrix displays, also called thin-film
transistor (TFT) displays, have a driving transistor
for each individual pixel. The driving transistors
12 Displays

C H A P T E R 2

Hardware Features
The user can select either color display mode by means of the Monitors control panel.
Because the VRAM is a fixed size, 256K by 16 bits, it can handle only a certain amount of
data. When the user selects 16-bit mode, the system software resizes the display area
down to 400 lines instead of 480 and centers the display area on the screen, leaving black
bands of 40 lines each at the top and bottom of the screen.

240 MB Hard Disk Drive 2

This section describes the 240 MB hard disk drive. It includes the following information
about the drive:

■ environmental specifications

■ housing requirements

■ interface requirements

Note
The physical requirements for the 320 MB drive
are the same as for the 240 MB drive. ◆

Environmental Specifications 2
Table 2-1 on page 14 provides a summary of the environmental specifications for the 240
MB hard disk drive.

Smearing and Submarining

When the cursor is moving rapidly, the pixels may
not have time to respond to a newly-drawn cursor
before the cursor moves to another position. In that
case, the cursor seems to disappear behind the screen,
an effect known as submarining.

The displays on the PowerBook Duo 280 and 280c
do not have these anomalies.

Older types of flat-panel dislpays have much slower
response times than the active matrix displays used
in the PowerBook Duo 280 and 280c. On those older
displays, the pixels showing the cursor in one position
do not clear quickly when the cursor moves to another
position; as a result, the cursor appears smeared out
in the direction of motion.
240 MB Hard Disk Drive
 13

C H A P T E R 2

Hardware Features
Installation 2
The PowerBook Duo 280 and 280c computers accommodate either a 240 MB or a 320 MB
hard disk drive. Figure 2-3 shows the dimensions of the 240 MB hard disk. The height of
the disk drive is critical, and must not exceed 19 mm (0.75 inches.)

The drive may be installed by means of holes in either the side or the bottom of the disk
drive housing. A bracket, shown in Figure 2-4, is attached to the side of the hard disk
and holds it in place in the PowerBook Duo 280 and 280c computers.

Table 2-1 Environmental specifications for 240 MB hard disk drive

Category Condition Specification

Temperature of ambient air
inside a low-airflow thermal
chamber, noncondensing

Operating limits

Nonoperating
and storage

5 to 55° C

–40 to 60° C

Temperature rate of change Operating

Nonoperating

20° C per hour

Below rate causing
condensation

Relative humidity Operating

Nonoperating

10 to 90%, noncondensing,
maximum wet bulb 20° C

Noncondensing,
maximum wet bulb 35° C

Altitude Operating

Shipping

–200 to 15,000 feet

–200 to 15,000 feet
14 240 MB Hard Disk Drive

C H A P T E R 2

Hardware Features
Figure 2-3 Hard disk drive installation

4.000" (101.60 mm) maximum

1.375" ± .015"
(34.93 ± 0.38 mm)

1.500"
(38.10 mm)

2.430"

2.759"

Bottom mounting holes
M 3.0 (4x)

0.079" (2.00 mm)
Connector envelope0.387" ± 0.012"

(9.83 ± 0.30 mm)
Connector position

40-pin J1
SCSI

CL

Bottom view (PCB side)

Side mounting holes
M 3.0 (4x)

Side view

1.375" ± .015"
(34.93 ± 0.38 mm)

1.500"
(38.10 mm)

0.750"
(19.05 mm)
maximum

0.118" (3.00 mm)
0.00

End view

1
2

8-pin J2
Pin 1

Vacant row in
50-pin connector

Pin 1

Position 17
(key)

PCB
connector

PCB
controller

Note:
1. Tolerances (unless otherwise noted): .XX = +/–0.25 mm (.XXX = +/– .010 inches).

Key:
Connector position from edge of drive to center line of first connector pin (39).

Connector envelope does not include flex cable or mating receptacle. Connector pins
are to be flush with drive envelope dimensions.

1

2

(70.01 mm)

(61.72 mm)
240 MB Hard Disk Drive 15

C H A P T E R 2

Hardware Features
Figure 2-4 Bracket for the hard disk drive

2.874"
(73.00 mm)

0.299"
(7.60 mm)

2x 0.079"
(2.00 mm)

0.125"
(3.20 mm)

(1.60 mm)

0.188"
(4.795±0.125 mm)

0.549"

(13.95 mm)
1.5"

(38.10 mm)

0.082"
(2.10 mm)

0.165"
(4.20 mm)

2x R full 4x R
0.039"

(1.00 mm)
2x R 0.059"
(1.50 mm)

CL

1

3

0 0.125"
(3.200 mm)2

(8.60 mm)

(7.80 mm)

3x R 1.00 mm

2.598"
(66.00 mm)

1.299"
(33.00 mm)

3x 0.137"
(3.50 mm)
3x 0.275"

(7.00 mm)

0.137"
(3.50 mm)

3x 0.307"
(7.80 mm)

0.192"
(4.900±0.125 mm)

3x 0 0.118"
(3.00 mm)

6x R 0.059"
(1.50 mm)

3 Arrow indicates direction of
material grain.

This surface to be free of burrs
and sharp edges.

1. Interpret dimensions and tolerances per
 ANSI Y14.5M-1982

2. Material: CRS 1010-1020, 1.00 ± 0.05 mm (.0394 ± .0020 mm) thick.

3. Finish: Zinc preplate per Mil.Spec. QQ-Z-325a Class 3 (0.00020) type II.

1

Mark part number, rev level,
vendor I.D., and date code
with 0.19±0.06" high
permanent contrasting
characters.
Locate where shown.

4. Maximum burr allowance is 15% of material thickness.

5. Tooling required to make this part to be property of Apple Computer, Inc. and
 shall be permanently marked with Apple’s name and appropriate part number.

6. All dimensions apply after finish.

Notes:

Key

2

16 240 MB Hard Disk Drive

C H A P T E R 2

Hardware Features
Hard Disk Interface 2
This section describes the interface requirements for the 240 MB hard disk drive and
provides specifications and signal assignments for the SCSI connector.

The interface to the hard disk is an ANSC X3T9.2 SCSI interface. It implements the Apple
SCSI command protocol and diagnostic command set. Buffer size supports a 1:1
interleave. The drive supports the SCSI asynchronous information transfer. The transfer
rate is 1.5 MB per second (minimum). An embedded controller provides error recovery
algorithms, which include error check and correction (ECC), seek retry, head offset (for
open-loop systems), and defect management. The SCSI interface provides a SCSI ID that
can be detected by the hardware.

SCSI Connector 2

The disk drive connector comprises two segments, as shown in Figure 2-5. The first
segment has 40 pins, arranged in two rows. It transfers SCSI signals between the CPU
and the hard disk drive, and it also supplies power to the drive. The second segment of
the connector has 8 pins and provides the SCSI ID encoding.

Figure 2-5 Connector for the hard disk drive

Table 2-2 lists the interface signals for the 40-pin segment of the connector.

Pin 39 Pin 1

Pin 40 Pin 2

Pin 7 Pin 1

Pin 8 Pin 2

Key

SCSI commands and power SCSI ID
240 MB Hard Disk Drive 17

C H A P T E R 2

Hardware Features
Table 2-2 Signal assignments on the hard disk drive connector

Pin Signal name Description

1, 2 +5V LOGIC +5 V power supply

3, 4 LOGIC RET +5 V return

5, 7, 9, 11,
13, 15, 19,
21, 23, 27,
31, 35

GND Ground

6 /DB0 Data bus bit 0

8 /DB1 Data bus bit 1

10 /DB2 Data bus bit 2

12 /DB3 Data bus bit 3

14 /DB4 Data bus bit 4

16 /DB5 Data bus bit 5

17 KEY Not connected; used as connector key

18 /DB6 Data bus bit 6

20 /DB7 Data bus bit 7

22 /PARITY Data bus parity

24 TERM PWR Terminator power; pulls up termination resistors for
all signal lines

25 /ATN Attention indicator

26 /BSY Busy signal

28 /ACK Acknowledge (handshake signal); asserted in
response to a request for access (/REQ)

29 /RST SCSI bus reset

30 /MSG Message phase

32 /SEL SCSI select

33 /I/O Controls the direction of data movement: when this
signal is low, data is output from the disk drive; when
it is high, data is input

34 /C/D Indicates whether data or control signals are on the
SCSI bus: when this signal is low, data is on the bus;
when it is high, control signals are on the bus

36 /REQ Access request; the CPU asserts this signal to request
access to the hard disk

37, 38 MOTOR RET Return for +5 V power supply for motor

39, 40 +5V MOTOR +5 V power supply for the motor
18 240 MB Hard Disk Drive

C H A P T E R 2

Hardware Features
Table 2-3 lists and describes the interface signals for the 8-pin segment of the connector.

The internal hard disk is assigned a SCSI ID number (0-7). Pins 5-7 on the SCSI connector
are encoded and allow the CPU to select the appropriate device. Table 2-4 shows how
the SCSI ID signals are encoded.

Terminator 2

The hard disk has 1000-ohm termination resistors for all I/O signal lines. The lines are
pulled up through the resistors to the terminator power signal.

Table 2-3 Signal assignments on the SCSI ID connector

Pin Signal name Description

1, 2, 3,
4, 8

Unused These pins are not used and are not connected
electrically to the CPU

5 /ID1 SCSI ID 1

6 /ID2 SCSI ID 2

7 /ID4 SCSI ID 4

Table 2-4 SCSI ID encoding

SCSI ID ID1: pin 5 ID2: pin 6 ID4: pin 7

0 High High High

1 Low High High

2 High Low High

3 Low Low High

4 High High Low

5 Low High Low

6 High Low Low

7 Low Low Low
240 MB Hard Disk Drive 19

C H A P T E R 2

Hardware Features
Power Requirements 2
Power drawn by the hard disk signals in each operating mode must be less than or equal
to the values shown in Table 2-5. All measurements are under nominal environmental
and voltage conditions. The limits include 1000-ohm pull-up resistors on all signal lines.

Inverter/Speaker Board 2

The inverter/speaker board is located in the clamshell housing, directly under the
display. It is the interface between the main logic board and the display and performs
the following basic functions:

■ It converts the DC power supplied by the computer’s battery to the AC power
required to drive the cold cathode fluorescent lamp (CCFL) that provides the
backlighting for the active-matrix LCD display. Typical CCFL drive power is 400
VRMS (volts root mean square) at 3 mA, with maximum output of 2000 V peak
to peak at 6 mA.

■ It provides pass-through circuitry, both for the data and timing signals from the CSC
to the LCD display, and for the +5 V from the power supply.

■ It converts the DC voltage supplied by the computer’s battery to the voltage level
required for the LCD bias, which is typically +5 V at 200 mA.

▲ W A R N I N G

You should not open or modify any of the circuitry associated with the
inverter/speaker board. The flat-panel display is assembled into the
clamshell housing in a clean room environment. Opening up the
equipment in any other environment could cause damage to the unit.
The high voltage on the inverter/speaker board may pose a risk to
someone handling the board. The display is also susceptible to damage
from electrostatic discharge. ▲

Table 2-5 Hard disk power requirements

Mode

Current (amperes)

Mean Maximum

Startup* — 1.30

Random operation† 0.50 0.60

Idle 0.30 0.35

* Startup values are peak values during response time
of power on to power ready.

† Random operation values are RMS values with a
40 percent random seek, 40 percent write/read
(1 write in 10 reads), and 20 percent idle mode.
20 Inverter/Speaker Board

C H A P T E R 2

Hardware Features
Clamshell Case 2

The PowerBook Duo 280 and 280c computers are housed in a clamshell case. Because the
display in those computers is 3.8 millimeters (0.149 inches) thicker than the one in the
original PowerBook Duo, the case is also thicker than the original PowerBook Duo case.
When the case is closed, it measures 203.2 millimeters by 274.32 millimeters (8 inches by
10.8 inches) and is 36.8 millimeters (1.449 inches) deep. Figure 2-6 shows a view of an
open clamshell case.

Figure 2-6 The computer in open position

Power key

Brightness
buttons

Microphone

16-level grayscale
or 16-bit color

active matrix display

Open/close latch

Speaker

Display
clutch

assembly

Cap lock
LED

NiMH battery

Keyboard

Trackball

Clamshell switch

Sleep LED
Clamshell Case 21

C H A P T E R 2

Hardware Features
IMPORTANT

Because the clamshell case is slightly deeper than the case of the original
PowerBook Duo, you cannot use a standard Duo Dock with the
PowerBook Duo 280 and 280c computers. The slot in the Duo Dock is
not deep enough to accommodate the computer’s case. There are two
solutions. You may upgrade the top shell of an existing Duo Dock to
enlarge the slot, or you may purchase the new Duo Dock II, which can
accommodate the deeper case without modification. ▲
22 Clamshell Case

C H A P T E R 3

Figure 3-0
Listing 3-0
Table 3-0
Software Features 3

C H A P T E R 3

Software Features
This chapter describes the new ROM and system software features of the PowerBook
Duo 280 and 280c computers. It also tells how to add modules to the control strip.

ROM Software 3

The ROM software in the PowerBook Duo 280 and 280c computers is based on the ROM
used in previous PowerBook computers, with enhancements to support the many new
features of this computer. Some of the features this ROM was designed to support
include the following:

■ MC68LC040 microprocessor

■ built-in color and grayscale displays

■ refresh operation for up to 40 MB of DRAM

■ extended power management capabilities

■ improved support for the AppleTalk network

The ROM also supports several docking station features, such as an external cache, and
enhancements to the docking process.

The ROM version number in the PowerBook Duo 280 and 280c computers is $67C and
the CPU ID bits are $A55A 1000. The box flag for the PowerBook Duo 280 is 96; for the
PowerBook Duo 280c it is 97. The corresponding gestaltMachineID values are 102
and 103 respectively. Notice that the CPU ID bits are the same for both models; the box
flag and gestaltMachineID values are determined by the display types.

MC68LC040 Microprocessor 3
The MC68LC040 microprocessor used in the PowerBook Duo 280 and 280c computers
differs from the MC68030 used in earlier PowerBook Duo models in several important
ways. For example, there are differences in the sizes of its caches and in the configura-
tions of its control registers. The differences make it necessary to use a different power
cycling scheme with the MC68LC040. The MC68LC040 also requires new versions of the
MMU tables that control the way the system addresses memory and I/O space in 24-bit
and 32-bit addressing modes.

Display Driver 3
Support for both color and grayscale displays is provided by a display driver for the
CSC (color screen controller). The display driver resides in the slot 0 declaration ROM,
which is part of the system ROM on the main logic board. The driver supports grayscale,
8-bit color, and 16-bit color.
24 ROM Software

C H A P T E R 3

Software Features
Grayscale Display 3

The grayscale display in the PowerBook Duo 280 and 280c computers has the
same features as the display in the PowerBook Duo 250, but the driver is different
because the PowerBook Duo 280 and 280c computers use the CSC instead of the
GSC (grayscale controller).

8-Bit Color 3

The 8-bit-per-pixel configuration produces 256 colors. Figure 3-1 shows the color lookup
table with values for sample indexes (pixels). You are advised to select colors from the
first 215 entries in the color table. The values of the entries are based upon combinations
of $00, $33, $66, $99, $CC, and $FF.

The last 40 entries in the table are assigned to shades of pure red, green, blue, and gray,
and are based upon combinations of $00, $11, $22, $44, $55, $77, $88, $AA, $BB, and $EE.
These entries are ramped and dithered to produce the various shades. Dithering, which
may be implemented spatially or temporally, mixes primary colors to produce the effect
of a range of different shades.

Figure 3-1 Color lookup table

Index 0
R = $FF
G = $FF
B = $FF

Index 66
R = $CC
G = $00
B = $FF

Index 215
R = $00
G = $00
B = $33

Index 15
R = $FF
G = $99
B = $66

Index 255
R = $00
G = $00
B = $00

Index 215
R = $EE
G = $00
B = $00

Shaded indexes represent the first 215 entries in the color table
Unshaded indexes represent the last 40 entries in the color table
ROM Software 25

C H A P T E R 3

Software Features
The Appendix, “Color Lookup Table,” includes a table showing the color values that
correspond to each of the 256 index numbers.

16-Bit Color 3

When the user selects 16-bit color (“Thousands”) from the Monitors control panel, the
image area on the LCD display shrinks slightly, to 640 by 400 pixels, and narrow black
bands appear at the top and bottom of the screen. In 16-bit color mode, the color values
are stored as 5-bit R, G, and B components (only 15 bits are used). The CLUT is used as a
gamma table to optimize the color values for best appearance on the color LCD.

Support for Extended DRAM 3
The main system controller (MSC) installed on the PowerBook Duo 280 and 280c
computers’ main logic board supports up to 40 MB of self-refreshing DRAM. The
computer’s hardware provides decoding for up to 32 MB of DRAM.

Note
The PowerBook Duo 280 and 280c computers support both 24-bit
addressing and 32-bit addressing, but the ROM software defaults to
32-bit addressing mode. Whenever the system detects invalid PRAM, it
initializes the PRAM byte to select 32-bit addressing. Making 32-bit
addressing the default avoids possible confusion about memory size in a
12 MB configuration. ◆

Extended Power Management Capabilities 3
The Power Manager code, which resides in the ROM, allows you to modify the system
time without affecting the battery-charging algorithm. Firmware features added for the
PowerBook Duo 280 and 280c computers also support a sleep LED, version dependent
code, support for a 4 A or 5 A battery, and battery conditioning.

The Power Manager section of the ROM provides a standard set of routines that
developers may use (see Chapter 4, “Power Manager Interface”). All other routines
are private.

Network Support 3
 With the PowerBook Duo 280 and 280c computers, the latest version of AppleTalk is
included in both the computer’s ROM and on the System disk. The new version of
AppleTalk is more efficient in remembering network settings when the computer is
being docked or undocked. AppleTalk resources have been removed from the System
Enabler file. The Installer application installs AppleTalk files directly into the System file
when needed.
26 ROM Software

C H A P T E R 3

Software Features
System Software 3

The PowerBook Duo 280 and 280c computers are shipped with system software
version 7.1.1. The system software includes a new System Enabler file, which is
required for the PowerBook Duo 280 and 280c computers.

Identifying the PowerBook Duo 280 and 280c Computers 3
To identify the Macintosh model it is running on, your application should use the Gestalt
Manager routines described in Inside Macintosh: Overview.

The Gestalt Manager returns a gestaltMachineType value of 102 for the PowerBook
Duo 280 and a value of 103 for the PowerBook Duo 280c. Those values can be used to
obtain the machine name strings as described in Inside Macintosh: Overview.

Control Strip 3
The desktop on the PowerBook Duo 280 and 280c computers has a new status and
control element called the control strip. It is a strip of graphics with small button controls
and indicators in the form of various icons. Figure 3-2 shows the control strip.

Figure 3-2 Control strip

The control strip is a system extension (INIT) that provides the operating environment
for control strip modules. It runs on any Macintosh computer with System 7.0 or later.

The control strip is implemented in a private layer that appears in front of the windows
in all the application layers so that the windows will not obscure it. The user can move
the window for the control strip to any location on the display as long as the right or left
edge of the strip is attached to the right or left edge of the display.

The control strip has a tab on its unattached end. The user can drag the tab to adjust the
length of the strip or hold down the Option key and drag the tab to move the strip to a
new position. The user can hide the control strip, except for the tab, by clicking the tab.
Clicking the tab when the control strip is hidden makes the control strip visible again. To
make the control strip disappear completely, the user can click the Hide button in the
control strip control panel, described on page 31.

The different parts of the control strip either display status information or act as buttons.
When the user clicks a button, it is highlighted; some buttons also display additional
elements such as pop-up menus.
System Software 27

C H A P T E R 3

Software Features
By holding down the Option key and clicking a display area, the user can drag the
display area to another position in the control strip. After the user rearranges the parts of
the control strip, the new arrangment is saved when the computer is shut down and
restarted.

The control strip software provides a standard screen location for a collection of
individual modules that provide status and control functions. The control strip
functions include

■ AppleTalk Switch: shows whether AppleTalk is on or off and lets the user
turn AppleTalk on or off without having to open the Chooser.

■ Battery Monitor: displays the status of the battery or batteries.

■ File Sharing: displays the state of file sharing (on, off, or users connected), lets the user
turn file sharing on or off, and lets the user open the Sharing Setup control panel.

■ HD Spin Down: shows whether the internal hard disk is on or off; lets the user turn
off the hard disk.

■ Power Settings: lets the user select between maximum conservation or maximum
performance without opening the PowerBook control panel; also lets the user open
the PowerBook control panel.

■ Sleep Now: puts the computer into sleep mode.

■ Sound Volume: lets the user select the sound volume.

■ Video Mirroring: lets the user turn video mirroring on or off if an external monitor
is connected.

Note
Several of the functions of the control strip were implemented in
separate control panels on earlier PowerBook models. ◆

Developers can add modules to the control strip. For information, see the section
“Adding Control Strip Modules” beginning on page 31.

Control Panels 3
Several control panels are new or revised for the PowerBook Duo 280 and 280c
computers. The following sections describe the new control panels.

PowerBook Setup Control Panel 3

The PowerBook Setup control panel controls the setup functions for the modem port
configuration, SCSI disk mode, and automatic wakeup.

The PowerBook Setup control panel in the PowerBook Duo 280 and 280c computers is a
modified version of the PowerBook control panel that shipped with System 7.1. It is
essentially the same control panel, but with all power conservation features removed.

The PowerBook Setup control panel has been further modified to accommodate different
modem configurations. The modem controls in the PowerBook Setup control panel
28 System Software

C H A P T E R 3

Software Features
distinguish between the Express Modem and other modems. Figure 3-3 shows the
PowerBook Setup control panel with modem controls.

Figure 3-3 PowerBook Setup control panel

The PowerBook Setup control panel determines what type of modem is installed and
chooses the appropriate control titles. If a modem other than the Express Modem is
present, “Compatible” is changed to “Internal Modem” and “Normal” to “External
Modem.” The functions associated with the radio buttons have not changed. However,
the titles are different to remove the confusion generated by the incorrect use of internal/
external modem when an Express Modem is installed.

If you have a third-party internal modem installed, the control titles will be Internal
Modem and External Modem, and they will behave as expected, with Internal Modem
selecting the modem installed in the system. These titles are the same as those used in
System 7.1.

IMPORTANT

If you select Compatible, port A (Printer/Modem) is not available for
serial connections. However, AppleTalk is still available. ▲

PowerBook Control Panel 3

The PowerBook control panel includes several controls that allow the user to balance
performance against battery conservation. The PowerBook control panel contains the
battery conservation controls, including sleep and processor cycling. It controls backlight
dimming, and it can also automatically change the Power Manager configuration based
on the machine’s power source.

Note
The PowerBook Duo 280 and 280c computers do not provide
the Economode reduced speed feature found on earlier
PowerBook Duo models. ◆
System Software 29

C H A P T E R 3

Software Features
Information about power management is stored in the Preferences file in the System
Folder. When the system is booted, the file is read and the contents are stored
permanently in memory.

Custom and Easy Controls for Battery Conservation 3

The PowerBook control panel has two modes of operation. The first time you open the
PowerBook control panel, you see one simple slider switch, as shown in Figure 3-5. The
user may adjust the slider, as required, to improve battery conservation or system
performance, or leave it in the default position.

Figure 3-4 PowerBook control panel in easy mode

When you click the Easy/Custom box in the control panel, you gain access to three
additional sliders, as shown in Figure 3-5. They are System Sleeps, Hard Disk Spins
Down, and Backlight Dims. If you move any of those sliders, the change will be reflected
in the Better Conservation/Better Performance slider, alerting you as to whether the
change improves performance or provides better conservation. The controls revert to the
single slider when you toggle the Easy/Custom control again. The PowerBook control
panel preserves the state in which the controls were left the last time it was used.

Figure 3-5 PowerBook control panel in custom mode
30 System Software

C H A P T E R 3

Software Features
Power Conservation 3

There are two modes of battery conservation. One is used when the computer is plugged
into AC main power, and the other is used when the computer is running on its battery.
A Time Manager task installed by system extension in the PowerBook Duo file can
automatically change the power management settings based on the machine
environment.

When the PowerBook Duo 280 and 280c computers are shipped, the Power Conservation
part of the PowerBook control panel is set with the default settings for Battery and Auto
enabled, as shown in Figure 3-5. While the control panel is in easy mode, the user cannot
edit those settings. When the PowerBook control panel is in custom mode, the user can
enable or disable automatic conservation (Auto), select either Battery or Power Adapter
as the power source, or revert to the default settings. The changes the user makes in the
PowerBook panel are stored in the Preferences file.

At certain times, the PowerBook control panel compares the current Power Manager
settings with both sets of parameters. It does this during open and activate events, when
you switch from Manual to Auto power conservation, and when you switch to custom
mode. If a match is found, the name of the matching set is displayed in the pop-up
menu, and both the menu and the default button are active. If no match is found, No Set
Selected is shown in the pop-up menu, and both menu and default buttons are inactive.
Once a valid set is selected, No Set Selected is removed from the pop-up menu.

Control Strip Control Panel 3

Figure 3-6 shows the Control Strip control panel. The user can hide or show the control
strip by clicking the corresponding button in the control panel.

Figure 3-6 Control Strip control panel

Adding Control Strip Modules 3

The control strip is implemented in software as a shell with individual control and status
modules added. The control strip software draws the strip that acts as the background
for the individual modules. Each module is responsible for drawing the icons and other
objects that make up its user interface.
Adding Control Strip Modules 31

C H A P T E R 3

Software Features
Contents of Module Files 3
The only required resource in a module file is a resource containing the code necessary
for the module to interact with the control strip. A module file may contain more than
one code resource if it is to provide multifunctional support. In that case, each module in
the file is loaded and initialized separately and treated as an independent entity.

If a file contains only a single code resource, the resource may be unnamed, and the
module will be referenced by its filename. If more than one module is contained within a
module file, each module is required to have a unique name describing its functionality.

All other resources in a module file are optional, but there are several that are
recommended in order to support a custom icon and version information. The
recommended resources are

■ 'BNDL'

■ 'FREF'

■ 'ICN#', 'icl4', 'icl8', 'ics#', 'ics4', 'ics8'

■ signature resource (same type as file’s creator)

■ 'vers', ID=1

Developers should confine their resources to the range 256–32767.

Module Interface 3
Each module’s interface to the control strip consists of a code resource of type 'sdev'.
This code is responsible for performing all the functions required by the control strip as
well as any functions that are custom to the module itself. The module’s entry point is at
the beginning of the resource and is defined as

pascal long ControlStripModule(long message,

 long params,

 Rect *statusRect,

 GrafPtr statusPort);

Interactions between a module and the control strip are managed by passing messages to
the module to tell it what to do or to obtain information about the module and its
capabilities. Each module is required to observe Pascal register saving conventions. A
module may trash registers D0, D1, D2, A0, and A1, but must preserve all other registers
across its call.
32 Adding Control Strip Modules

C H A P T E R 3

Software Features
Field descriptions

message A message number, from the list in the section “Control Strip
Module Messages”, that tells the module what action to perform.

params This is the result returned by the initialize call to the module. This
would typically be the handle to the module’s private variables
since modules can’t have global variables. It will be passed to the
module on all subsequent calls.

statusRect A pointer to a rectangle defining the area that a module may
draw within.

statusPort A pointer to the control strip’s graphics port. This will be either a
color or black-and-white graphics port depending on which
PowerBook model the control strip is running on.

The result value returned by the module will vary depending on the message sent to it.
Results for each message are described in the sections on the individual messages.

Module Reentrancy 3

Any module that makes calls to routines such as GetNextEvent, ModalDialog or
pop-upMenuSelect should assume that it could be called reentrantly; that is, the
module could be called again while the initial call is still in progress. Situations to avoid
are such things as reusing a single parameter block for multiple calls, or indiscriminately
locking and unlocking your global variables around the module’s invocation.

Instead of using a single parameter block, it’s better, if possible, to allocate the parameter
block on the stack. In the case of asynchronous calls, using the stack could cause
problems; in that case, preventing the block’s reuse should be sufficient.

If you need to lock and unlock your global variables, it’s better to use HGetState and
HLock at the beginning of the call, and HSetState at the end, so that the state is
restored to what it was on entry.

Control Strip Module Reference 3

Control strip modules interact with the control strip software in three ways: by accepting
messages, by calling utility routines, and by calling Gestalt seletors. The next three
sections describe each of those interactions.
Control Strip Module Reference 33

C H A P T E R 3

Software Features
Control Strip Module Messages 3
All control strip modules must respond to messages from the control strip. The
following messages have been defined:

sdevInitModule 3

The sdevInitModule message is the first message sent to a module after the module
has been loaded from its file. Initialization allows the module to initialize its variables
and to determine whether it can run on a particular machine: for example, if the
module’s function is to display battery information it can run only on a PowerBook.

The module needs to load and detach any resources in the module’s resource file that
will be used, because the resource file will not be kept permanently open. What that
means is that your code can't use GetResource() or the like to retrieve the handle to
one of the module's resources on a subsequent call. Typically you would allocate space
in your global variables for handles to those detached resources.

The sdevInitModule message returns a result depending on its success at installing
itself. A positive result (≥0) indicates successful installation. This result value will be
passed to the module on all subsequent calls. A negative result indicates an error
condition, and installation of the module is aborted by the control strip software. The
module will not receive a close message when installation has been aborted.

Message name
Message
number Description

sdevInitModule 0 Initialize the module

sdevCloseModule 1 Clean up before being closed

sdevFeatures 2 Return the feature bits

sdevGetDisplayWidth 3 Return the width of the module’s display

sdevPeriodicTickle 4 Periodic tickle when nothing else
is happening

sdevDrawStatus 5 Update the interface in the control strip

sdevMouseClick 6 User has clicked on the module’s
display area

sdevSaveSettings 7 Save any changed settings in thee
module’s preferences file

sdevShowBalloonHelp 8 Display a help balloon, if the module
has one
34 Control Strip Module Reference

C H A P T E R 3

Software Features
sdevCloseModule 3

The sDevCloseModule message is sent to a module when it should be closed.
Typically the module itself will decide when this ought to happen. When the module
receives this message, it should dispose of all the detached resources it loaded as well as
its global storage. No result is expected.

sdevFeatures 3

The sdevFeatures message queries the module for the features it supports. It returns
as its result a bitmap consisting of 1 bits for supported features and 0 bits for unsupported
features. All undefined bits are reserved by Apple for future features, and must be set to
0. The bits are defined as

sdevWantMouseClicks 0 If this bit is set, the control strip will notify the module
of mouse down events. If this bit is not set, the control
strip assumes that the module only displays status
information with no user interaction.

sdevDontAutoTrack 1 If this bit is set, the control strip highlights the
module’s display and then calls the module to perform
mouse tracking; this bit is usually set when, for
example, a module has a pop-up menu associated with
it. If this bit is cleared, the control strip tracks the
cursor until the mouse button is released, then sends
an sdevMouseClick message to the module to notify
it that there was a mouse-down event.

sdevHasCustomHelp 2 If this bit is set, the module is responsible for
displaying its own help messages, which can be
customized depending on its current state. If the bit is
cleared, the control strip will display a generic help
message when the cursor passes over the module’s
display area and Balloon Help is on.

sdevKeepModuleLocked 3 If this bit is set, the module’s code will be kept locked
in the heap. This bit should be set only if the module
is passing the address of one of its routines to the
outside world (for example, installing itself in a queue).

sdevGetDisplayWidth 3

The sdevGetDisplayWidth message is sent to a module to determine how much
horizontal space (in pixels) its display currently requires on the control strip. The
module should return the number of pixels as its result. The returned width should not
Control Strip Module Reference 35

C H A P T E R 3

Software Features
be the maximum width it requires for any configuration, but should reflect how much
space it currently requires, because it’s possible for a module to request that its display
be resized.

IMPORTANT

You should be conservative in your use of control strip display space,
which is limited. Because several modules could be requesting space,
it’s possible that your module could be shoved off the end. ▲

sdevPeriodicTickle 3

The sdevPeriodicTickle message is passed to the module periodically to allow the
module to update its display due to changes in its state. You should not assume any
minimum or maximum interval between tickles. The module should return, as its result,
some bits that signal requests for actions from the control strip software. All undefined
bits in the result are reserved for future use by Apple and must be set to 0. The bits are
defined as

sdevResizeDisplay 0 If this bit is set, the module needs to resize its display.
The control strip sends a sdevGetDisplayWidth
message to the module and then update the control
strip on the display.

sdevNeedToSave 1 If this bit is set, the module needs to save changed
settings to disk. The control strip software will mark
the request but may defer the actual save operation to
a better time (for example, when the hard disk is
spinning).

sdevHelpStateChange 2 If this bit is set, the module’s state has changed so it
needs to update its help message. If a help balloon is
being displayed for this module, the control strip
software will remove it and put up a new help balloon
for the current state.

sdevCloseNow 3 If this bit is set, the module is requesting to be closed.
The control strip software will call the module to save
its settings, then call it again to close itself.

sdevDrawStatus 3

The sdevDrawStatus message indicates that the module has to redraw its display to
reflect the most recent state. This message is typically sent when the user clicks on the
module's display area, when any of the module’s displays is resized, or when the
control strip itself needs to be updated, perhaps in response to a screen saver
deactivation.
36 Control Strip Module Reference

C H A P T E R 3

Software Features
The statusRect parameter points to a rectangle bounding the module's display area,
in local coordinates. All drawing done by a module within the bounds of the control
strip must be limited to the module's display rectangle. The graphics port's clipRgn
will be set to the visible portion of this rectangle so you can draw all the elements in the
display. If you need to change the clipRgn, you should observe the initial clipRgn to
avoid drawing over other items in the control strip.

sdevMouseClick 3

When the user clicks in a module’s display area, the control strip software calls the
module with the sdevMouseClick message if the sdevWantMouseClicks bit is set in
the module’s features.

If the sdevDontAutoTrack bit is also set, the control strip draws the module’s display
in its highlighted state and then sends the sdevMouseClick message to the module. If
the sdevDontAutoTrack bit is not set, the control strip software tracks the cursor until
the mouse button is released. If the cursor is still within the module’s display area, the
control strip software sends the sdevMouseClick message to notify the module that a
click occurred. In either case, the module can then perform the appropriate function in
response to a mouse-down event.

This message returns the same result as the sdevPeriodicTickle message.

sdevSaveSettings 3

The sdevSaveSettings message is passed to the module when the control strip
software has determined that it’s a good time to save configuration information
to the disk. This message will be sent only if the module had previously set the
sdevNeedToSave bit in the result of a sdevPeriodicTickle or sdevMouseClick
message. The call returns an error code (File Manager, Resource Manager, or the like)
indicating the success of the save operation. The control strip software will continue to
send this message to the module until the module returns a result of 0, indicating a
successful save.

sdevShowBalloonHelp 3

The control strip software calls the module with the sdevShowBalloonHelp message if
Balloon Help is turned on, the module has previously set the sdevHasCustomHelp bit
in its features, and the cursor is over the module’s display area. The module should then
call the Help Manager to display a help balloon describing the current state of the
module. The module should return a value of 0 if it’s successful or an appropriate error
result if not.
Control Strip Module Reference 37

C H A P T E R 3

Software Features
Utility Routines 3
The control strip software provides a set of utility routines that are available to control
strip modules. The utility routines are provided to promote a consistent user interface
within the control strip and to reduce the amount of duplicated code that each module
would have to include to support common functions.

The utility routines are called through a selector-based trap, _ControlStripDispatch
($AAF2). If an unimplemented routine is called, it will return paramErr as the result.

IMPORTANT

These routines should not be called at interrupt time
because they all move memory. ▲

SBIsControlStripVisible 3

You can use the SBIsControlStripVisible routine to find out whether the control
strip is visible.

pascal Boolean SBIsControlStripVisible();

The SBIsControlStripVisible routine returns a Boolean value indicating whether
or not the control strip is currently visible. It returns a value of true if the control strip
is visible, or a value of false if it’s hidden.

It is possible for this call to return a value of true even when the control strip is not
visible. That happens whenever the control strip is not accessible in the current
environment. As soon as that situation changes, the control strip becomes visible again
and the returned value correctly reflects the actual state.

SBShowHideControlStrip 3

You can use the SBShowHideControlStrip routine to show or hide the control strip.

pascal void SBShowHideControlStrip(Boolean showIt);

The SBShowHideControlStrip routine determines the visibility state for the control
strip based on the value of the showIt parameter. Passing a value of true makes the
control strip visible, and passing a value of false hides it. Modules shouldn’t typically
need to call this routine, but it’s provided as a means for other software to hide the
control strip when it might get in the way.

Calling SBShowHideControlStrip with a showIt value of true may or may not
show the control strip, depending on the current environment: if the control strip is not
accessible, it does not become visible. If a showIt value of true is passed to this
routine, then when the environment changes, the control strip will become visible.
38 Control Strip Module Reference

C H A P T E R 3

Software Features
SBSafeToAccessStartupDisk 3

You can use the SBSafeToAccessStartupDisk routine to find out whether the
internal hard disk is spinning so that your software can determine whether to make a
disk access or postpone it until a time when the disk is already spinnings.

pascal Boolean SBSafeToAccessStartupDisk();

The SBSafeToAccessStartupDisk routine returns a Boolean value of true if the
disk is spinning and false if it is not.

SBOpenModuleResourceFile 3

You can use the SBOpenModuleResourceFile routine to open a module resource file.

pascal short SBOpenModuleResourceFile(OSType fileCreator);

The SBOpenModuleResourceFile routine opens the resource fork of the module
file whose creator is fileCreator, and return the file’s reference number as its result.
If the file cannot be found or opened, SBOpenModuleResourceFile returns a result
of –1.

SBOpenModuleResourceFile provides a means for a module to load in large or
infrequently used resources that it doesn’t usually need, but that it requires for a
particular operation.

SBLoadPreferences 3

You can use the SBLoadPreferences routine to load a resource from a preferences file.

pascal OSErr SBLoadPreferences(ConstStr255Param prefsResourceName,

Handle *preferences);

The SBLoadPreferences routine loads a resource containing a module’s configuration
information from the control strip’s preferences file. The PrefsResourceName
parameter points to a Pascal string containing the name of the resource. The
Preferences parameter points to a variable that will hold a handle to the resource
read from the file. The handle does not need to be preallocated.

If either prefsResourceName or preferences contains a nil pointer,
SBLoadPreferences does nothing and returns a result of paramErr. If the resource
is successfully loaded, it returns a result of 0. SBLoadPreferences can also return
other Memory Manager and Resource Manager errors if it fails during some part of
the process.
Control Strip Module Reference 39

C H A P T E R 3

Software Features
SBSavePreferences 3

You can use the SBSavePreferences routine to save a resource to a preferences file.

pascal OSErr SBSavePreferences(ConstStr255Param prefsResourceName,

Handle preferences);

The SBSavePreferences routine saves a resource containing a module’s configuration
information to the control strip’s preferences file. The PrefsResourceName parameter
points to a Pascal string containing the name of the resource. The preferences
parameter contains a handle to a block of data which will be written to the file.

If either prefsResourceName or preferences has a nil value, SBSavePreferences
does nothing and returns a result of paramErr. If the resource is successfully saved,
SBSavePreferences returns a result of 0. SBSavePreferences can also return other
Memory Manager and Resource Manager errors if it fails during some part of the
process.

SBGetDetachedIndString 3

You can use the SBGetDetachedIndString routine to get a string from a detached
resource.

pascal void SBGetDetachedIndString(StringPtr theString,

Handle stringList,

short whichString);

The SBGetDetachedIndString routine is the detached resource version of
GetIndString. The parameter theString points to a Pascal string; stringList is a
handle to a detached 'STR#' resource; and whichString is the index (1–n) into the
array of Pascal strings contained in the detached resource. SBGetDetachedIndString
will copy the string whose index is whichString into the space pointed to by
theString. If whichString is out of range, SBGetDetachedIndString will return
a zero-length string.

SBGetDetachIconSuite 3

You can use the SBGetDetachIconSuite routine to set up a detached icon suite.

pascal OSErr SBGetDetachIconSuite(Handle *theIconSuite,

short theResID,

unsigned long selector);
40 Control Strip Module Reference

C H A P T E R 3

Software Features
The SBGetDetachIconSuite routine creates a new icon suite, loads all of the
requested icons, and then detaches the icons. The parameter theIconSuite points to
the location where the handle to the icon suite will be stored; the parameter theResID is
the resource ID of the icons that make up the icon suite; and the parameter selector
tells which icons should be loaded into the suite. The selector parameter should
typically contain one (or a combination of) the following values:

svAllLargeData 0x000000FF load large 32-by-32-pixel icons ('ICN#',
'icl4', 'icl8')

svAllSmallData 0x0000FF00 load small 16-by-16-pixel icons ('ics#',
'ics4', 'ics8')

svAllMiniData 0x00FF0000 load mini 12-by-12-pixel icons ('icm#',
'icm4', 'icm8')

These values may be OR-ed together to load combinations of icon sizes.
SBGetDetachIconSuite returns an appropriate error code if it’s unsuccessful, or 0 if if
was able to load the icon suite. Note that if none of the icons comprising the icon suite
could be found, the call returns the error resNotFound.

IMPORTANT

You should call SBGetDetachIconSuite only when the module’s
resource file is open, which is typically the case during a module’s
initialization call. ▲

SBTrackpopupMenu 3

You can use the SBTrackpopupMenu routine to manage a pop-up menu.

pascal short SBTrackpopupMenu(const Rect *moduleRect,

MenuHandle theMenu);

The SBTrackpopupMenu routine handles setting up and displaying a pop-up menu
associated with a module. The module should pass a pointer to its display rectangle and
a handle to the menu to use. The menu will be displayed just above the module’s
display rectangle, allowing the user to view the current configuration or to change the
settings. SBTrackpopupMenu returns which menu item was selected, or 0 if no item
was selected because the user moved the cursor outside the menu’s bounds.

IMPORTANT

Menus are displayed in the control strip’s font, so don’t use the
CheckItem() routine to mark menu items, because a checkmark is
supported only in the system font. Use the SetItemMark() routine
instead and pass it a bullet (•). ▲
Control Strip Module Reference 41

C H A P T E R 3

Software Features
SBTrackSlider 3

You can use the SBTrackSlider routine to display and set an arbitrary parameter.

pascal short SBTrackSlider(const Rect *moduleRect,

short ticksOnSlider,

short initialValue);

The SBTrackSlider routine displays an unlabeled slider above the module’s display
rectangle. You can use the slider for displaying and setting the state of an arbitrary
parameter. The parameter ModuleRect contains a pointer to the module’s display
rectangle; ticksOnSlider is the upper bounds of the value returned by the slider; and
initialValue is the starting position (0 to ticksOnSlider–1). When the user
releases the mouse button, SBTrackSlider returns the final position.

SBShowHelpString 3

You can use the SBShowHelpString routine to display a help balloon.

pascal OSErr SBShowHelpString(const Rect *moduleRect,

StringPtr helpString);

The SBShowHelpString routine displays a module’s help balloon. The module passes
a pointer to its display rectangle and a pointer to a Pascal string, and the routine displays
the balloon if possible. If the help string has a length of 0 or the Help Manager is unable
to display a balloon, an error result is returned. If SBShowHelpString successfully
displays the help balloon, it returns a result of 0.

SBGetBarGraphWidth 3

You can use the SBGetBarGraphWidth routine to find out the how wide a bar graph
drawn by SBDrawBarGraph (described next) will be so that a module can calculate its
display width.

pascal short SBGetBarGraphWidth(short barCount);

The SBGetBarGraphWidth routine returns the width of a bar graph containing
barCount segments. If barCount has a value less than 0, the SBGetBarGraphWidth
routine returns a width of 0.
42 Control Strip Module Reference

C H A P T E R 3

Software Features
SBDrawBarGraph 3

You can use the SBDrawBarGraph routine to draw a bar graph.

pascal void SBDrawBarGraph(short level, short barCount,

short direction,

Point barGraphTopLeft);

The SBDrawBarGraph routine draws a bar graph containing the number of segments
specified by the barCount parameter in a module’s display area. If the value of
barCount is less than or equal to 0, SBDrawBarGraph does nothing.

The bar graph is drawn relative to the location specified by barGraphTopLeft.
Figure 3-7 shows the way the point barGraphTopLeft determines the position of
the bar graph.

Figure 3-7 Positioning a bar graph

The level parameter determines how many segments are highlighted. The value of
level should be in the range of 0 to barCount–1. If the value of level is less than 0,
no segments in the bar graph are highlighted; if level is greater than or equal to
barCount, all segments in the bar graph are highlighted.

The direction parameter specifies which way the bar graph will be drawn to show a
larger level. It should be one of the following values:

#define BarGraphSlopeLeft -1 // max end of sloping graph is on the left

#define BarGraphFlatRight 0 // max end of flat graph is on the right

#define BarGraphSlopeRight 1 // max end of sloping graph is on the right

Figure 3-8 shows the resulting bar graph for each direction value. The arrows indicate
which way an increasing level value is displayed. For sloped versions of the bar graph,
the number of segments specified by the barCount value may not be larger than 8. If a
larger barCount value is passed, SBDrawBarGraph draws nothing.

Figure 3-8 Direction of a bar graph
Control Strip Module Reference 43

C H A P T E R 3

Software Features
SBModalDialogInContext 3

You can use the SBModalDialogInContext in place of ModalDialog routine to keep
background applications from getting run while your modal dialog window is visible.

pascal void SBModalDialogInContext(ModalFilterProcPtr filterProc,

short *itemHit);

The SBModalDialogInContext routine is a special version of ModalDialog that
doesn’t allow background applications to get time while a modal dialog window is
visible. You should use SBModalDialogInContext when you don’t want any context
switching to occur.

Gestalt Selectors 3
The control strip software installs two Gestalt selectors to return information to the
outside world. One selector returns software attributes, and the other returns the
software version.

gestaltControlStripAttr 3

The selector gestaltControlStripAttr ('sdev') returns 32 bits describing the
software attributes of this version of the control strip. Currently only the following bit
is defined:

gestaltControlStripExists 0 1=control strip is installed

gestaltControlStripVersion 3

The selector gestaltControlStripVersion ('sdvr') returns the version of control
strip software that is installed. The format of the returned version is the same as that of
the numeric part of a 'vers' resource, that is:

Bits 31-24 Major part of the version, in BCD

Bits 23-20 Minor part of the version, in BCD

Bits 19-16 Bug release version, in BCD

Bits 15- 8 Release stage:
80=final
60=beta
40=alpha
20=development

Bits 7- 0 Revision level of nonreleased version, in binary

Thus, if the software version were 1.5.3b25, the gestaltControlStripVersion
selector would return $01536019.
44 Control Strip Module Reference

C H A P T E R 4

Figure 4-0
Listing 4-0
Table 4-0
Power Manager Interface 4

C H A P T E R 4

Power Manager Interface
This chapter describes the new application programming interface (API) to the Power
Manager control software. Developers who provide expanded control panel software for
the PowerBook Duo 280 and 280c computers will no longer need access to the Power
Manager’s internal data structures.

About the Power Manager Interface 4

Developers have written control panel software for previous PowerBook models that
gives the user more control over the power management settings than is provided in the
PowerBook control panel. Because that software reads and writes directly to the Power
Manager’s private data structure and parameter RAM, the software needs to be updated
any time Apple Computer makes a change to the internal operation of the Power
Manager.

System software for the PowerBook 520 and 540 computers and for future PowerBook
models includes interface routines for program access to the Power Manager functions,
so it is no longer necessary for applications to deal directly with the Power Manager’s
data structures. The new routines provide access to most of the Power Manager’s
parameters. Some functions will be reserved because of their overall effect on the system.
The interface is extensible; it will probably grow over time to acccommodate new kinds
of functions.

Things That May Change 4
By using the Power Manager interface, developers can isolate themselves from future
changes to the internal operation of the Power Manager software.

IMPORTANT

Apple Computer reserves the right to change the internal operation of
the Power Manager software. Developers should not make their
applications depend on the Power Manager’s internal data structures or
parameter RAM. ▲

Starting with the PowerBook 520 and 540 models, developers should not depend on the
Power Manager’s internal data structures staying the same. In particular, developers
should beware of the following assumptions regarding different PowerBook models:

■ assuming that timeout values such as the hard disk spindown time reside at the same
locations in parameter RAM

■ assuming that the power cycling process works the same way or uses the same
parameters

■ assuming that direct commands to the Power Manager microcontroller are supported
on all models
46 About the Power Manager Interface

C H A P T E R 4

Power Manager Interface
Checking for Routines 4
Before calling any of the Power Manager interface routines, it’s always a good idea to
call the Gestalt Manager to see if it they’re present on the computer. The Gestalt Manager
is described in Inside Macintosh: Overview.

A new bit has been added to the gestaltPowerMgrAttr selector:

#define gestaltPMgrDispatchExists 4

If that bit is set to 1, then the routines are present.

Because more routines may be added in the future, one of the new routines simply
returns the number of routines that are implemented. The following code fragment
determines both that the routines in general exist and that at least the hard disk
spindown routine exists.

long pmgrAttributes;

Boolean routinesExist;

routinesExist = false;

if (! Gestalt(gestaltPowerMgrAttr, &pmgrAttributes))

 if (pmgrAttributes & (1<<gestaltPMgrDispatchExists))

 if (PMSelectorCount() >= 7)

 routinesExist = true;

▲ W A R N I N G

If you call a routine that does not exist, the call to the public Power
Manager trap (if the trap exists) will return an error code, which your
program could misinterpret as data. ▲

Power Manager Interface Routines 4
This section tells you how to call the interface routines for the Power Manager software.
The interface routines are listed here in the order of their routine selector values, as
shown in Table 4-1 on page 48.

Assembly-language note:

All the routines share a single trap, _PowerMgrDispatch ($A09E). The
trap is register based: parameters are passed in register D0 and
sometimes also in A0. A routine selector value passed in the low word of
register D0 determines which routine is executed. ◆
About the Power Manager Interface 47

C H A P T E R 4

Power Manager Interface
Table 4-1 Interface routines and their selector values

Routine name

Selector value

decimal hexadecimal

PMSelectorCount 0 $00

PMFeatures 1 $01

GetSleepTimeout 2 $02

SetSleepTimeout 3 $03

GetHardDiskTimeout 4 $04

SetHardDiskTimeout 5 $05

HardDiskPowered 6 $06

SpinDownHardDisk 7 $07

IsSpindownDisabled 8 $08

SetSpindownDisable 9 $09

HardDiskQInstall 10 $0A

HardDiskQRemove 11 $0B

GetScaledBatteryInfo 12 $0C

AutoSleepControl 13 $0D

GetIntModemInfo 14 $0E

SetIntModemState 15 $0F

MaximumProcessorSpeed 16 $10

CurrentProcessorSpeed 17 $11

FullProcessorSpeed 18 $12

SetProcessorSpeed 19 $13

GetSCSIDiskModeAddress 20 $14

SetSCSIDiskModeAddress 21 $15

GetWakeupTimer 22 $16

SetWakeupTimer 23 $17

IsProcessorCyclingEnabled 24 $18

EnableProcessorCycling 25 $19

BatteryCount 26 $1A

GetBatteryVoltage 27 $1B

GetBatteryTimes 28 $1C
48 About the Power Manager Interface

C H A P T E R 4

Power Manager Interface
PMSelectorCount 4

You can use the PMSelectorCount routine to determine which routines are
implemented.

short PMSelectorCount();

DESCRIPTION

The PMSelectorCount routine returns the number of routine selectors present. Any
routine whose selector value is greater than the returned value is not implemented.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for PMSelectorCount is
0 ($00) in the low word of register D0. The number of selectors is returned in the low
word of register D0.

PMFeatures 4

You can use the PMFeatures routine to find out which features of the Power Manager
are implemented.

unsigned long PMFeatures();

DESCRIPTION

The PMFeatures routine returns a 32-bit field describing hardware and software
features associated with the Power Manager on a particular machine. If a bit value is 1,
that feature is supported or available; if the bit value is 0, that feature is not available.
Unused bits are reserved by Apple for future expansion.

Field descriptions

Bit
Bit name number Description

hasWakeupTimer 0 The wakeup timer is supported.
hasSharedModemPort 1 The hardware forces exclusive access to either SCC

port A or the internal modem. (If this bit is not
set, then typically port A and the internal modem
may be used simultaneously by means of the
Communications Toolbox.)

hasProcessorCycling 2 Processor cycling is supported; that is, when the
computer is idle, the processor power will be cycled
to reduce the power usage.
About the Power Manager Interface 49

C H A P T E R 4

Power Manager Interface
mustProcessorCycle 3 The processor cycling feature must be left on (turn it
off at your own risk).

hasReducedSpeed 4 Processor can be started up at a reduced speed in
order to extend battery life.

dynamicSpeedChange 5 Processor speed can be switched dynamically
between its full and reduced speed at any time, rather
than only at startup time.

hasSCSIDiskMode 6 The SCSI disk mode is supported.
canGetBatteryTime 7 The computer can provide an estimate of the battery

time remaining.
canWakeupOnRing 8 The computer supports waking up from the sleep

state when an internal modem is installed and the
modem detects a ring.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for PMFeatures is 1
($01) in the low word of register D0. The 32-bit field of supported features is returned in
register D0.

GetSleepTimeout 4

You can use the GetSleepTimeout routine to find out how long the computer will wait
before going to sleep.

unsigned char GetSleepTimeout();

DESCRIPTION

The GetSleepTimeout routine returns the amount of time that the computer will wait
after the last user activity before going to sleep. The value of GetSleepTimeout is
expressed as the number of 15-second intervals that the computer will wait before going
to sleep.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetSleepTimeout is
2 ($02) in the low word of register D0. The sleep timeout value is returned in the low
word of register D0.
50 About the Power Manager Interface

C H A P T E R 4

Power Manager Interface
SetSleepTimeout 4

You can use the SetSleepTimeout routine to set how long the computer will wait
before going to sleep.

void SetSleepTimeout(unsigned char timeout);

DESCRIPTION

The SetSleepTimeout routine sets the amount of time the computer will wait after the
last user activity before going to sleep. The value of SetSleepTimeout is expressed as
the number of 15-second intervals making up the desired time. If a value of 0 is passed
in, the routine sets the timeout value to the default value (currently equivalent to
8 minutes).

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetSleepTimeout is
3 ($03) in the low word of register D0. The sleep timeout value to set is passed in the
high word of register D0.

GetHardDiskTimeout 4

You can use the GetHardDiskTimeout routine to find out how long the computer will
wait before turning off power to the internal hard disk.

unsigned char GetHardDiskTimeout();

DESCRIPTION

The GetHardDiskTimeout routine returns the amount of time the computer will wait
after the last use of a SCSI device before turning off power to the internal hard disk. The
value of GetHardDiskTimeout is expressed as the number of 15-second intervals the
computer will wait before turning off power to the internal hard disk.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
GetHardDiskTimeout is 4 ($04) in the low word of register D0. The hard
disk timeout value is returned in the low word of register D0.
About the Power Manager Interface 51

C H A P T E R 4

Power Manager Interface
SetHardDiskTimeout 4

You can use the SetHardDiskTimeout routine to set how long the computer will wait
before turning off power to the internal hard disk.

void SetHardDiskTimeout(unsigned char timeout);

DESCRIPTION

The SetHardDiskTimeout routine sets how long the computer will wait after the last
use of a SCSI device before turning off power to the internal hard disk. The value of
SetHardDiskTimeout is expressed as the number of 15-second intervals the computer
will wait before turning off power to the internal hard disk. If a value of 0 is passed in,
the routine sets the timeout value to the default value (currently equivalent to
4 minutes).

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
SetHardDiskTimeout is 5 ($05) in the low word of register D0. The hard
disk timeout value to set is passed in the high word of register D0.

HardDiskPowered 4

You can use the HardDiskPowered routine to find out whether the internal hard disk
is on.

Boolean HardDiskPowered();

DESCRIPTION

The HardDiskPowered routine returns a Boolean value indicating whether or not the
internal hard disk is powered up. A value of true means that the hard disk is on, and a
value of false means that the hard disk is off.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for HardDiskPowered is
6 ($06) in the low word of register D0. The Boolean result is returned in the low word of
register D0.
52 About the Power Manager Interface

C H A P T E R 4

Power Manager Interface
SpinDownHardDisk 4

You can use the SpinDownHardDisk routine to force the hard disk to spin down.

void SpinDownHardDisk();

DESCRIPTION

The SpinDownHardDisk routine immediately forces the hard disk to spin down and
power off if it was previously spinning. Calling SpinDownHardDisk will not spin
down the hard disk if spindown is disabled by calling SetSpindownDisable (defined
later in this section).

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SpinDownHardDisk
is 7 ($07) in the low word of register D0.

IsSpindownDisabled 4

You can use the IsSpindownDisabled routine to find out whether hard disk
spindown is enabled.

Boolean IsSpindownDisabled();

DESCRIPTION

The IsSpindownDisabled routine returns a Boolean true if hard disk spindown is
disabled, or false if spindown is enabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
IsSpindownDisabled is 8 ($08) in the low word of register D0. The Boolean result is
passed in the low byte of register D0.
About the Power Manager Interface 53

C H A P T E R 4

Power Manager Interface
SetSpindownDisable 4

You can use the SetSpindownDisable routine to disable hard disk spindown.

void SetSpindownDisable(Boolean setDisable);

DESCRIPTION

The SetSpindownDisable routine enables or disables hard disk spindown, depending
on the value of setDisable. If the value of setDisable is true, hard disk spindown
will be disabled; if the value is false, spindown will be enabled.

Disabling hard disk spindown affects the SpinDownHardDisk routine, defined earlier,
as well as the normal spindown that occurs after a period of hard disk inactivity.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
SetSpindownDisable is 9 ($09) in the low word of register D0. The Boolean
value to set is passed in the high word of register D0.

HardDiskQInstall 4

You can use the HardDiskQInstall routine to notify your software when power to the
internal hard disk is about to be turned off.

OSErr HardDiskQInstall(HDQueueElement *theElement);

DESCRIPTION

The HardDiskQInstall routine installs an element into the hard disk power down
queue to provide notification to your software when the internal hard disk is about to
be powered off. For example, this feature might be used by the driver for an external
battery-powered hard disk. When power to the internal hard disk is turned off, the
external hard disk could be turned off as well.

The structure of HDQueueElement is as follows.

typedef pascal void (*HDSpindownProc)(HDQueueElement *theElement);

struct HDQueueElement {

 Ptr hdQLink; /* pointer to next queue element */

 short hdQType; /* queue element type (must be HDQType) */

 short hdFlags; /* miscellaneous flags (reserved) */

 HDSpindownProc hdProc; /* pointer to routine to call */

 long hdUser; /* user-defined (variable storage, etc.) */

} HDQueueElement;
54 About the Power Manager Interface

C H A P T E R 4

Power Manager Interface
When power to the internal hard disk is about to be turned off, the software calls the
routine pointed to by the hdProc field so that it can do any special processing. The
routine will be passed a pointer to its queue element so that, for example, the routine can
reference its variables.

Before calling HardDiskQInstall, the calling program must set the hdQType field to

#define HDPwrQType 'HD' /* queue element type */

or the queue element won’t be added to the queue and HardDiskQInstall will return
an error.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for HardDiskQInstall
is 10 ($0A) in the low word of register D0. The pointer to the HDQueue element is passed
in register A0. The result code is returned in the low word of register D0.

HardDiskQRemove 4

You can use the HardDiskQRemove routine to discontinue notification of your software
when power to the internal hard disk is about to be turned off.

OSErr HardDiskQRemove(HDQueueElement *theElement);

DESCRIPTION

The HardDiskQRemove routine removes a queue element installed by
HardDiskQInstall. If the hdQType field of the queue element is not set to
HDPwrQType, HardDiskQRemove simply returns an error.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for HardDiskQRemove is
11 ($0B) in the low word of register D0. The pointer to the HDQueue element is passed in
register A0. The result code is returned in the low word of register D0.

GetScaledBatteryInfo 4

You can use the GetScaledBatteryInfo routine to find out the condition of the
battery or batteries .

void GetScaledBatteryInfo(short whichBattery, BatteryInfo *theInfo);
About the Power Manager Interface 55

C H A P T E R 4

Power Manager Interface
DESCRIPTION

The GetScaledBatteryInfo routine provides a generic means of returning
information about the battery or batteries in the system. Instead of returning a voltage
value, the routine returns the battery level as a fraction of the total possible voltage.

Note
New battery technologies such as NiCad (nickel cadmium) and nickel
metal hydride (NiMH) have replaced the sealed lead acid batteries of
the original Macintosh Portable. The algorithm for determining the
battery voltage that is documented in the Power Manager chapter of
Inside Macintosh, Volume VI, is no longer correct for all PowerBook
models. ◆

The value of whichBattery determines whether GetScaledBatteryInfo returns
information about a particular battery or about the total battery level. The value of
GetScaledBatteryInfo should be in the range of 0 to BatteryCount(). If the value
of whichBattery is 0, GetScaledBatteryInfo returns a summation of all the
batteries, that is, the effective battery level of the whole system. If the value of
whichBattery is out of range, or the selected battery is not installed,
GetScaledBatteryInfo will return a result of 0 in all fields. Here is a summary of the
effects of the whichBattery parameter:

The GetScaledBatteryInfo routine returns information about the battery in the
following data structure:

typedef struct BatteryInfo {

 unsigned char flags; /* misc flags (see below) */

 unsigned char warningLevel; /* scaled warning level (0-255) */

 char reserved; /* reserved for internal use */

 unsigned char batteryLevel; /* scaled battery level (0-255) */

} BatteryInfo;

The flags character contains several bits that describe the battery and charger state. If a
bit value is 1, that feature is available or is operating; if the bit value is 0, that feature is
not operating. Unused bits are reserved by Apple for future expansion.

Field descriptions

Bit
Bit name number Description

batteryInstalled 7 A battery is installed.
batteryCharging 6 The battery is charging.
chargerConnected 5 The charger is connected.

Value of whichBattery Information returned

0 Total battery level for all batteries

From 1 to BatteryCount() Battery level for the selected battery

Less than 0 or greater than
BatteryCount

0 in all fields of theInfo
56 About the Power Manager Interface

C H A P T E R 4

Power Manager Interface
The value of warningLevel is the battery level at which the first low battery warning
message will appear. The routine returns a value of 0 in some cases when it’s not
appropriate to return the warning level.

The value of batteryLevel is the current level of the battery. A value of 0 represents
the voltage at which the Power Manager will force the computer into sleep mode; a
value of 255 represents the highest possible voltage.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
GetScaledBatteryInfo is 12 ($0C) in the low word of register D0. The
BatteryInfo data are returned in the low word of register D0 as follows:

AutoSleepControl 4

You can use the AutoSleepControl routine to turn the automatic sleep feature on
and off.

void AutoSleepControl(Boolean enableSleep);

DESCRIPTION

The AutoSleepControl routine enables or disables the automatic sleep feature that
causes the computer to go into sleep mode after a preset period of time. When
enableSleep is set to true, the automatic sleep feature is enabled (this is the normal
state). When enableSleep is set to false, the computer will not go into the sleep
mode unless it is forced to either by some user action—for example, by the user’s
selecting Sleep from the Special menu of the Finder—or in a low battery situation.

IMPORTANT

Calling AutoSleepControl with enableSleep set to false multiple
times increments the auto sleep disable level so that it requires the same
number of calls to AutoSleepControl with enableSleep set to
true to reenable the auto sleep feature. If more than one piece of
software makes this call, auto sleep may not be reenabled when you
think it should be. ▲

Bits 31–24 Flags

Bits 23–16 Warning level

Bits 15–8 Reserved

Bits 7–0 Battery level
About the Power Manager Interface 57

C H A P T E R 4

Power Manager Interface
ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for AutoSleepControl
is 13 ($0D) in the low word of register D0. The Boolean value is passed in the high word
of register D0.

GetIntModemInfo 4

You can use the GetIntModemInfo routine to find out information about the
internal modem.

unsigned long GetIntModemInfo();

DESCRIPTION

The GetIntModemInfo routine returns a 32-bit field containing information that
describes the features and state of the internal modem. It can be called whether or not
a modem is installed and will return the correct information.

If a bit is set, that feature or state is supported or selected; if the bit is cleared, that feature
is not supported or selected. Undefined bits are reserved by Apple for future expansion.

Field descriptions

Bit
Bit name number Description

hasInternalModem 0 An internal modem is installed.
intModemRingDetect 1 The modem has detected a ring on the telephone line.
intModemOffHook 2 The internal modem has taken the telephone line

off hook (that is, you can hear the dial tone or
modem carrier).

intModemRingWakeEnb 3 The computer will come out of sleep mode if the
modem detects a ring on the telephone line and
the computer supports this feature (see the
canWakeupOnRing bit in PMFeatures).

extModemSelected 4 The external modem is selected (if this bit is set, then
the modem port will be connected to port A of the
SCC; if the modem port is not shared by the internal
modem and the SCC, then this bit can be ignored).

Bits 15–31 contain the modem type, which will take on one of the following values:

–1 Modem is installed but type not recognized.

0 No modem is installed.

1 Modem is a serial modem.

2 Modem is a PowerBook Duo–style Express Modem.

3 Modem is a PowerBook 160/180–style Express Modem.
58 About the Power Manager Interface

C H A P T E R 4

Power Manager Interface
ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetIntModemInfo is
14 ($0E) in the low word of register D0. The bit field to set is passed in the high word of
register D0.

SetIntModemState 4

You can use the SetIntModemState routine to set some parts of the state of the
internal modem.

void SetIntModemState(short theState);

DESCRIPTION

The SetIntModemState routine configures some of the internal modem’s state
information. Currently the only items that can be changed are the internal/external
modem selection and the wakeup-on-ring feature.

To change an item of state information, the calling program sets the corresponding bit in
theState. In other words, to change the internal/external modem setting, set bit 4 of
theState to 1. To select the internal modem, bit 15 should be set to 0; to select the
external modem, bit 15 should be set to 1.Using this method, the bits may be set or
cleared independently, but they may not be set to different states at the same time.

Note
In some PowerBook computers, there is a hardware switch to connect
either port A of the SCC or the internal modem to the modem port. The
two are physically separated, but software emulates the serial port
interface for those applications that don’t use the Communications
Toolbox. You can check the hasSharedModemPort bit returned by
PMFeatures to determine which way the computer is set up. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetIntModemState
is 15 ($0F) in the low word of register D0. The bit field is returned in register D0.

MaximumProcessorSpeed 4

You can use the MaximumProcessorSpeed routine to find out the maximum speed of
the computer’s microprocessor.

short MaximumProcessorSpeed();
About the Power Manager Interface 59

C H A P T E R 4

Power Manager Interface
DESCRIPTION

The MaximumProcessorSpeed routine returns the maximum clock speed of the
computer’s microprocessor, in MHz.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
MaximumProcessorSpeed is 16 ($10) in the low word of register D0. The processor
speed value is returned in the low word of register D0.

CurrentProcessorSpeed 4

You can use the CurrentProcessorSpeed routine to find out the current clock speed
of the microprocessor.

short CurrentProcessorSpeed();

DESCRIPTION

The CurrentProcessorSpeed routine returns the current clock speed of the
computer’s microprocessor, in MHz. The value returned will be different from
the maximum processor speed if the computer has been configured to run with a
reduced processor speed to conserve power.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
CurrentProcessorSpeed is 17 ($11) in the low word of register D0. The
processor speed value is returned in the low word of register D0.

FullProcessorSpeed 4

You can use the FullProcessorSpeed routine to find out whether the computer will
run at full speed the next time it restarts.

Boolean FullProcessorSpeed();

DESCRIPTION

The FullProcessorSpeed routine returns a Boolean value of true if, on the next
restart, the computer will start up at its maximum processor speed; it returns false if
the computer will start up at its reduced processor speed.
60 About the Power Manager Interface

C H A P T E R 4

Power Manager Interface
ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
FullProcessorSpeed is 18 ($12) in the low word of register D0. The Boolean
result is returned in the low byte of register D0.

SetProcessorSpeed 4

You can use the SetProcessorSpeed routine to set the clock speed the microprocessor
will use the next time it is restarted.

Boolean SetProcessorSpeed(Boolean fullSpeed);

DESCRIPTION

The SetProcessorSpeed routine sets the processor speed that the computer will use
the next time it is restarted. If the value of fullSpeed is set to true, the processor will
start up at its full speed (the speed returned by MaximumProcessorSpeed, described
on page 59). If the value of fullSpeed is set to false, the processor will start up at its
reduced speed.

For PowerBook models that support changing the processor speed dynamically, the
processor speed will also be changed. If the speed is actually changed,
SetProcessorSpeed will return true; if the speed isn’t changed, it will return false.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetProcessorSpeed
is 19 ($13) in the low word of register D0. The Boolean value to set is passed in the high
word of register D0. The Boolean result is returned in register D0.

GetSCSIDiskModeAddress 4

You can use the GetSCSIDiskModeAddress routine to find out the SCSI ID the
computer uses in SCSI disk mode.

short GetSCSIDiskModeAddress();

DESCRIPTION

The GetSCSIDiskModeAddress routine returns the SCSI ID that the computer uses
when it is started up in SCSI disk mode. The returned value is in the range 1 to 6.
About the Power Manager Interface 61

C H A P T E R 4

Power Manager Interface
Note
When the computer is in SCSI disk mode, the computer
appears as a hard disk to another computer. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
GetSCSIDiskModeAddress is 20 ($14) in the low word of register D0. The
SCSI ID is returned in the low word of register D0.

SetSCSIDiskModeAddress 4

You can use the SetSCSIDiskModeAddress routine to set the SCSI ID for the
computer to use in SCSI disk mode.

void SetSCSIDiskModeAddress(short scsiAddress);

DESCRIPTION

The SetSCSIDiskModeAddress routine sets the SCSI ID that the computer will use if
it is started up in SCSI disk mode.

The value of scsiAddress must be in the range of 1 to 6. If any other value is given, the
software sets the SCSI ID for SCSI disk mode to 2.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
SetSCSIDiskModeAddress is 21 ($15) in the low word of register D0. The
SCSI ID to set is passed in the high word of register D0.

GetWakeupTimer 4

You can use the GetWakeupTimer routine to find out when the computer will wake up
from sleep mode.

void GetWakeupTimer(WakeupTime *theTime);
62 About the Power Manager Interface

C H A P T E R 4

Power Manager Interface
DESCRIPTION

The GetWakeupTimer routine returns the time when the computer will wake up from
sleep mode.

If the PowerBook model doesn’t support the wakeup timer, GetWakeupTimer returns a
value of 0. The time and the enable flag are returned in the following structure:

typedef struct WakeupTime {

 unsigned long wakeTime; /* wakeup time (same format as the time) */

 char wakeEnabled; /* 1=enable timer, 0=disable timer */

} WakeupTime;

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetWakeupTimer
is 22 ($16) in the low word of register D0. The pointer to WakeupTime is passed in
register A0.

SetWakeupTimer 4

You can use the SetWakeupTimer routine to set the time when the computer will wake
up from sleep mode.

void SetWakeupTimer(WakeupTime *theTime);

DESCRIPTION

The SetWakeupTimer routine sets the time when the computer will wake up from
sleep mode and enables or disables the timer. On a PowerBook model that doesn’t
support the wakeup timer, SetWakeupTimer does nothing.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetWakeupTimer
is 23 ($17) in the low word of register D0. The pointer to WakeupTime is passed in
register A0.
About the Power Manager Interface 63

C H A P T E R 4

Power Manager Interface
IsProcessorCyclingEnabled 4

You can use the IsProcessorCyclingEnabled routine to find out whether processor
cycling is enabled.

Boolean IsProcessorCyclingEnabled();

DESCRIPTION

The IsProcessorCyclingEnabled routine returns a Boolean value of true if
processor cycling is currently enabled, or false if it is disabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
IsProcessorCyclingEnabled is 24 ($18) in the low word of register D0.
The Boolean result is returned in register D0.

EnableProcessorCycling 4

You can use the EnableProcessorCycling routine to turn the processor cycling
feature on and off.

void EnableProcessorCycling(Boolean enable);

DESCRIPTION

The EnableProcessorCycling routine enables processor cycling if a value of true is
passed in, and disables it if false is passed.

▲ W A R N I N G

You should follow the advice of the mustProcessorCycle bit in the
feature flags when turning processor cycling off. Turning processor
cycling off when it’s not recommended can result in hardware failures
due to overheating. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
EnableProcessorCycling is 25 ($19) in the low word of register D0.
The Boolean value to set is passed in the high word of register D0.
64 About the Power Manager Interface

C H A P T E R 4

Power Manager Interface
BatteryCount 4

You can use the BatteryCount routine to find out how many batteries the
computer supports.

short BatteryCount();

DESCRIPTION

The BatteryCount routine returns the number of batteries that are supported
internally by the computer. The value of BatteryCount returned may not be the
same as the number of batteries currently installed.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for BatteryCount is 26
($1A) in the low word of register D0. The number of batteries supported is returned in
the low word of register D0.

GetBatteryVoltage 4

You can use the GetBatteryVoltage routine to find out the battery voltage.

Fixed GetBatteryVoltage(short whichBattery);

DESCRIPTION

The GetBatteryVoltage routine returns the battery voltage as a fixed-point number.

The value of whichBattery should be in the range 0 to BatteryCount()–1. If the
value of whichBattery is out of range, or the selected battery is not installed,
GetBatteryVoltage will return a result of 0.0 volts.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
GetBatteryVoltage is 27 ($1B) in the low word of register D0. The battery
number is passed in the high word of register D0. The 32-bit value of the battery
voltage is returned in register D0.
About the Power Manager Interface 65

C H A P T E R 4

Power Manager Interface
GetBatteryTimes 4

You can use the GetBatteryTimes routine to find out about how much battery
time remains.

void GetBatteryTimes (short whichBattery, BatteryTimeRec *theTimes);

DESCRIPTION

The GetBatteryTimes routine returns information about the time remaining on
the computer’s battery or batteries. The information returned has the following
data structure:

typedef struct BatteryTimeRec {

 unsigned long expectedBatteryTime;/* estimated time remaining */

 unsigned long minimumBatteryTime;/* minimum time remaining */

 unsigned long maximumBatteryTime;/* maximum time remaining */

 unsigned long timeUntilCharged;/* time until full charge */

} BatteryTimeRec;

The time values are in seconds. The value of expectedBatteryTime is the estimated
time remaining based on current usage patterns. The values of minimumBatteryTime
and maximumBatteryTime are worst-case and best-case estimates, respectively. The
value of timeUntilCharged is the time that remains until the battery or batteries are
fully charged.

The value of whichBattery determines whether GetBatteryTimes returns the time
information about a particular battery or the total time for all batteries. The value of
GetScaledBatteryInfo should be in the range of 0 to BatteryCount(). If the value
of whichBattery is 0, GetBatteryTimes returns a total time for all the batteries, that
is, the effective battery time for the whole system. If the value of whichBattery is out
of range, or the selected battery is not installed, GetBatteryTimes will return a result
of 0 in all fields. Here is a summary of the effects of the whichBattery parameter:

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetBatteryTimes is
28 ($1C) in the low word of register D0. The pointer to BatteryTimeRec is passed in
register A0.

Value of whichBattery Information returned

0 Total battery time for all batteries

From 1 to BatteryCount() Battery time for the selected battery

Less than 0 or greater than
BatteryCount

0 in all fields of theTimes
66 About the Power Manager Interface

C H A P T E R 4

Power Manager Interface
Header File for Power Manager Dispatch 4
Here is a sample header file for access to the Power Manager.

/**

file: PowerMgrDispatch.h

contains: header file for access to the Power Manager

Copyright 1992-1993 by Apple Computer, Inc. All rights reserved.

**/

#ifndef __PowerMgrDispatch__

#define __PowerMgrDispatch__

#ifndef __TYPES__

#include <Types.h>

#endif

#ifndef gestaltPMgrDispatchExists

#define gestaltPMgrDispatchExists 4 /* gestaltPowerMgrAttr bit:

 1=PowerMgrDispatch exists */

#endif

/* bits in bitfield returned by PMFeatures */

#define hasWakeupTimer 0 /* 1=wakeup timer is supported */

#define hasSharedModemPort 1 /* 1=modem port shared by SCC and internal modem */

#define hasProcessorCycling 2 /* 1=processor cycling is supported */

#define mustProcessorCycle 3 /* 1=processor cycling should not be turned off */

#define hasReducedSpeed 4 /* 1=processor can be started up at reduced speed */

#define dynamicSpeedChange 5 /* 1=processor speed can be switched dynamically */

#define hasSCSIDiskMode 6 /* 1=SCSI disk mode is supported */

#define canGetBatteryTime 7 /* 1=battery time can be calculated */

#define canWakeupOnRing 8 /* 1=can wake up when the modem detects a ring */
About the Power Manager Interface 67

C H A P T E R 4

Power Manager Interface
/* bits in bitfield returned by GetIntModemInfo and set by SetIntModemState */

#define hasInternalModem 0 /* 1=internal modem installed */

#define intModemRingDetect 1 /* 1=internal modem has detected a ring */

#define intModemOffHook 2 /* 1=internal modem is off hook */

#define intModemRingWakeEnb 3 /* 1=wake up on ring is enabled */

#define extModemSelected 4 /* 1=external modem selected */

#define modemSetBit 15 /* 1=set bit, 0=clear bit (SetIntModemState) */

/* information returned by GetScaledBatteryInfo */

struct BatteryInfo {

unsigned charflags; /* misc flags (see below) */

unsigned charwarningLevel; /* scaled warning level (0-255) */

char reserved; /* reserved for internal use */

unsigned charbatteryLevel; /* scaled battery level (0-255) */

};

typedef struct BatteryInfo BatteryInfo;

/* bits in BatteryInfo.flags */

#define batteryInstalled 7 /* 1=battery is currently connected */

#define batteryCharging 6 /* 1=battery is being charged */

#define chargerConnected 5 /* 1=charger is connected to the PowerBook */

/* (this doesn't mean the charger is plugged in) */

/* hard disk spindown notification queue element */

typedef struct HDQueueElement HDQueueElement;

typedef pascal void (*HDSpindownProc)(HDQueueElement *theElement);
68 About the Power Manager Interface

C H A P T E R 4

Power Manager Interface
struct HDQueueElement {

Ptr hdQLink; /* pointer to next queue element */

short hdQType; /* queue element type (must be HDQType) */

short hdFlags; /* miscellaneous flags */

HDSpindownProc hdProc; /* pointer to routine to call */

long hdUser; /* user-defined (variable storage, etc.) */

};

#define HDPwrQType'HD' /* queue element type */

/* wakeup time record */

typedef struct WakeupTime {

unsigned long wakeTime; /* wakeup time (same format as current time) */

char wakeEnabled; /* 1=enable wakeup timer, 0=disable wakeup timer */

} WakeupTime;

/* battery time information (in seconds) */

typedef struct BatteryTimeRec {

unsigned long expectedBatteryTime; /* estimated battery time remaining */

unsigned long minimumBatteryTime; /* minimum battery time remaining */

unsigned long maximumBatteryTime; /* maximum battery time remaining */

unsigned long timeUntilCharged; /* time until battery is fully charged */

} BatteryTimeRec;

#ifdef __cplusplus

extern "C" {

#endif
About the Power Manager Interface 69

C H A P T E R 4

Power Manager Interface
#pragma parameter __D0 PMSelectorCount(__D0)

short PMSelectorCount()

= {0x7000, 0xA09E};

#pragma parameter __D0 PMFeatures

unsigned long PMFeatures()

= {0x7001, 0xA09E};

#pragma parameter __D0 GetSleepTimeout

unsigned char GetSleepTimeout()

= {0x7002, 0xA09E};

#pragma parameter __D0 SetSleepTimeout(__D0)

void SetSleepTimeout(unsigned char timeout)

= {0x4840, 0x303C, 0x0003, 0xA09E};

#pragma parameter __D0 GetHardDiskTimeout

unsigned char GetHardDiskTimeout()

= {0x7004, 0xA09E};

#pragma parameter __D0 SetHardDiskTimeout(__D0)

void SetHardDiskTimeout(unsigned char timeout)

= {0x4840, 0x303C, 0x0005, 0xA09E};

#pragma parameter __D0 HardDiskPowered

Boolean HardDiskPowered()

= {0x7006, 0xA09E};
70 About the Power Manager Interface

C H A P T E R 4

Power Manager Interface
#pragma parameter __D0 SpinDownHardDisk

void SpinDownHardDisk()

= {0x7007, 0xA09E};

#pragma parameter __D0 IsSpindownDisabled

Boolean IsSpindownDisabled()

= {0x7008, 0xA09E};

#pragma parameter __D0 SetSpindownDisable(__D0)

void SetSpindownDisable(Boolean setDisable)

= {0x4840, 0x303C, 0x0009, 0xA09E};

#pragma parameter __D0 HardDiskQInstall(__A0)

OSErr HardDiskQInstall(HDQueueElement *theElement)

= {0x700A, 0xA09E};

#pragma parameter __D0 HardDiskQRemove(__A0)

OSErr HardDiskQRemove(HDQueueElement *theElement)

= {0x700B, 0xA09E};

#pragma parameter __D0 GetScaledBatteryInfo(__D0,__A0)

void GetScaledBatteryInfo(short whichBattery, BatteryInfo *theInfo)

= {0x4840, 0x303C, 0x000C, 0xA09E, 0x2080};

#pragma parameter __D0 AutoSleepControl(__D0)

void AutoSleepControl(Boolean enableSleep)

= {0x4840, 0x303C, 0x000D, 0xA09E};
About the Power Manager Interface 71

C H A P T E R 4

Power Manager Interface
#pragma parameter __D0 GetIntModemInfo(__D0)

unsigned long GetIntModemInfo()

= {0x700E, 0xA09E};

#pragma parameter __D0 SetIntModemState(__D0)

void SetIntModemState(short theState)

= {0x4840, 0x303C, 0x000F, 0xA09E};

#pragma parameter __D0 MaximumProcessorSpeed

short MaximumProcessorSpeed()

= {0x7010, 0xA09E};

#pragma parameter __D0 CurrentProcessorSpeed

short CurrentProcessorSpeed()

= {0x7011, 0xA09E};

#pragma parameter __D0 FullProcessorSpeed

Boolean FullProcessorSpeed()

= {0x7012, 0xA09E};

#pragma parameter __D0 SetProcessorSpeed(__D0)

Boolean SetProcessorSpeed(Boolean fullSpeed)

= {0x4840, 0x303C, 0x0013, 0xA09E};

#pragma parameter __D0 GetSCSIDiskModeAddress

short GetSCSIDiskModeAddress()

= {0x7014, 0xA09E};
72 About the Power Manager Interface

C H A P T E R 4

Power Manager Interface
#pragma parameter __D0 SetSCSIDiskModeAddress(__D0)

void SetSCSIDiskModeAddress(short scsiAddress)

= {0x4840, 0x303C, 0x0015, 0xA09E};

#pragma parameter __D0 GetWakeupTimer(__A0)

void GetWakeupTimer(WakeupTime *theTime)

= {0x7016, 0xA09E};

#pragma parameter __D0 SetWakeupTimer(__A0)

void SetWakeupTimer(WakeupTime *theTime)

= {0x7017, 0xA09E};

#pragma parameter __D0 IsProcessorCyclingEnabled

Boolean IsProcessorCyclingEnabled()

= {0x7018, 0xA09E};

#pragma parameter __D0 EnableProcessorCycling(__D0)

void EnableProcessorCycling(Boolean enable)

= {0x4840, 0x303C, 0x0019, 0xA09E};

#pragma parameter __D0 BatteryCount

short BatteryCount()

= {0x701A, 0xA09E};

#pragma parameter __D0 GetBatteryVoltage(__D0)

Fixed GetBatteryVoltage(short whichBattery)

= {0x4840, 0x303C, 0x001B, 0xA09E};
About the Power Manager Interface 73

C H A P T E R 4

Power Manager Interface
#pragma parameter __D0 GetBatteryTimes(__D0,__A0)

void GetBatteryTimes(BatteryTimeRec *theTimes)

= {0x4840, 0x303C, 0x001C, 0xA09E};

#ifdef __cplusplus

}

#endif

#endif
74 About the Power Manager Interface

A P P E N D I X

Figure A-0
Listing A-0
Table A-0
Color Lookup Table A

This appendix contains more information about the color lookup table used in the
PowerBook Duo 280 and 280c computers. Table A-1 shows the color values for each
index. Index numbers are shown in hexadecimal ($0000) and decimal (0). Red (R), green
(G), and blue (B) color values are shown in hexadecimal ($0000).

The first 215 entries are combinations, made up of R, G, and B values of $0000, $3333,
$6666, $9999, $CCCC, and $FFFF. You should generally select colors from those 215
entries of the CLUT.

The last 40 entries are assigned to red ramp, green ramp, blue ramp, and gray scale. The
values of those last 40 entries can be dithered, either spatially or temporally, to simluate
the appearance of intermediate colors. Each colored ramp consists of a single color with
values of $0000, $1111, $2222, $4444, $5555, $7777, $8888, $AAAA, $BBBB, $DDDD, and
$EEEE. The gray ramp has those same values in all three color channels.

Table A-1 Color lookup table

Index
(hexadecimal)

Index
(decimal) R value G value B value

$0000 0 $FFFF $FFFF $FFFF

$0001 1 $FFFF $FFFF $CCCC

$0002 2 $FFFF $FFFF $9999

$0003 3 $FFFF $FFFF $6666

$0004 4 $FFFF $FFFF $3333

$0005 5 $FFFF $FFFF $0000

$0006 6 $FFFF $CCCC $FFFF

$0007 7 $FFFF $CCCC $CCCC

$0008 8 $FFFF $CCCC $9999

$0009 9 $FFFF $CCCC $6666

$000A 10 $FFFF $CCCC $3333

$000B 11 $FFFF $CCCC $0000

$000C 12 $FFFF $9999 $FFFF

$000D 13 $FFFF $9999 $CCCC

$000E 14 $FFFF $9999 $9999

$000F 15 $FFFF $9999 $6666

continued
75

A P P E N D I X

Color Lookup Table
$0010 16 $FFFF $9999 $3333

$0011 17 $FFFF $9999 $0000

$0012 18 $FFFF $6666 $FFFF

$0013 19 $FFFF $6666 $CCCC

$0014 20 $FFFF $6666 $9999

$0015 21 $FFFF $6666 $6666

$0016 22 $FFFF $6666 $3333

$0017 23 $FFFF $6666 $0000

$0018 24 $FFFF $3333 $FFFF

$0019 25 $FFFF $3333 $CCCC

$001A 26 $FFFF $3333 $9999

$001B 27 $FFFF $3333 $6666

$001C 28 $FFFF $3333 $3333

$001D 29 $FFFF $3333 $0000

$001E 30 $FFFF $0000 $FFFF

$001F 31 $FFFF $0000 $CCCC

$0020 32 $FFFF $0000 $9999

$0021 33 $FFFF $0000 $6666

$0022 34 $FFFF $0000 $3333

$0023 35 $FFFF $0000 $0000

$0024 36 $CCCC $FFFF $FFFF

$0025 37 $CCCC $FFFF $CCCC

$0026 38 $CCCC $FFFF $9999

$0027 39 $CCCC $FFFF $6666

$0028 40 $CCCC $FFFF $3333

$0029 41 $CCCC $FFFF $0000

$002A 42 $CCCC $CCCC $FFFF

$002B 43 $CCCC $CCCC $CCCC

$002C 44 $CCCC $CCCC $CCCC

$002D 45 $CCCC $CCCC $6666

continued

Table A-1 Color lookup table (continued)

Index
(hexadecimal)

Index
(decimal) R value G value B value
76

A P P E N D I X

Color Lookup Table
$002E 46 $CCCC $CCCC $3333

$002F 47 $CCCC $CCCC $0000

$0030 48 $CCCC $9999 $FFFF

$0031 49 $CCCC $9999 $CCCC

$0032 50 $CCCC $9999 $9999

$0033 51 $CCCC $9999 $6666

$0034 52 $CCCC $9999 $3333

$0035 53 $CCCC $9999 $0000

$0036 54 $CCCC $6666 $FFFF

$0037 55 $CCCC $6666 $CCCC

$0038 56 $CCCC $6666 $9999

$0039 57 $CCCC $6666 $6666

$003A 58 $CCCC $6666 $3333

$003B 59 $CCCC $6666 $0000

$003C 60 $CCCC $3333 $FFFF

$003D 61 $CCCC $3333 $CCCC

$003E 62 $CCCC $3333 $9999

$003F 63 $CCCC $3333 $6666

$0040 64 $CCCC $3333 $3333

$0041 65 $CCCC $3333 $0000

$0042 66 $CCCC $0000 $FFFF

$0043 67 $CCCC $0000 $CCCC

$0044 68 $CCCC $0000 $9999

$0045 69 $CCCC $0000 $6666

$0046 70 $CCCC $0000 $3333

$0047 71 $CCCC $0000 $0000

$0048 72 $9999 $FFFF $FFFF

$0049 73 $9999 $FFFF $CCCC

$004A 74 $9999 $FFFF $9999

$004B 75 $9999 $FFFF $6666

continued

Table A-1 Color lookup table (continued)

Index
(hexadecimal)

Index
(decimal) R value G value B value
77

A P P E N D I X

Color Lookup Table
$004C 76 $9999 $FFFF $3333

$004D 77 $9999 $FFFF $0000

$004E 78 $9999 $9999 $FFFF

$004F 79 $9999 $CCCC $CCCC

$0050 80 $9999 $CCCC $9999

$0051 81 $9999 $CCCC $6666

$0052 82 $9999 $CCCC $3333

$0053 83 $9999 $CCCC $0000

$0054 84 $9999 $9999 $FFFF

$0055 85 $9999 $9999 $CCCC

$0056 86 $9999 $9999 $9999

$0057 87 $9999 $9999 $6666

$0058 88 $9999 $9999 $3333

$0059 89 $9999 $9999 $0000

$005A 90 $9999 $6666 $FFFF

$005B 91 $9999 $6666 $CCCC

$005C 92 $9999 $6666 $9999

$005D 93 $9999 $6666 $6666

$005E 94 $9999 $6666 $3333

$005F 95 $9999 $6666 $0000

$0060 96 $9999 $3333 $FFFF

$0061 97 $9999 $3333 $CCCC

$0062 98 $9999 $3333 $9999

$0063 99 $9999 $3333 $6666

$0064 100 $9999 $3333 $3333

$0065 101 $9999 $3333 $0000

$0066 102 $9999 $0000 $FFFF

$0067 103 $9999 $0000 $CCCC

$0068 104 $9999 $0000 $9999

$0069 105 $9999 $0000 $6666

continued

Table A-1 Color lookup table (continued)

Index
(hexadecimal)

Index
(decimal) R value G value B value
78

A P P E N D I X

Color Lookup Table
$006A 106 $9999 $0000 $3333

$006B 107 $9999 $0000 $0000

$006C 108 $6666 $FFFF $FFFF

$006D 109 $6666 $FFFF $CCCC

$006E 110 $6666 $FFFF $9999

$006F 111 $6666 $FFFF $6666

$0070 112 $6666 $FFFF $3333

$0071 113 $6666 $FFFF $0000

$0072 114 $6666 $CCCC $FFFF

$0073 115 $6666 $CCCC $CCCC

$0074 116 $6666 $CCCC $9999

$0075 117 $6666 $CCCC $6666

$0076 118 $6666 $CCCC $3333

$0077 119 $6666 $CCCC $0000

$0078 120 $6666 $9999 $FFFF

$0079 121 $6666 $9999 $CCCC

$007A 122 $6666 $9999 $9999

$007B 123 $6666 $9999 $6666

$007C 124 $6666 $9999 $3333

$007D 125 $6666 $9999 $0000

$007E 126 $6666 $6666 $FFFF

$007F 127 $6666 $6666 $CCCC

$0080 128 $6666 $6666 $9999

$0081 129 $6666 $6666 $6666

$0082 130 $6666 $6666 $3333

$0083 131 $6666 $6666 $0000

$0084 132 $6666 $3333 $FFFF

$0085 133 $6666 $3333 $CCCC

$0086 134 $6666 $3333 $9999

$0087 135 $6666 $3333 $6666

continued

Table A-1 Color lookup table (continued)

Index
(hexadecimal)

Index
(decimal) R value G value B value
79

A P P E N D I X

Color Lookup Table
$0088 136 $6666 $3333 $3333

$0089 137 $6666 $3333 $0000

$008A 138 $6666 $0000 $FFFF

$008B 139 $6666 $0000 $CCCC

$008C 140 $6666 $0000 $9999

$008D 141 $6666 $0000 $6666

$008E 142 $6666 $0000 $3333

$008F 143 $6666 $0000 $0000

$0090 144 $3333 $FFFF $FFFF

$0091 145 $3333 $FFFF $CCCC

$0092 146 $3333 $FFFF $9999

$0093 147 $3333 $FFFF $6666

$0094 148 $3333 $FFFF $3333

$0095 149 $3333 $FFFF $0000

$0096 150 $3333 $CCCC $FFFF

$0097 151 $3333 $CCCC $CCCC

$0098 152 $3333 $CCCC $9999

$0099 153 $3333 $CCCC $6666

$009A 154 $3333 $CCCC $3333

$009B 155 $3333 $CCCC $0000

$009C 156 $3333 $9999 $FFFF

$009D 157 $3333 $9999 $CCCC

$009E 158 $3333 $9999 $9999

$009F 159 $3333 $9999 $6666

$00A0 160 $3333 $9999 $3333

$00A1 161 $3333 $9999 $0000

$00A2 162 $3333 $6666 $FFFF

$00A3 163 $3333 $6666 $CCCC

$00A4 164 $3333 $6666 $9999

$00A5 165 $3333 $6666 $6666

continued

Table A-1 Color lookup table (continued)

Index
(hexadecimal)

Index
(decimal) R value G value B value
80

A P P E N D I X

Color Lookup Table
$00A6 166 $3333 $6666 $3333

$00A7 167 $3333 $6666 $0000

$00A8 168 $3333 $3333 $FFFF

$00A9 169 $3333 $3333 $CCCC

$00AA 170 $3333 $3333 $9999

$00AB 171 $3333 $3333 $6666

$00AC 172 $3333 $3333 $3333

$00AD 173 $3333 $3333 $0000

$00AE 174 $3333 $0000 $FFFF

$00AF 175 $3333 $0000 $CCCC

$00B0 176 $3333 $0000 $9999

$00B1 177 $3333 $0000 $6666

$00B2 178 $3333 $0000 $3333

$00B3 179 $3333 $0000 $0000

$00B4 180 $0000 $FFFF $FFFF

$00B5 181 $0000 $FFFF $CCCC

$00B6 182 $0000 $FFFF $9999

$00B7 183 $0000 $FFFF $6666

$00B8 184 $0000 $FFFF $3333

$00B9 185 $0000 $FFFF $0000

$00BA 186 $0000 $CCCC $FFFF

$00BB 187 $0000 $CCCC $CCCC

$00BC 188 $0000 $CCCC $9999

$00BD 189 $0000 $CCCC $6666

$00BE 190 $0000 $CCCC $3333

$00BF 191 $0000 $CCCC $0000

$00C0 192 $0000 $9999 $FFFF

$00C1 193 $0000 $9999 $CCCC

$00C2 194 $0000 $9999 $9999

$00C3 195 $0000 $9999 $6666

continued

Table A-1 Color lookup table (continued)

Index
(hexadecimal)

Index
(decimal) R value G value B value
81

A P P E N D I X

Color Lookup Table
$00C4 196 $0000 $9999 $3333

$00C5 197 $0000 $9999 $0000

$00C6 198 $0000 $6666 $FFFF

$00C7 199 $0000 $6666 $CCCC

$00C8 200 $0000 $6666 $9999

$00C9 201 $0000 $6666 $6666

$00CA 202 $0000 $6666 $3333

$00CB 203 $0000 $3333 $0000

$00CC 204 $0000 $3333 $FFFF

$00CD 205 $0000 $3333 $CCCC

$00CE 206 $0000 $3333 $9999

$00CF 207 $0000 $3333 $6666

$00D0 208 $0000 $3333 $3333

$00D1 209 $0000 $0000 $0000

$00D2 210 $0000 $0000 $FFFF

$00D3 211 $0000 $0000 $CCCC

$00D4 212 $0000 $0000 $9999

$00D5 213 $0000 $0000 $6666

$00D6 214 $0000 $0000 $3333

$00D7 215 $EEEE $0000 $0000

$00D8 216 $DDDD $0000 $0000

$00D9 217 $BBBB $0000 $0000

$00DA 218 $AAAA $0000 $0000

$00DB 219 $8888 $0000 $0000

$00DC 220 $7777 $0000 $0000

$00DD 221 $5555 $0000 $0000

$00DE 222 $4444 $0000 $0000

$00DF 223 $2222 $0000 $0000

$00E0 224 $1111 $0000 $0000

$00E1 225 $0000 $EEEE $0000

continued

Table A-1 Color lookup table (continued)

Index
(hexadecimal)

Index
(decimal) R value G value B value
82

A P P E N D I X

Color Lookup Table
$00E2 226 $0000 $0000 $0000

$00E3 227 $0000 $BBBB $0000

$00E4 228 $0000 $AAAA $0000

$00E5 229 $0000 $8888 $0000

$00E6 230 $0000 $7777 $0000

$00E7 231 $0000 $5555 $0000

$00E8 232 $0000 $4444 $0000

$00E9 233 $0000 $2222 $0000

$00EA 234 $0000 $1111 $0000

$00EB 235 $0000 $0000 $EEEE

$00EC 236 $0000 $0000 $DDDD

$00ED 237 $0000 $0000 $BBBB

$00EE 238 $0000 $0000 $AAAA

$00EF 239 $0000 $0000 $8888

$00F0 240 $0000 $0000 $7777

$00F1 241 $0000 $0000 $5555

$00F2 242 $0000 $0000 $4444

$00F3 243 $0000 $0000 $2222

$00F4 244 $0000 $0000 $1111

$00F5 245 $EEEE $EEEE $EEEE

$00F6 246 $DDDD $DDDD $DDDD

$00F7 247 $BBBB $BBBB $BBBB

$00F8 248 $AAAA $AAAA $AAAA

$00F9 249 $8888 $8888 $8888

$00FA 250 $7777 $7777 $7777

$00FB 251 $5555 $5555 $5555

$00FC 252 $4444 $4444 $4444

$00FD 253 $2222 $2222 $2222

$00FE 254 $1111 $1111 $1111

$00FF 255 $0000 $0000 $0000

Table A-1 Color lookup table (continued)

Index
(hexadecimal)

Index
(decimal) R value G value B value
83

Index
Numerals

16-bit color 26

A

abbreviations ix
AC adapter 4
active matrix display 12
APDA addresses viii
AutoSleepControl routine 57

B

battery 3, 4
battery conservation

custom controls 30
easy controls 30

BatteryCount routine 65
box flag 24
bracket, hard disk drive 16
bus translator IC 2

C

clamshell housing modifications 21
color lookup table 75
color screen controller 11
color table 25
Combo IC 3
Communications Toolbox 29
compatibility 4
configurations 3
control panels 28–30

Control Strip 31
PowerBook 29
PowerBook Setup 28, 29

control strip 27
adding modules to 31
functions 28
module files 32
module interface 32
module reentrancy 33

module resources 32
Control Strip control panel 31
control strip Gestalt selectors 44
control strip module messages ??–37
sdevCloseModule 35
sdevDrawStatus 36
sdevFeatures 35
sdevGetDisplayWidth 35
sdevInitModule 34
sdevMouseClick 37
sdevPeriodicTickle 36
sdevSaveSettings 37
sdevShowBalloonHelp 37

control strip module utility routines 38–44
SBDrawBarGraph 43
SBGetBarGraphWidth 42
SBGetDetachedIndString 40
SBGetDetachIconSuite 40
SBIsControlStripVisible 38
SBLoadPreferences 39
SBModalDialogInContext 44
SBOpenModuleResourceFile 39
SBSafeToAccessStartupDisk 39
SBSavePreferences 40
SBShowHelpString 42
SBShowHideControlStrip 38
SBTrackpopupMenu 41
SBTrackSlider 42

conventions used viii
CPU ID bits 24
CSC (color screen controller) 11
CurrentProcessorSpeed routine 60
custom controls 30
custom ICs

Combo 3
CSC 2, 11
MBT 2
MSC 3
Power Manager 3

custom mode 30, 31

D

dimensions, hard disk drive 15
display driver 24
displays

active matrix 12
85

I N D E X
backlighted 12
color 12
DualScan 12
FSTN 12
grayscale 12
number of colors in 4, 12
smearing in 13
supertwist 12
TFT 12
types of 12

DRAM expansion 26
DualScan display 12

E

easy controls 30
easy mode 30, 31
EnableProcessorCycling routine 64
environmental specifications, hard disk drive 13
Express Modem 29

F

features 2
FPU (floating-point unit) 9
FullProcessorSpeed routine 60

G

gestaltMachineType value 27
gestaltPowerMgrAttr selector 47
GetBatteryTimes routine 66
GetBatteryVoltage routine 65
GetHardDiskTimeout routine 51
GetModemInfo routine 58
GetScaledBatteryInfo routine 55
GetSCSIDiskModeAddress routine 61
GetSleepTimeout routine 50
GetWakeupTimer routine 62
grayscale display 25

H

hard disk capacity 3
hard disk drive 2, 13

bracket 16
environmental specifications 13
housing 15
housing requirements 14
installation 14

interface 17
power requirements 20
SCSI connector 17
terminator 19

HardDiskPowered routine 52
HardDiskQInstall routine 54
HardDiskQRemove routine 55
hardware modifications 8
housing, hard disk drive 14, 15

I, J

ID encoding, SCSI 19
identifying the computer 27
installation, hard disk drive 14
interface, hard disk drive 17
internal modem 29
inverter/speaker board 20
I/O connectors 3
IsProcessorCyclingEnabled routine 64
IsSpindownDisabled routine 53

K, L

keyboard 3

M

MacsBug compatibility 5
main logic board 8
MaximumProcessorSpeed routine 59
MC68040 microprocessor 9
MC68LC040 microprocessor 2, 9, 24
memory expansion 4
microphone 3
microprocessor

clock speed 9
type 9

microprocessor speeds 2
modem card 3
modems 29
modifications

clamshell housing 21
hardware 8

N, O

network 26
new features 2
nickel metal hydride battery 3
86

I N D E X
P, Q

peripheral devices 4
PMFeatures routine 49
PMSelectorCount routine 49
PowerBook control panel 29
PowerBook Setup control panel 28, 29
power conservation 31
power management 26, 29
Power Manager IC 3
Power Manager interface routines 47–66
AutoSleepControl 57
BatteryCount 65
CurrentProcessorSpeed 60
EnableProcessorCycling 64
FullProcessorSpeed 60
GetBatteryTimes 66
GetBatteryVoltage 65
GetHardDiskTimeout 51
GetModemInfo 58
GetScaledBatteryInfo 55
GetSCSIDiskModeAddress 61
GetSleepTimeout 50
GetWakeupTimer 62
HardDiskPowered 52
HardDiskQInstall 54
HardDiskQRemove 55
IsProcessorCyclingEnabled 64
IsSpindownDisabled 53
MaximumProcessorSpeed 59
PMFeatures 49
PMSelectorCount 49
SetHardDiskTimeout 52
SetIntModemState 59
SetProcessorSpeed 61
SetSCSIDiskMode 62
SetSleepTimeout 51
SetSpindownDisable 54
SetWakeupTimer 63
SpinDownHardDisk 53

Power Manager software 46
checking for routines 47
dispatching 67
interface routines 46, 47–66
unsafe assumptions 46

power requirements, hard disk drive 20
Preferences file 30
processor 2
processor clock speed 3

R

RAM 3
expansion 4
size of 3

RAM expansion 3, 4
reentrancy in control strip modules 33
reference material vii
ROM

software features 24
system 24
universal 24
version number 24

ROM support
AppleTalk 26
displays 24
docking station 24
DRAM expansion 26
network 26
power management 26

S

SCSI connector
hard disk drive 17
signal assignments 18, 19

SCSI ID encoding 19
serial port 29
SetHardDiskTimeout routine 52
SetIntModemState routine 59
SetProcessorSpeed routine 61
SetSCSIDiskMode routine 62
SetSleepTimeout routine 51
SetSpindownDisable routine 54
SetWakeupTimer routine 63
signal assignments, SCSI connector 18, 19
smearing 13
sound 3
speakers 3
SpinDownHardDisk routine 53
standard units of measure ix
submarining 13
Supertwist display 12
system controller IC 3
system ROM 24

T

terminator, hard disk drive 19
TFT display 12

U, V, W, X, Y, Z

universal ROM 24
87

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple document was written,
edited, and composed on a desktop
publishing system using Apple
Macintosh computers and FrameMaker
software. Proof and final pages were
created on an Apple LaserWriter Pro 630
printer. Line art was created using
Adobe Illustrator. PostScript , the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino and display type is
Helvetica . Bullets are ITC Zapf
Dingbats . Some elements, such as
program listings, are set in Apple Courier.

WRITER
Allen Watson III

DEVELOPMENTAL EDITORS
Wendy Krafft, Beverly Zegarski

ILLUSTRATORS
Deborah Dennis, Shawn Morningstar

Special thanks to Steve Christensen,
Rhoads Hollowell, Mike Puckett, and
Steve Sfarzo.

	PowerBook Duo 280 and 280c Computers
	Contents
	Figures and Tables
	About This Note
	Contents of This Note
	Supplementary Documents
	Conventions and Abbreviations
	Typographical Conventions
	Abbreviations

	Introduction
	Features
	Configurations
	Models and configurations

	Accessory Devices
	Compatibility Issues
	Number of Colors
	Power Manager Interface
	RAM Expansion
	MacsBug Version 6.2.2
	The PDS and the MC68030 Bus

	Hardware Features
	Changes on the Main Logic Board
	Main logic board
	Block diagram
	MC68LC040 Microprocessor
	Bus Translator IC
	Color Screen Controller IC
	DRAM Locations
	VRAM Locations

	Displays
	Grayscale Display
	Color Display

	240 MB Hard Disk Drive
	Environmental Specifications
	Environmental specifications for 240 MB hard disk ...

	Installation
	Hard disk drive installation
	Bracket for the hard disk drive

	Hard Disk Interface
	SCSI Connector
	Connector for the hard disk drive
	Signal assignments on the hard disk drive connecto...
	Signal assignments on the SCSI ID connector
	SCSI ID encoding

	Terminator

	Power Requirements
	Hard disk power requirements

	Inverter/Speaker Board
	Clamshell Case
	The computer in open position

	Software Features
	ROM Software
	MC68LC040 Microprocessor
	Display Driver
	Grayscale Display
	8-Bit Color
	Color lookup table

	16-Bit Color

	Support for Extended DRAM
	Extended Power Management Capabilities
	Network Support

	System Software
	Identifying the PowerBook Duo�280 and�280c Compute...
	Control Strip
	Control strip

	Control Panels
	PowerBook Setup Control Panel
	PowerBook Setup control panel

	PowerBook Control Panel
	Custom and Easy Controls for Battery Conservation
	PowerBook control panel in easy mode
	PowerBook control panel in custom mode
	Power Conservation

	Control Strip Control Panel
	Control Strip control panel

	Adding Control Strip Modules
	Contents of Module Files
	Module Interface
	Module Reentrancy

	Control Strip Module Reference
	Positioning a bar graph
	Direction of a bar graph

	Power Manager Interface
	About the Power Manager Interface
	Things That May Change
	Checking for Routines
	Interface routines and their selector values

	Header File for Power Manager Dispatch

	Color Lookup Table
	Color lookup table�

	Index

