

ð

Developer Note

4/12/96
Developer Press
© Apple Computer, Inc. 1995

ð

Developer Note

Power Macintosh 5400 Computer

ð

Apple Computer, Inc.
© 1996 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, Apple SuperDrive,
LaserWriter, LocalTalk, Macintosh,
Macintosh Centris, Macintosh Quadra,
PlainTalk, PowerBook and QuickTime
are trademarks of Apple Computer,
Inc., registered in the United States and
other countries.
Apple Desktop Bus, Mac, and Power
Macintosh are trademarks of Apple
Computer, Inc.
Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.
America Online is a registered service
mark of America Online, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Motorola is a registered trademark of
Motorola Corporation.
NuBus is a trademark of Texas
Instruments.
PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.
Varityper is a registered trademark of
Varityper, Inc.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, APDA will replace
the media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

iii

Contents

Figures and Tables vii

Preface

About This Note

ix

Contents of This Note ix
Supplemental Reference Documents x

For More Information x
Conventions and Abbreviations xi

Typographical Conventions xi
Standard Abbreviations xii

Chapter 1

Introduction

1

Summary of Features 2
Comparison With Power Macintosh 5200 Computer 3
External Features 4

Front View 4
Back View 5
Access to the Logic Board 6
Front Panel Push Buttons 6
Power On and Off 6

Optional Features 7
TV Tuner 7
Video Input 8
Video Display Mirror Out 9
Communications 9

Compatibility Issues 10
Microprocessor Differences 10

POWER-Clean Code 10
Completion Serialized Instructions 10
Split Cache 11
Data Alignment 11

Communications Slot 11
DAV Slot 11
Expansion Slot 12
RAM Expansion 12
RAM DIMM Dimensions 12
Cache Expansion 12
ATA (IDE) Hard Disk 13

iv

Chapter 2

Architecture

15

Block Diagram and Main ICs 16
PowerPC 603e Microprocessor 16
Memory Subsystem 16
ROM 16
Second Level Cache (Optional) 16
System RAM 18
Custom ICs 18

PSX IC 18
O’Hare IC 18

AWACS Sound IC 19
Cuda IC 19
Valkyrie-AR IC 20

Display RAM 20

Chapter 3

I/O Features

23

Serial I/O Ports 24
ADB Port 25
Disk Drives 26

Floppy Disk Drive 26
ATA (IDE) Hard Disk 27

Hard Disk Specifications 27
Hard Disk Connectors 29
Pin Assignments 29
ATA (IDE) Signal Descriptions 30

CD-ROM Drive 30
SCSI Bus 31

SCSI Connectors 31
SCSI Bus Termination 32

Sound 32
Sound Output 33
Sound Input 33
Sound Input Specifications 33
Routing of the Sound Signals 33
Digitizing Sound 34
Sound Modes 34

Keyboard 34
Built-in Video 35

Optional Video Display Mirror Output Feature 35
External Video Monitors 36

Video Timing Parameters 37

v

Chapter 4

Expansion Features

41

RAM DIMMs 42
RAM DIMM Connectors 43
RAM Address Multiplexing 46
RAM Devices 47
RAM Refresh 47
RAM DIMM Dimensions 47

Level-2 Cache DIMM 49
PCI Expansion Slot 52
The DAV Connector 53

Pin Assignments 55
Signal Descriptions 56
Using the YUV Bus 56
Video Data Format 57

The PCI-Bus Communications Slot 58
PCI-Bus Communications Slot Connector 58
Universal Serial Modem Card 60

Chapter 5

Software Features

65

ROM Software 66
Machine Identification 66

System Software 66
New Features 67

Large Volume Support 67
64-Bit Volume Addresses 67
System-Level Software 67
Application-Level Software 68
Limitations 68

Drive Setup 69
Open Transport 69

New Features of Open Transport 70
Compatibility 70

Open Firmware Startup 71
Monitors & Sound Control Panel 72
Energy Saver Software 73
Features of the New Energy Saver Application 73

Performance Enhancements 74
Dynamic Recompilation Emulator 74
Resource Manager in Native Code 75
Math Library 75
New BlockMove Extensions 75

Hardware Support Features 77
PCI Bus Support 77

Removal of Slot Manager Dependencies 77

vi

PCI Compatibility 78
POWER-Clean Native Code 78
POWER Emulation 79

POWER-Clean Code 79
Limitations of PowerPC 601 Compatibility 79
Emulation and Exception Handling 80
Code Fragments and Cache Coherency 80

Display Manager 81
Support of Native Drivers 81

Chapter 6

Large Volume Support

83

Overview of the Large Volume File System 84
API Changes 84
Allocation Block Size 84
File Size Limits 85
Compatibility Requirements 85

The API Modifications 85

Chapter 7

Software for the ATA (IDE) Hard Disk

93

Introduction to ATA Software 94
ATA Disk Driver 95
ATA Manager 96

ATA Disk Driver Reference 96
High-Level Device Manager Routines 97

ATA Manager Reference 110
The ATA Parameter Block 110
Setting Data Transfer Timing 116

Setting Up PIO Data Transfers 117
Setting Up Multiword and Singleword DMA Data Transfers 117

Functions 117
Result Code Summary 144

Index

147

vii

Figures and Tables

Chapter 1

Introduction

1

Figure 1-1

Front view of the computer 5

Figure 1-2

Back view of the computer 6

Table 1-1

Comparison with the Power Macintosh 5200 series computer 3

Chapter 2

Architecture

15

Figure 2-1

System block diagram 17

Chapter 3

I/O Features

23

Figure 3-1

Serial port sockets 24

Figure 3-2

Maximum dimensions of the hard disk 28

Figure 3-3

Video timing diagram 38

Table 3-1

Serial port signals 24

Table 3-2

ADB connector pin assignments 25

Table 3-3

Pin assignments on the floppy disk connector 26

Table 3-4

Pin assignments on the ATA (IDE) hard disk connector 29

Table 3-5

Signals on the ATA (IDE) hard disk connector 30

Table 3-6

Specifications of the AppleCD 600i CD-ROM drive 31

Table 3-7

Pin assignments for the SCSI connectors 31

Table 3-8

Reset and NMI key combinations 35

Table 3-9

Video mirror connector pin assignments 35

Table 3-10

Maximum pixel depths for video monitors 37

Table 3-11

Monitors supported 37

Table 3-12

Video timing parameters for smaller monitors 39

Table 3-13

Video timing parameters for larger monitors 40

Chapter 4

Expansion Features

41

Figure 4-1

Dimensions of the RAM DIMM 48

Figure 4-2

Location of the DAV connector 54

Figure 4-3

Orientation of the DAV connector 54

Figure 4-4

Video data timing 57

Figure 4-5

Universal modem card for communications slot 61

Table 4-1

Memory sizes and configurations 42

Table 4-2

Pin assignments on the RAM DIMM connectors 43

Table 4-3

RAM DIMM signals 46

Table 4-4

Address multiplexing modes for various DRAM devices 46

Table 4-5

Address multiplexing in noninterleaved banks 47

viii

Table 4-6

Pin and signal assignments for level-2 cache DIMM
connector 49

Table 4-7

Signal descriptions for level-2 cache DIMM connector 50

Table 4-8

PCI signals 52

Table 4-9

Pin assignments on the DAV connector 55

Table 4-10

Descriptions of the signals on the DAV connector 56

Table 4-11

Pin assignments for the PCI-bus communications slot
connector 58

Table 4-12

Pin assignments for a universal serial modem card 62

Chapter 5

Software Features

65

Figure 5-1

Main window of the Monitors & Sound control panel 72

Figure 5-2

Energy Saver application dialog box 73

Table 5-1

Summary of

BlockMove

 routines 76

Chapter 7

Software for the ATA (IDE) Hard Disk

93

Figure 7-1

Relationship of the ATA Manager to the Macintosh system
architecture 94

Figure 7-2

ATA hard disk drive icon 101

Table 7-1

Status functions supported by the ATA disk driver 98

Table 7-2

Control function supported by the ATA disk driver 99

Table 7-3

Control bits in the

ataFlags

 field 114

Table 7-4

ATA Manager functions 118

Table 7-5

ATA register selectors 127

Table 7-6

Register mask selectors 128

Table 7-7

ATA Manager result codes 144

ix

P R E F A C E

About This Note

This developer note describes the Apple Power Macintosh 5400 computer and
emphasizes features that are new or different from previous Macintosh
models. It is intended to help experienced Macintosh hardware and software
developers design compatible products. If you are unfamiliar with Macintosh
computers or would simply like more technical information, you may wish to
read the related technical manuals listed in the section “Supplemental
Reference Documents.”

Contents of This Note 0

The information is arranged in seven chapters and an index:

■

Chapter 1, “Introduction,” gives a summary of the features of the Power
Macintosh 5400 computer, describes the physical appearance, and lists the
available configurations and options.

■

Chapter 2, “Architecture,” describes the internal organization of the
computer. It includes a block diagram and descriptions of the main
components of the logic board.

■

Chapter 3, “I/O Features,” describes the built-in input/output (I/O)
devices and the external I/O ports. It also describes the built-in monitor
configuration of the Power Macintosh 5400 and external video monitors
that can be used with the computer.

■

Chapter 4, “Expansion Features,” describes the expansion slots of the
Power Macintosh 5400 computer. This chapter provides guidelines for
designing cards for the I/O expansion slot and brief descriptions of the
expansion modules for the other slots.

■

Chapter 5, “Software Features,” summarizes the new features of the ROM
software and the system software that accompany the Power Macintosh
5400 computer.

■

Chapter 6, “Large Volume Support,” describes the large volume file
system, and defines the modifications to the application programming
interface to the hierarchical file system that support volume sizes greater
that 4 GB.

■

Chapter 7, “Software for the ATA (IDE) Hard Disk,” gives the program
interface for the system software and the driver that support the internal
IDE hard disk drive.

This developer note also contains an appendix listing abbreviations and an
index.

x

P R E F A C E

Supplemental Reference Documents 0

To supplement the information in this developer note, developers should
have copies of the appropriate Motorola reference books for the
PowerPC™ 603e microprocessor. Software developers should have a copy of
Motorola’s

PowerPC Programmer’s Reference Manual.

Hardware developers
should have copies of Motorola’s

PowerPC 603 RISC Microprocessor User’s
Manual.

For additional information about the digital data format used in the video
input module, refer to

Macintosh DAV Interface for NuBus Expansion Cards,

 part
of

Macintosh Developer Note Number 8,

 APDA catalog number R0566LL/A

.

 For
information about the digital video interface, refer to the

SAA7140 Philips
Desktop Video Handbook

.

Developers may also need copies of the appropriate Apple reference books.

You should have the relevant books of the

Inside Macintos

h series

.

 You should
also have

Guide to the Macintosh Family Hardware,

second edition,

Designing
Cards and Drivers for the Macintosh Family,

third edition, and

Designing PCI
Cards and Drivers for Power Macintosh Computers

. These books are available in
technical bookstores and through APDA.

For More Information 0

The Apple Developer Catalog (ADC) is Apple Computer’s worldwide source for
hundreds of development tools, technical resources, training products, and
information for anyone interested in developing applications on Apple
platforms. Customers receive the Apple Developer Catalog featuring all current
versions of Apple development tools and the most popular third-party
development tools. ADC offers convenient payment and shipping options,
including site licensing.

To order products or to request a complimentary copy of the Apple Developer
Catalog, contact

Apple Developer Catalog
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink ORDER.ADC

Internet order.adc@applelink.apple.com

xi

P R E F A C E

Conventions and Abbreviations 0

This developer note uses the following typographical conventions and
abbreviations.

Typographical Conventions 0
New terms appear in boldface where they are first defined.

Computer-language text—any text that is literally the same as it appears in
computer input or output—appears in Courier font.

Hexadecimal numbers are preceded by a dollar sign ($). For example, the
hexadecimal equivalent of decimal 16 is written as $10.

Note
A note like this contains information that is interesting but not essential
for an understanding of the text. ◆

IMPORTANT

A note like this contains important information that you should read
before proceeding. ▲

▲ W A R N I N G

A note like this directs your attention to something that could cause
damage or result in a loss of data. ▲

Sidebar

Sidebars are for digressions—information that is not
part of the main discussion. A sidebar may contain
background information that is interesting to know,

information about a related subject, or technical details
that are not required reading.

xii

P R E F A C E

Standard Abbreviations 0
When unusual abbreviations appear in this book, the corresponding terms are
also spelled out. Standard units of measure and other widely used
abbreviations are not spelled out. Here are the standard units of measure
used in this developer note:

Here are other abbreviations used in this developer note:

A amperes mA milliamperes

dB decibels µA microamperes

GB gigabytes MB megabytes

Hz hertz MHz megahertz

in. inches mm millimeters

k 1000 ms milliseconds

K 1024 µs microseconds

KB kilobytes ns nanoseconds

kg kilograms Ω ohms

kHz kilohertz sec. seconds

kΩ kilohms V volts

lb. pounds W watts

$n hexadecimal value n

AC alternating current

ADB Apple Desktop Bus

AV audiovisual

AWACS audio waveform amplifier and converter for sound

CD-ROM compact-disk read-only memory

CLUT color lookup table

DAV digital audio video

DESC digital video decoder and scaler

DIMM dual inline memory module

DMA dynamic memory access

DRAM dynamic random-access memory

DVA digital video application

EMI electromagnetic interference

FPU floating-point unit

IC integrated circuit

IDE integrated device electronics

IIC inter-integrated circuit (an internal control bus)

I/O input/output

xiii

P R E F A C E

IR infrared

LS TTL low-power Schottky TTL (a standard type of device)

MMU memory management unit

MOS metal-oxide semiconductor

NTSC National Television Standards Committee (the standard system
used for broadcast TV in North America and Japan)

NMI nonmaskable interrupt

PAL Phase Alternating Line system (the standard for broadcast TV
in most of Europe, Africa, South America, and southern Asia)

PCI Peripheral Component Interconnect

PDS processor-direct slot

PWM pulse-width modulation

RAM random-access memory

RGB a video signal format with separate red, green, and blue
components

RISC reduced instruction set computing

RMS root-mean-square

ROM read-only memory

SANE Standard Apple Numerics Environment

SCSI Small Computer System Interface

SCC serial communications controller

SECAM the standard system used for broadcast TV in France and the
former Soviet countries

SIMM single inline memory module

S-video a type of video connector that keeps luminance and
chrominance separate; also called a Y/C connector

SWIM Super Woz Integrated Machine, a custom IC that controls the
floppy disk interface

TTL transistor-transistor logic (a standard type of device)

VCR video-cassette recorder

VLSI very large scale integration

VRAM video RAM; used for display buffers

Y/C a type of video connector that keeps luminance and
chrominance separate; also called an S-video connector

YUV a video signal format with separate luminance and
chrominance components

C H A P T E R 1

Introduction 1Figure 1-0
Listing 1-0
Table 1-0

C H A P T E R 1

Introduction

2 Summary of Features

The Power Macintosh 5400 computer is a new Macintosh model that incorporate a
PowerPC™ 603e microprocessor running at 100 and 120 MHz, a Level 2 cache expansion
slot, a Peripheral Component Interconnect (PCI) card expansion slot, enhanced AV
features (audio and video input and output), and a new PCI-based communications slot.
The Power Macintosh 5400 computer is housed in an all-in-one enclosure, like that of the
Power Macintosh 5200, featuring a 15-inch monitor with tilt and swivel capability and
stereo speakers.

Summary of Features 1

Here is a summary of the hardware features of the Power Macintosh 5400 computer.
Each feature is described more fully later in this note.

■ Microprocessor: PowerPC 603e microprocessor running at 100 MHz and 120 MHz.

■ RAM: 8 MB soldered to the main logic board; expandable to 136 MB using 168-pin
JEDEC-standard DIMM devices. Two DIMM slots are provided for DRAM expansion.

■ ROM: 4 MB soldered on main logic board; 64-bit ROM data bus width.

■ Cache: 256 KB Level-2 cache on a 160-pin DIMM card (optional)

■ Video configuration: internal video supports built-in 15-inch multiscan monitor; 1 MB
DRAM frame buffer on the main logic board.

■ Video modes supported: 640 by 480 and 800 by 600 @ 16 bits per pixel, and 832 by 624
and @ 8 bits per pixel.

■ Video input: 60 pin DAV connector supports an optional video card for real-time
video display, capture, and overlay. An adapter cable provides backward
compatibility with DVA cards designed for the Power Macintosh 5200 computer.

■ Video output: video mirror feature allows an external monitor to be connected to a
Power Macintosh 5400 computer using an optional video buffer board connected to
the video mirror connector.

■ Sound: 16 bits/channel SRS® stereo surround sound input and output, external jack
for sound in, front jack for headphones, rear jack for stereophonic speakers, two
built-in stereo speakers. The Power Macintosh 5400 also includes a built-in
microphone.

■ TV receiver: optional internal TV tuner.

■ Remote control: infrared

■ Hard disks: one internal 3.5-inch IDE hard disk with 1.2 GB or larger capacity;
external SCSI port for additional SCSI devices. PIO, Singleword DMA, and Multiword
DMA data transfers are supported.

■ Floppy disk: one internal 1.4 MB Apple SuperDrive.

■ 4X-speed CD-ROM drive: internal SCSI connection for optional AppleCD 600
CD-ROM drive

■ Processor bus: 64-bit wide, 40MHz, supporting split address and data tenures.

C H A P T E R 1

Introduction

Comparison With Power Macintosh 5200 Computer 3

■ Standard Macintosh I/O ports: two serial ports, sound input and output jacks, a SCSI
port, and an ADB port.

■ GeoPort: supported on both the modem and printer port.

■ PCI-based communications slot: 112-pin connector accepts an optional modem or
Ethernet interface. This is the first entry-level Power Macintosh with this type of
communications slot.

■ Expansion slot: accepts one 7-inch PCI card.

■ Power switch: soft power controlled from keyboard and remote control.

■ Case design: Power Macintosh 5400 has an all-in-one enclosure similar to the Power
Macintosh 5200 featuring a tilt and swivel monitor and built-in stereo speakers.

■ Fan speed control: The speed of the fan is thermally controlled and is automatically
set to the lowest possible speed to minimize noise. The fan speed varies according to
the temperature inside the enclosure.

■ Energy saving: sleep, startup, and shutdown scheduling can be controlled with an
Energy Saver control panel.

Comparison With Power Macintosh 5200 Computer 1

The Power Macintosh 5400 computer is electrically similar to the Power Macintosh 5200.
Table 1-1 compares the features of these computers.

Table 1-1 Comparison with the Power Macintosh 5200 series computer

Features Power Macintosh 5200 Power Macintosh 5400

Processor type PowerPC 603 PowerPC 603e

Processor speed 75 MHz 100 MHz and 120 MHz

Cache 256 KB level-2 cache 256 KB level-2 cache
(optional)

Amount of RAM 8 MB–64 MB 8 MB–136 MB

RAM expansion 2 SIMMs 2 168-pin DIMMs

Memory bus 32 bits, 37.5 MHz 64 bits, 40 MHz

Video RAM 1 MB (DRAM) 1 MB (DRAM)

Video input optional card for video
input, capture, and overlay

optional card for video
input, capture, and overlay

continued

C H A P T E R 1

Introduction

4 External Features

External Features 1

The Power Macintosh 5400 computer has an integrated design featuring a built-in
15-inch multiscan color monitor with both tilt and swivel capabilities, stereo speakers,
front panel stereo headphone jack, and front panel push button controls for audio and
video.

Front View 1
Figure 1-1 is a front view of a Power Macintosh 5400 computer. The front view shows the
display screen, the built-in microphone and stereo speakers, the openings for the floppy
disk and optional CD-ROM drive, the CD-ROM open and close button, the headphone
jack, the power-on light, the IR sensor for the remote control, and the push buttons that
control the screen intensity and sound level.

Video output optional mirror connector
supports external monitor
operating in mirror mode;

optional mirror connector
supports external monitor
operating in mirror mode;
built-in video supports up to
832-by-624 pixel resolution
at 8 bits per pixel

Sound capabilities 8 or 16 bits/channel; mono
in, stereo out

8 or 16 bits/channel; stereo
in, stereo record, stereo out;
SRS surround sound mode

Remote control built-in infrared (IR) receiver built-in IR receiver

Floppy disk drive 1, internal 1, internal

ADB ports 1 1

Internal hard disk 1 (IDE) 1 (IDE)

Internal CD-ROM optional optional

External SCSI ports 1 1

Communications slot 1, for optional modem or
Ethernet interface (68040 bus
configuration)

1, for optional modem or
Ethernet interface (PCI bus
configuration)

Expansion slot 1 I/O slot (accepts PDS card
for Macintosh LC series)

1 PCI I/O slot for 7-inch card

DMA I/O None 10 DMA channels

Serial ports 2, modem and printer,
LocalTalk supported

2, LocalTalk and GeoPort
supported

Table 1-1 Comparison with the Power Macintosh 5200 series computer (continued)

Features Power Macintosh 5200 Power Macintosh 5400

C H A P T E R 1

Introduction

External Features 5

Figure 1-1 Front view of the computer

Back View 1
The back panel includes the power socket, the reset button, the I/O ports, and openings
for I/O access to the expansion modules: the I/O expansion card, the communications
card, and the video input card.

Figure 1-2 shows the back view of a Power Macintosh 5400 computer.

Mouse

Built-in microphone

Color display

Headphone jack

Floppy disk drive

Sound control
buttons

Screen control
buttons

Keyboard

CD-ROM drive
(optional)

Power-on light

CD-ROM drive
open/close button

 Power keyStereo speakers

Tilt and swivel base

Remote control
sensor

C H A P T E R 1

Introduction

6 External Features

Figure 1-2 Back view of the computer

Access to the Logic Board 1
The logic board can be removed from the case so that the user can add expansion RAM,
Level 2 cache, or plug in an I/O expansion card. To get access to the logic board, you
must first remove the back panel. It is secured by two screws on either side of the I/O
connectors. After removing the screws, you can pull gently on the two latches on the
underside of the computer’s case and the back panel will slip out. You can then grasp the
logic board handle and pull the board straight out the back of the case.

Front Panel Push Buttons 1
The Power Macintosh 5400 computer has two pairs of push buttons on the front panel.
The pair on the left controls the intensity of the screen; the pair on the right controls the
sound level.

Power On and Off 1
The user can turn the power off and on by pressing one of two buttons:

■ the Power key on the keyboard

■ the Power key on the remote control

If files are still open when the user attempts to turn off the computer by using either one
of the Power keys or the Shut Down menu item, the system displays an alert box
warning the user that files are open and should be closed to avoid loss of data.

SCSI port

PCI expansion card
access cover

Monitor Out port
(optional)

Sound output port

Sound input port

Communication
card access cover

Security lock port

TV tuner card
(optional)

Power switch

Power socket

Hard disk drive
(internal)

Printer port

Modem port

ADB port

Video input card
(optional)

C H A P T E R 1

Introduction

Optional Features 7

Optional Features 1

Several features of the Power Macintosh 5400 computer are implemented as plug-in
modules available either as a configuration option at the time of purchase or as a later
upgrade. The modules are designed so that they can be installed by the user.

TV Tuner 1
The TV tuner module turns the computer into a television receiver, complete with
remote control. The features of the TV tuner module are similar to those of the TV tuner
in the Power Macintosh 5200 and 6200 computers. The TV picture is in its own window
on the desktop, and the TV signal is carried in YUV format for improved picture clarity.

The features of the TV tuner module are

■ ability to tune 181 broadcast and cable channels (U.S. version)

■ coaxial connector for TV antenna or cable input (F-type connector in U.S. and
Japanese versions; IEC-type connector in Europe)

■ TV picture in a resizable and movable window

■ YUV format for improved clarity (see sidebar)

■ support for closed captioning and teletext

■ software password protection

■ automatic and manual channel programming

■ single remote control for TV and for playback of audio CDs

The TV tuner module is available in versions for NTSC, PAL, and SECAM television
systems.

The TV picture appears in its own window. The default size of the window is 320 by 240
pixels. The user can resize the TV window up to a maximum size of 640 by 480 pixels or
down to a minimum size of 160 by 120 pixels. The resolution of the TV picture does not

Why YUV Looks Clearer

You may be wondering how the digital YUV format
used in the Power Macintosh 5400 computer provides
a clearer TV picture than the RGB format used in the
Macintosh TV computer—after all, picture information
can be freely converted between the two formats. The
difference is due to the way the bits are allocated. The
RGB format used in the Macintosh TV is a 16-bit
format using 5 bits each for red, green, and blue, with

the remaining bit unused. The YUV format used in the
Power Macintosh 5400 computer is also a 16-bit
format, with 8 bits for the Y (luminance) channel and 8
bits for the U and V (chrominance) channels to share
by multiplexing. The YUV format looks clearer because
the YUV format carries more levels of luminance
information.

C H A P T E R 1

Introduction

8 Optional Features

increase at the larger window sizes; instead, the image is expanded by either doubling
the size of the pixels or two-dimensional linear interpolation.

The TV tuner module works in conjunction with the video input module, which converts
the video data into digital YUV format and stores it in the display buffer.

The TV tuner comes with a remote control device similar to the one used with the
Macintosh TV computer. The user can switch channels either by using the remote control
or by typing the channel numbers on the keyboard. The user can toggle between the
current and previous channel by pressing the Tab key on the keyboard. Each time the
channel changes, the computer displays the channel name (assigned by the user) on the
picture in the video window.

The user can customize the operation of the TV tuner by adding or removing TV
channels that are unused or unwanted. The computer can program the channels
automatically, scanning through all available channels and disabling those that do not
have a valid signal. When the user then scans for the next channel by using the remote
control or the Tab key on the keyboard, the tuner skips the disabled channels.

The software that supports the TV tuner module is an application called Apple Video
Player. The application includes password protection for the disabled channels. Parents
might use this feature to prevent children from watching undesirable channels.

The software allows the user to capture or freeze a single frame of video or record a
segment of video as a QuickTime Movie. The TV window cannot be resized while the
computer is recording a movie.

Video Input 1
The video input card accepts video from an external source and displays it in a window
on the computer’s display. The features of the video input card are

■ acceptance of video input in NTSC, PAL, or SECAM format

■ connectors for stereo sound, composite video, and S-video (Y/C)

■ video display in a 320-by-240-pixel window

■ pixel expansion for 640-by-480-pixel maximum display

■ video overlay capability

■ YUV format for digital video input

■ a digital video connector (DAV) for adding a video processor on an expansion card

The video input card provides AV features similar to those of the Macintosh
Quadra 660AV, with one key improvement. Whereas the Macintosh Quadra 660AV
digitizes color video using a 16-bit RGB format, the video input card uses a digital YUV
format. Because a standard television signal has more information in its chrominance
channel than in its luminance channels, digitizing the video signal as YUV format results
in a clearer picture.

The video input card can accept video input from either an external device such as a
VCR or camcorder, or from the internal TV tuner module. The external device can be

C H A P T E R 1

Introduction

Optional Features 9

connected to the video input card either through the composite video connector or the
S-video connector.

The default window size is 320 by 240 pixels; the user can resize the window up to 640
by 480 pixels—the full screen on a 14-inch monitor. The large image uses pixel expansion
of the 320 by 240 pixel image.

Note
The video input card does not work on all video monitors. It will work
with 800-by-600-pixel monitors that have a 60 Hz refresh rate, but not
with that size monitor at a 72 Hz refresh rate. In addition, 60 Hz
monitors at 800-by-600-pixels must be set to 8-bits per pixel or less. ◆

The video input card plugs into a dedicated slot on the main logic board. The slot
connector is a 60-pin microchannel connector. The module fits only its proper slot and
only in the proper orientation so that the user can safely install the video input card.

The video input card has a separate connector called the DAV (digital video application)
connector. The DAV connector makes the digitized video data available to a card in the
I /O expansion slot. Such a card can contain a hardware video compressor or other video
processor. For more information, see the section “The DAV Connector” beginning on
page 53.

Video Display Mirror Out 1
The Power Macintosh 5400 computer supports a feature called video display mirror
output that allows a second monitor to be connected to the computer through a video
buffer card. The video buffer card plugs into a 22-pin connector on the computer’s main
logic board.

In the video display mirror out mode, the image on the second monitor’s screen is the
same as that on the screen of the built-in monitor. That mode of operation is appropriate,
for example, for presentations, so that the audience and the presenter can see the same
displays.

Communications 1
The main logic board in the Power Macintosh 5400 computer has a communications slot
that allows the computer to support a communications module without occupying the
PCI expansion slot. A communications card can be installed by either the user or the
dealer.

The communications slot in the Power Macintosh 5400 computer uses a PCI bus, rather
than the 680xx bus. The following cards are supported:

■ the 10BaseT (twisted pair) ethernet card

■ the 10Base2 (thin coax) ethernet card

■ the AAUI (Apple standard) ethernet card

■ the 14.4 bps fax/data modem card

C H A P T E R 1

Introduction

10 Compatibility Issues

Compatibility Issues 1

The Power Macintosh 5400 computer incorporates several changes from earlier desktop
models. This section describes key issues you should be aware of to ensure that your
hardware and software work properly with this new model. Some of the topics
described here are covered in more detail in later parts of this developer note.

Microprocessor Differences 1
Applications developers must be aware of certain differences between the PowerPC 603
and the PowerPC 601 microprocessors that can affect the way code is executed. Because
of these differences, programs that execute correctly on the PowerPC 601 microprocessor
may cause compatibility and performance problems on the PowerPC 603 microprocessor.

POWER-Clean Code 1

The first generation Power Macintosh computers used the PowerPC 601 microprocessor,
a traditional microprocessor that bridged the new PowerPC architecture with the
POWER architecture from which it descended. The PowerPC 601 implemented most of
the old POWER instruction set as well as the newer PowerPC instruction set.

Later versions of the microprocessor, namely the PowerPC 603 and 604, implement only
the PowerPC instruction set, hence the term power clean. Because of the differences in
instruction set implementation, a possibility exists for incompatibility and poor
performance, particularly in the area of compilers.

Newer compilers, designed for the PowerPC instruction set, do not generate the old
POWER instructions. However, compilers designed for the POWER instruction set are
also being used to compile programs for the PowerPC. Most of those compilers have the
option to suppress the generation of offending instructions. For example, the IBM xLc C
compiler and the xLCC++ compiler have the option -garch=ppc. Developers using
these compilers should verify that the options are in effect for all parts of their code. To
be on the safe side, you should contact your compiler vendor to make sure that the
compiler you are using does not generate POWER instructions.

Completion Serialized Instructions 1

Several types of instructions can interfere with instruction pipelining and degrade
system performance. Most noticeable are completion serialized instructions such as load
and store string and load and store multiple. These instructions are referred to as
completion serialized instructions because they cannot be executed until all prior
instructions have been completed.

Representatives of Apple Computer, Inc., are working with compiler developers to
establish guidelines for the appropriate use of these instructions.

C H A P T E R 1

Introduction

Compatibility Issues 11

Split Cache 1

Unlike the PowerPC 601, which has a unified cache, the PowerPC 603 has separate
caches for instructions and data. This can lead to cache coherency problems in
applications that mix code and data.

In the Macintosh Operating System, the Code Fragment Manager loads almost all native
code to ensure that the code is suitable for execution. If your code is loaded by the Code
Fragment Manager, you don’t have to worry about cache coherency.

If, however, your application generates code in memory for execution, problems can
arise. Examples include compilers that generate code for immediate execution and
interpreters that translate code in memory for execution. For such cases, you can use the
call MakeDataExecutable to notify the Macintosh Operating System that data is
subject to execution. This call is defined in OSUtils.h.

Data Alignment 1

In PowerPC systems, data is normally aligned on 32-bit boundaries, whereas data for the
680x0 is typically aligned on 16-bit boundaries. Even though the PowerPC was designed
to support the 680x0 type of data alignment, misaligned data can cause some loss of
performance. Furthermore, performance with misaligned data varies across the different
implementations of the PowerPC microprocessor.

While it is essential to use 16-bit alignment for data that is being shared with 680x0 code,
you should use PowerPC alignment for all other kinds of data. In particular, you should
not use global 680x0 alignment when compiling your PowerPC applications; instead use
alignment pragmas to turn on 680x0 alignment only when necessary.

Communications Slot 1
The communications slot in the Power Macintosh 5400 computer is a PCI bus compatible
slot and is in general not compatible with communication cards for the Macintosh LC
family of computers, the Macintosh Quadra 630 computer, or cards that operate in the
communication slot in Power Macintosh 5200 and 6200 computers. The exception is that
cards which do not use the bus, such as serial modem cards, can be designed to work in
either type of comm slot. For more information about designing serial modem cards that
are compatible with both communications slots, see “The PCI-Bus Communications
Slot” beginning on page 58.

DAV Slot 1
The digital audio video (DAV) slot in the Power Macintosh 5400 computer is compatible
with TNT, Nitro, and Tsunami computers. However, it is not compatible with the DAV
slot in the Quadra 660AV, Quadra 840AV, Power Macintosh 6100, 7100, and 8100
computers, nor is it plug-in compatible with the DVA slot in the Power Macintosh 5200
and 6200 computers. It is a 60-pin slot with additional signals and capabilities. For
additional information about the DAV slot, see “The DAV Connector” beginning on
page 53.

C H A P T E R 1

Introduction

12 Compatibility Issues

Expansion Slot 1
The I/O expansion slot in the Power Macintosh 5400 computer is a PCI expansion slot
and is not compatible with PDS expansion cards for the Macintosh LC family of
computers, the Macintosh Quadra 630 computer, or with cards that operate in the I/O
expansion slot in Power Macintosh 5200 and 6200 computers.

Cards that are incompatible with the I/O expansion slot include

■ cards with drivers that include incompatible code. Some drivers that do not follow
Apple Computer, Inc.’s programming guidelines won’t work on machines that use the
PowerPC 603 microprocessor. For example, some of those drivers write directly to the
cache control register in an MC68030. Such code won’t work on a PowerPC 603
microprocessor.

■ cards with drivers that include code to check the gestaltMachineType value and
refuse to run on a newer CPU. The idea is to protect users by refusing to run on a
machine that the cards haven’t been tested on. Such cards have compatibility
problems with all new Macintosh models.

RAM Expansion 1
The Power Macintosh 5400 computer uses JEDEC-standard 168-pin DIMMs (dual inline
memory module) DRAM cards rather than the 72-pin SIMM DRAM cards used in the
Power Macintosh 5200 and 6200 computers. Information about DRAM DIMM
configurations supported on the Power Macintosh 5400 computer, see “RAM DIMMs”
beginning on page 42 in Chapter 4, “Expansion Features.”

DRAM DIMM developers should note that the PSX memory controller on the main logic
board of the Power Macintosh 5400 computer does not provide support for 4 M by 4 bits
(12 by 10 addressing) or 1 M by 16 bits (12 by 8 addressing) DRAM devices.

RAM DIMM Dimensions 1
Apple Computer has made the following change to the mechanical specification for the
RAM DIMM.

IMPORTANT

The JEDEC MO-161 specification shows three possible heights for the
8-byte DIMM. For Power Macintosh computers, developers should use
only the shortest of the three: 1.100 inches. Taller DIMMs put excessive
pressure on the DIMM sockets due to mechanical interference inside the
case. ▲

Cache Expansion 1
On the Power Macintosh 5400 computer, the optional 256K level-2 cache includes an
integrated cache controller. Apple does not support development of third-party cache
cards for these computer models. The 160-pin cache expansion slot is not compatible
with cache cards for previously released Power Macintosh computer models.

C H A P T E R 1

Introduction

Compatibility Issues 13

ATA (IDE) Hard Disk 1
The internal hard disk in the Power Macintosh 5400 computer is an ATA (IDE) drive, not
a SCSI drive. This could cause compatibility problems for hard disk utility programs.
The system software release for the Power Macintosh 5400 computer includes version 3.0
of the ATA Manager and supports PIO, Singleword DMA, and Multiword DMA data
transfers. For more information about the software that controls the ATA drive, see
Chapter 7, “Software for the ATA (IDE) Hard Disk.”

C H A P T E R 2

Architecture 2Figure 2-0
Listing 2-0
Table 2-0

C H A P T E R 2

Architecture

16 Block Diagram and Main ICs

This chapter describes the architecture of the Power Macintosh 5400 computer. It
describes the major components of the main logic board: the microprocessor, the custom
ICs, and the display RAM. It also includes a simplified address map.

Block Diagram and Main ICs 2

The architecture of the Power Macintosh 5400 computer is based on the PowerPC 603e.
Figure 2-1 shows the system block diagram. The architecture of the Power Macintosh
5400 computer is based on two buses: the processor bus and the PCI bus. The processor
bus connects the microprocessor, video, cache, and memory; the PCI bus connect the
expansion slots and the I/O devices.

PowerPC 603e Microprocessor 2
The Power Macintosh 5400 computer uses a PowerPC 603e microprocessor running at
100 MHz and 120 MHz. The principle features of the PowerPC 603e microprocessor
include

■ full RISC processing architecture

■ parallel processing units: two integer and one floating-point

■ a branch manager that can usually implement branches by reloading the incoming
instruction queue without using any processing time

■ an internal memory management unit (MMU)

■ 32 KB of on-chip cache memory (16 KB each for data and instructions)

For complete technical details, see the Motorola PowerPC 603 RISC Microprocessor User’s
Manual. This book is listed in “Supplemental Reference Documents,” in the preface.

Memory Subsystem 2
The memory subsystem of the Power Macintosh 5400 computer consists of ROM and an
optional second-level (L2) cache, in addition to the internal cache memory of the
PowerPC 603e microprocessor. The PSX custom IC provides burst mode control to the
cache and ROM.

ROM 2
The ROM consists of 4 MB of masked ROM soldered to the main logic board.

Second Level Cache (Optional) 2
The optional second-level (L2) cache consists of 256 KB of high-speed RAM on a 160-pin
DIMM card, which is plugged into a 160-pin edge connector on the main logic board.

C H A P T E R 2

Architecture

Block Diagram and Main ICs 17

Figure 2-1 System block diagram

AWACSCuda

TEA
6330

Second level
cache slot

PCI
slot

Communications
slot

ROM
4 MB

8 MB RAM
soldered-on

2 DRAM
DIMMs

Internal
floppy

PCI clocks

Hard drive

CD-ROM

PSX
ASIC

O'Hare
I/O controller

Address 32

Data 64

7140
scaler

DAV slot
7110

decoder

RCA sound
jacks

RCA video
jack

SCSI

SCC

Sound ports

TV tuner module
connects via Foxconn cable

Sound clock

32 MHz

32 MHz

SWIM

IDE

Video clock
Video-in board
plugs into video slot

RGB to monitor

Processor
clock

603e
PowerPC

Bus clock

1 MB
video
DRAM

Valkyrie-AR
video/graphics

controller

Clock
generatorPCI bus

ADB portSerial portsSCSI port

Stereo
decoder

F-connectorTV tuner

C H A P T E R 2

Architecture

18 Block Diagram and Main ICs

System RAM 2
The Power Macintosh 5400 computer has 8 MB of DRAM memory soldered on the main
logic board. All RAM expansion is provided by DRAM devices on 8-byte
JEDEC-standard DIMMs (dual inline memory modules). Two 168-pin DIMM sockets are
used for memory expansion. Available DIMM sizes are 8, 16, 32, and 64 MB. The DIMM
sockets support both single- and double-sided DRAM modules. The PSX custom IC
provides memory control for the system RAM.

Custom ICs 2
The architecture of the Power Macintosh 5400 computer is designed around five large
custom integrated circuits:

■ the PSX memory controller and PCI bridge

■ the O’Hare I/O subsystem and DMA engine

■ the AWACS sound processor

■ the Cuda ADB controller

■ the Valkyrie-AR video subsystem

The computer also uses several standard ICs that are used in other Macintosh
computers. This section describes only the custom ICs.

PSX IC 2

The PSX IC functions as the bridge between the PowerPC 603e microprocessor and the
PCI bus. It provides buffering and address translation from one bus to the other.

The PSX IC also provides the control and timing signals for system cache, ROM, and
RAM. The memory control logic supports byte, word, long word, and burst accesses to
the system memory. If an access is not aligned to the appropriate address boundary, PSX
generates multiple data transfers on the bus.

O’Hare IC 2

The O’Hare IC is based on the Grand Central IC present in the Power Macintosh 7500
computer. It is a an I/O controller and DMA engine for Power Macintosh computers
using the PCI bus architecture. It provides power-management control functions for
Energy Star–compliant features included in the Power Macintosh 5400 computer. The
O’Hare IC is connected to the PCI bus and uses the 32 MHz PCI bus clock.

The O’Hare IC includes circuitry equivalent to the IDE, SCC, SCSI, sound, SWIM3, and
VIA controller ICs. The functional blocks in the O’Hare IC include the following:

■ support for descriptor-based DMA for I/O devices

■ system-wide interrupt handling

■ a SWIM3 floppy drive controller

C H A P T E R 2

Architecture

Block Diagram and Main ICs 19

■ SCSI controller (MESH based)

■ SCC serial I/O controller

■ IDE hard disk interface controller

■ sound control logic and buffers

The O’Hare IC provides bus interfaces for the following I/O devices:

■ Cuda ADB controller IC (VIA1 and VIA2 registers)

■ AWACS sound input and output IC

■ 8 KB non-volatile RAM control

■ PWM outputs for brightness and contrast control on the Power Macintosh 5400

The SCSI controller in the O’Hare IC is a MESH controller. DMA channels in the O’Hare
IC are used to support data transfers. In the Power Macintosh 5400 computer, the clock
signal to the SCSI controller is 45 MHz.

The O’Hare IC also contains the sound control logic and the sound input and output
buffers. There are two DMA data buffers—one for sound input and one for sound
output—so the computer can record sound input and process sound output
simultaneously. The data buffer contains interleaved right and left channel data for
support of stereo sound.

The SCC circuitry in the O’Hare IC is an 8-bit device. The PCLK signal to the SCC is an
16 MHz clock. The SCC circuitry supports GeoPort and LocalTalk protocols.

AWACS Sound IC 2
The audio waveform amplifier and converter (AWACS) is a custom IC that combines a
waveform amplifier with a 16-bit digital sound encoder and decoder (codec). It conforms
to the IT&T ASCO 2300 Audio-Stereo Codec Specification and furnishes high-quality sound
input and output. For information about the operation of the AWACS IC, see Chapter 3
of Developer Note: Power Macintosh Computers, available on the developer CD-ROM and
as part of Macintosh Developer Note Number 8.

Cuda IC 2

The Cuda IC is a custom version of the Motorola MC68HC05 microcontroller. It provides
several system functions, including

■ the ADB interface

■ management of system resets

■ maintenance of parameter RAM

■ management of the real-time clock

■ on/off control of the power supply (soft power)

■ the programming interface to devices on the IIC (interintegrated circuit) bus

C H A P T E R 2

Architecture

20 Block Diagram and Main ICs

The devices on the IIC bus include the AWACS sound IC, the digital video decoder and
scaler (DESC) on the video input module, and the Cyclops IC, which is the controller for
the remote control receiver. The computer reads and writes status and control
information to those devices by commands to the Cuda IC.

Valkyrie-AR IC 2

The Valkyrie-AR IC is a custom IC containing the logic for the video display. It includes
the following functions:

■ display memory controller

■ video CLUT (color lookup table)

■ video DAC (digital-to-analog converter)

A separate data bus handles data transfers between the Valkyrie-AR IC and the display
memory. The display memory data bus is 32 bits wide, and all data transfers consist of 32
bits at a time. The Valkyrie-AR IC breaks each 32-bit data transfer into several pixels of
the appropriate size for the current display mode—4, 8, or 16 bits per pixel. The
Valkyrie-AR IC does not support 24 bits per pixel.

To keep up with the large amount of data that must be transferred into and out of the
display memory, the Valkyrie-AR IC has several internal buffers. Besides input and
output buffers for display data, the Valkyrie-AR IC also has a buffer for both addresses
and data being sent from the main processor to the display. That buffer can hold up to
four transactions, allowing the main processor to complete a write instruction to the
display memory and continue processing without waiting for some other transaction
that might be taking place on the display memory bus.

The CLUT in the Valkyrie-AR custom IC provides color palettes for 4-bit and 8-bit
display modes. In 16-bit display mode, the CLUT is used to provide gamma correction
for the stored color values. With a black-and-white or monochrome display mode, all
three color components (R, G, and B) are the same.

The Valkyrie-AR IC uses several clocks. Its transactions with the CPU are synchronized
to the system bus clock. Data transfers from the frame-buffer DRAM are clocked by the
MEM_CLK signal, which runs at 60 MHz. Data transfers to the CLUT and the video
output are clocked by the dot clock, which has a different rate for different display
monitors.

For more information about the interaction between the Valkyrie-AR IC, the display
memory, and the main processor, see the section “Display RAM” later in this chapter.

Display RAM 2
The display memory in the Power Macintosh 5400 computer is separate from the main
memory. To reduce the cost of the computer, the display memory is implemented with
DRAM devices instead of more expensive VRAM devices. The display memory consists
of 1 MB of 60 nanosecond (ns) DRAM devices configured to make a 32-bit data bus. The
display memory cannot be expanded.

C H A P T E R 2

Architecture

Block Diagram and Main ICs 21

The display memory contains three separate frame buffers. The first frame buffer holds
the graphics data—the display that is generated by the computer. The other two frame
buffers hold video data from the video input module. The video data frame buffers are
used alternately: while one is supplying data to be sent to the video monitor, the other is
receiving the next frame of video input.

The display data generated by the computer can have pixel depths of 4, 8, or 16 bits for
monitors up to 800 by 600 pixels and 4 or 8 bits for larger monitors up to 832 by 624
pixels. Data from the video input module is always stored and transferred at 16 bits per
pixel. The video frame buffers support live video in a 320 by 240-pixel frame at 30 frames
per second.

Note
The Power Macintosh 5400 computer cannot display live video from the
video-in module on monitor sizes larger than 800 by 600 pixels. Apple
Computer, Inc., does not recommend the use of such monitors for these
applications. ◆

The Power Macintosh 5400 computer can display video in a window inside the
computer graphics display. The Valkyrie-AR IC has registers that contain the starting
location of the video window within the display, the starting address of the video data in
the video buffer, and the size of the video window.

C H A P T E R 3

I/O Features 3Figure 3-0
Listing 3-0
Table 3-0

C H A P T E R 3

I/O Features

24 Serial I/O Ports

This chapter describes both the built-in I/O devices and the interfaces for external I/O
devices. It also describes the types of external video monitors that can be used with the
Power Macintosh 5400 computer.

Serial I/O Ports 3

The Power Macintosh 5400 computer has two serial ports, one for a printer and one for a
modem. Both serial ports have 9-pin mini-DIN sockets that accept either 8-pin or 9-pin
plugs. The modem port supports the GeoPort serial protocol. Figure 3-1 shows the
mechanical arrangement of the pins on the serial port sockets; Table 3-1 shows the signal
assignments.

Figure 3-1 Serial port sockets

Table 3-1 Serial port signals

Pin Name Signal description

1 HSKo Handshake output

2 HSKi Handshake input (external clock on modem port)

3 TxD– Transmit data –

4 Gnd Ground

5 RxD– Receive data –

6 TxD+ Transmit data +

7 GPi General-purpose input (wakeup CPU or perform DMA handshake)

8 RxD+ Receive data +

9 +5V +5 volts to external device (100 mA maximum)

Printer Modem

8 7

1

5 4

2

39

68 7

1

5 4

2

39

6

C H A P T E R 3

I/O Features

ADB Port 25

Pin 9 on each serial connector provides +5 V power from the ADB power supply. An
external device should draw no more than 100 mA from that pin. The total current
available for all devices connected to the +5 V supply for the ADB and the serial ports is
500 mA. Excessive current drain will cause a fuse to interrupt the +5 V supply; the fuse
automatically resets when the load returns to normal.

Both serial ports include the GPi (general-purpose input) signal on pin 7. The GPi signal
for each port connects to the corresponding data carrier detect input on the SCC portion
of the O’Hare custom IC, described in Chapter 2. On serial port A (the modem port), the
GPi line can be connected to the receive/transmit clock (RTxCA) signal on the SCC. That
connection supports devices that provide separate transmit and receive data clocks, such
as synchronous modems. For more information about the serial ports, see Guide to the
Macintosh Family Hardware, second edition.

ADB Port 3

The Apple Desktop Bus (ADB) port on the Power Macintosh 5400 computer is
functionally the same as on other Macintosh computers.

The ADB is a single-master, multiple-slave serial communications bus that uses an
asynchronous protocol and connects keyboards, graphics tablets, mouse devices, and
other devices to the computer. The custom ADB microcontroller drives the bus and reads
status from the selected external device. A 4-pin mini-DIN connector connects the ADB
to the external devices. Table 3-2 lists the ADB connector pin assignments. For more
information about the ADB, see Guide to the Macintosh Family Hardware, second edition.

Note
The total current available for all devices connected to the +5 V pins on
the ADB and the modem port is 500 mA. Each device should use no
more than 100 mA. ◆

Table 3-2 ADB connector pin assignments

Pin number Name Description

1 ADB Bidirectional data bus used for input and output. It is an
open-collector signal pulled up to +5 volts through a 470-ohm
resistor on the main logic board.

2 PSW Power-on signal that generates reset and interrupt key
combinations.

3 +5V +5 volts from the computer.

4 GND Ground from the computer.

C H A P T E R 3

I/O Features

26 Disk Drives

Disk Drives 3

The Power Macintosh 5400 computer has one internal high-density floppy disk drive
and one internal ATA (IDE) hard disk drive. Some models also have an internal
CD-ROM drive.

Floppy Disk Drive 3
The Power Macintosh 5400 computer has one internal high-density floppy disk drive
(Apple SuperDrive). The drive is connected to a 20-pin connector on a cable that is
connected to the main logic board by the internal chassis connector. Table 3-3 shows the
pin assignments on the floppy disk connector.

Table 3-3 Pin assignments on the floppy disk connector

Pin number Signal name Signal description

1 GND Ground

2 PH0 Phase 0: state control line

3 GND Ground

4 PH1 Phase 1: state control line

5 GND Ground

6 PH2 Phase 2: state control line

7 GND Ground

8 PH3 Phase 3: register write strobe

9 +5V +5 volts

10 /WRREQ Write data request

11 +5V +5 volts

12 SEL Head select

13 +12V +12 volts

14 /ENBL Drive enable

15 +12V +12 volts

16 RD Read data

continued

C H A P T E R 3

I/O Features

Disk Drives 27

ATA (IDE) Hard Disk 3
The Power Macintosh 5400 computer has an internal hard disk that uses the standard
ATA-2 interface. This interface, used for ATA drives on IBM AT–compatible computers,
is also referred to as the IDE interface. The implementation of the ATA interface on the
Power Macintosh 5400 computer is a subset of the ATA interface specification, ANSI
proposal X3T9.2/90-143, Revision 3.1.

Hard Disk Specifications 3

Figure 3-2 shows the maximum dimensions of the hard disk and the location of the
mounting holes. As the figure shows, the minimum clearance between conductive
components and the bottom of the mounting envelope is 0.5 mm.

17 +12V +12 volts

18 WR Write data

19 +12V +12 volts

20 n.c. Not connected

Table 3-3 Pin assignments on the floppy disk connector (continued)

C H A P T E R 3

I/O Features

28 Disk Drives

Figure 3-2 Maximum dimensions of the hard disk

6.40 (.252)2x 3

IDE connector Power

Mounting hole 6-32, .22"
min. full thread, 4X

A

B

A

7

101.6 (4.00)

95.25 (3.75)
3.20 (.125) 2

60
.3

0
(2

.3
7)

44
.4

0
(1

.7
5)

60
.0

0
(2

.3
6)

 2
x

10
1.

6
(4

.0
0)

 2
x

14
6.

0
(5

.7
5)

25
.4

 (1
.0

0)

16.00 (.63) 2x

Mounting hole
6-32, through 6x

Notes:

1

2

3

4

5

6

7

8

A Defined by plane of bottom mount holes

B Defined by center line of bottom mount holes

40-pin IDE and 4-pin power connector placement must not be reversed

Dimensions are in millimeters (inches)

Drawing not to scale

Tolerances .X = + 0.50, .XX = + 0.25

Dimension to be measured at center line of side-mount holes

Minimum 0.5 MM clearance from any conductive PCB components to A

– –

C H A P T E R 3

I/O Features

Disk Drives 29

Hard Disk Connectors 3

The internal hard disk has a standard 40-pin ATA connector and a separate 4-pin power
connector. The 40-pin connector cable is part of the cable harness attached to the main
logic board by the internal chassis connector. The power cable is attached directly to the
power supply.

The exact locations of the ATA connector and the power connector are not specified, but
the relative positions must be as shown in Figure 3-2 so that the cables and connectors
will fit.

Pin Assignments 3

Table 3-4 shows the pin assignments on the 40-pin ATA (IDE) hard disk connector. A
slash (/) at the beginning of a signal name indicates an active-low signal.

Table 3-4 Pin assignments on the ATA (IDE) hard disk connector

Pin number Signal name Pin number Signal name

1 /RESET 2 GROUND

3 DD7 4 DD8

5 DD6 6 DD9

7 DD5 8 DD10

9 DD4 10 DD11

11 DD3 12 DD12

13 DD2 14 DD13

15 DD1 16 DD14

17 DD0 18 DD15

19 GROUND 20 Key

21 Reserved 22 GROUND

23 DIOW 24 GROUND

25 DIOR 26 GROUND

27 /IORDY 28 Reserved

29 Reserved 30 GROUND

31 INTRQ 32 /IOCS16

33 DA1 34 /PDIAG

35 DA0 36 DA2

37 /CS0 38 /CS1

39 /DASP 40 GROUND

C H A P T E R 3

I/O Features

30 Disk Drives

ATA (IDE) Signal Descriptions 3

Table 3-5 describes the signals on the ATA (IDE) hard disk connector.

CD-ROM Drive 3
Some configurations of the Power Macintosh 5400 computer have an internal CD-ROM
drive, an AppleCD 600i. The AppleCD 600i supports the worldwide standards and
specifications for CD-ROM and CD-digital audio discs described in the Sony/Philips
Yellow Book and Red Book. The drive can read CD-ROM, CD-ROM XA, CD-I, and
PhotoCD discs as well as play standard audio discs.

The AppleCD 600i CD-ROM drive has a sliding tray to hold the disc. The drive features
a quadruple-speed mechanism that supports sustained data transfer rates of 600 KB per

Table 3-5 Signals on the ATA (IDE) hard disk connector

Signal name Signal description

DA(0–2) ATA device address; used by the computer to select one of the registers
in the ATA drive. For more information, see the descriptions of the CS0
and CS1 signals.

DD(0–15) ATA data bus; buffered from IOD(16–31) of the computer’s I/O bus.
DD(0–15) are used to transfer 16-bit data to and from the drive buffer.
DD(8–15) are used to transfer data to and from the internal registers of
the drive, with DD(0–7) driven high when writing.

/CS0 ATA register select signal. It is asserted high to select the additional
control and status registers on the ATA drive.

/CS1 ATA register select signal. It is asserted high to select the main task file
registers. The task file registers indicate the command, the sector
address, and the sector count.

/IORDY ATA I/O ready; when driven low by the drive, signals the CPU to insert
wait states into the I/O read or write cycles.

/IOCS16 ATA I/O channel select; asserted low for an access to the data port. The
computer uses this signal to indicate a 16-bit data transfer.

DIOR ATA I/O data read strobe.

DIOW ATA I/O data write strobe.

INTRQ ATA interrupt request. This active high signal is used to inform the
computer that a data transfer is requested or that a command has
terminated.

/RESET Hardware reset to the drive; an active low signal.

Key This pin is the key for the connector.

C H A P T E R 3

I/O Features

SCSI Bus 31

second and a data buffer that further enhances performance. Table 3-6 is a summary of
the specifications of the CD-ROM drive.

SCSI Bus 3

The Power Macintosh 5400 computer has a SCSI bus for the internal CD-ROM device
and one or more external SCSI devices. The CD-ROM device receives power directly
from the power supply.

SCSI Connectors 3
The SCSI connector for the internal CD-ROM drive is a 50-pin connector with the
standard SCSI pin assignments. It attaches to a cable that is connected to the main logic
board by the internal chassis connector. The external SCSI connector is a 25-pin D-type
connector with the same pin assignments as other Apple SCSI devices. Table 3-7 shows
the pin assignments on the internal and external SCSI connectors.

Table 3-6 Specifications of the AppleCD 600i CD-ROM drive

Feature Specification

Rotation speed Approximately 920 to 2120 rpm

Average access time Less than 200 ms

Sustained transfer rate 600 KB per second

SCSI burst rate More than 3 MB per second

Table 3-7 Pin assignments for the SCSI connectors

Pin number
(internal 50-pin)

Pin number
(external 25-pin) Signal name Signal description

2 8 /DB0 Bit 0 of SCSI data bus

4 21 /DB1 Bit 1 of SCSI data bus

6 22 /DB2 Bit 2 of SCSI data bus

8 10 /DB3 Bit 3 of SCSI data bus

10 23 /DB4 Bit 4 of SCSI data bus

12 11 /DB5 Bit 5 of SCSI data bus

14 12 /DB6 Bit 6 of SCSI data bus

continued

C H A P T E R 3

I/O Features

32 Sound

SCSI Bus Termination 3
The internal end of the SCSI bus is terminated by an active terminator. The terminator is
located on the main logic board near the portion of the internal chassis connector that
contains the signals for the internal CD-ROM drive. On enclosures with only one
internal SCSI device located close to the logic board, the active termination is
automatically enabled. On enclosures with multiple SCSI devices, the active termination
is disabled, and a positive terminator is located at the end of the internal bus.

Sound 3

The sound system supports both 8-bit and 16-bit stereo sound output and input. Like
other Macintosh computers, the Power Macintosh 5400 computer can create sounds
digitally and play the sounds through the internal speakers or send the sound signals
out through the sound output jacks. They can also record sound from several sources:
the built-in microphone, a microphone connected to the sound input jack, the video
input module, or a compact disc in the CD-ROM player.

16 13 /DB7 Bit 7 of SCSI data bus

18 20 /DBP Parity bit of SCSI data bus

25 – n.c. Not connected

26 25 TPWR +5 V terminator power

32 17 /ATN Attention

36 6 /BSY Bus busy

38 5 /ACK Handshake acknowledge

40 4 /RST Bus reset

42 2 /MSG Message phase

44 19 /SEL Select

46 15 /C/D Control or data

48 1 /REQ Handshake request

50 3 /I/O Input or output

20, 22, 24, 28,
30, 34, and all
odd pins
except pin 25

7, 9, 14, 16, 18,
and 24

GND Ground

Table 3-7 Pin assignments for the SCSI connectors (continued)

Pin number
(internal 50-pin)

Pin number
(external 25-pin) Signal name Signal description

C H A P T E R 3

I/O Features

Sound 33

Sound Output 3
The Power Macintosh 5400 computer has two built-in speakers and two sound output
jacks, one on the front and one on the back. Both output jacks are connected to the sound
amplifier; the jack on the front is intended for ease of access when connected to a pair of
headphones. Inserting a plug into either jack disconnects the internal speakers. The rear
jack is intended for use with external speakers and it is muted when headphones are
plugged in the front jack. (Options in the Monitors and Sound control panel can be used
to determine the interaction between the sound input and output devices.)

Sound output is controlled by the O’Hare IC. The AWACS IC provides the stereo sound
output to both the internal speakers and the sound output jacks.

Sound Input 3
The Power Macintosh 5400 computer has a stereo sound input jack on the back for
connecting an external microphone or other sound source. The sound input jack accepts
a standard 1/8-inch stereophonic phone plug (two signals plus ground).

The sound input jack accepts either the Apple PlainTalk line-level microphone or a pair
of line-level signals.

Note
The Apple PlainTalk microphone requires power from the main
computer, which it obtains by way of an extra-long, 4-conductor plug
that makes contact with a 5-volt pin inside the sound input jack. ◆

IMPORTANT

The microphone for the Macintosh LC and LC II does not work with the
Power Macintosh 5400 computer; it requires the line-level signal
provided by the Apple PlainTalk microphone. ▲

Sound Input Specifications 3
The sound input jack has the following electrical characteristics:

■ input impedance: 15k ohms

■ maximum input level: 1.06 V RMS

Routing of the Sound Signals 3
All audio sources are routed to the AWACS custom IC, which can enable them in three
groups: internal microphone, sound input jack, and (CD-ROM, TV tuner, modem, DAV
card, cross-platform card).

C H A P T E R 3

I/O Features

34 Keyboard

Digitizing Sound 3
The Power Macintosh 5400 computer digitizes and records sound as 16-bit samples. The
computer can use either of two sampling rates: 11k samples per second, 22k samples per
second, and 44k samples per second.

The sound system plays samples at the sampling rate specified in the control panel for
sound.

Sound Modes 3
The sound mode is selected by a call to the Sound Manager. The sound circuitry
normally operates in one of three modes:

■ Sound playback: computer-generated sound is sent to the speaker and the sound
output jacks.

■ Sound playback with playthrough: computer sound and sound input are mixed and
sent to the speakers and the sound output jacks.

■ Sound record with playthrough: input sound is recorded and also fed through to the
speakers and the sound output jacks.

When recording from a microphone, applications should reduce the playthrough volume
to prevent possible feedback from the speakers to the microphone.

The O’Hare IC provides separate sound buffers for input and for stereo output, so the
computer can record and send digitized sound to the sound outputs simultaneously.

Keyboard 3

The keyboard has a Power key, identified by the symbol p. When the user chooses Shut
Down from the Special menu, the computer either shuts down or a dialog appears
asking if you really want to shut down. The user can also turn off the power by pressing
the Power key.

There are no programmer’s switches, so the user invokes the reset and nonmaskable
interrupt (NMI) functions by pressing Command key combinations while holding down
the Power key, as shown in Table 3-8. The Command key is identified by the symbols ð
and x.

Note
The user must hold down a key combination for at least 1 second to
allow the ADB microcontroller enough time to respond to the NMI or
hard-reset signal. ◆

Note
The NMI function can always be activated from the keyboard. This is a
change from the Macintosh LC computer, where keyboard activation of
the NMI function can be disabled by the software. ◆

C H A P T E R 3

I/O Features

Built-in Video 35

Built-in Video 3

The Power Macintosh 5400 computer has a built-in 15-inch multiscan monitor. The
built-in video circuitry support pixel display sizes of 512 × 384, 640 × 480, 800 × 600, and
832 × 624. When power is applied, the monitor is initially set for a display size of
640 × 480 pixels. The user can switch the monitor resolution on the fly from the
computer’s Control Panels menu.

Optional Video Display Mirror Output Feature 3
The Power Macintosh 5400 uses a feature, called video display mirror output, to make
the video information on its built-in monitor available to an external monitor. This
means that the information displayed on an external monitor is exactly the same as that
displayed on the built-in monitor. This feature is implemented by plugging an optional
video buffer board into the 22-pin Video Mirror connector on the main logic board. The
Video Mirror connector’s pin assignments are shown in Table 3-9.

Note
The external monitor must support the same video mode selected on the
built-in monitor, and no attempt is made to read the MONID lines of the
external monitor to determine what monitor is attached. ◆

The optional video buffer board includes a ribbon cable with a DB-15 connector. This
connector attaches to a large opening in the upper part of the computer’s back panel,
identified in Figure 1-2 on page 6, as the Monitor Out port. The cable from an external
video monitor plugs into this DB-15 connector to allow the external monitor to display
the same image as the built-in monitor.

Table 3-8 Reset and NMI key combinations

Key combination Function

Command-Power (x-p) NMI (always active)

Control-Command-Power (Control-x-p) Reset

Table 3-9 Video mirror connector pin assignments

Pin Signal name Description

1 VID GND Video ground

2 RED Red signal

3 GREEN Green signal

continued

C H A P T E R 3

I/O Features

36 Built-in Video

External Video Monitors 3
The computer can work with several sizes of external video monitors; however, you can
connect an external monitor to the Power Macintosh 5400 only if the optional video
display mirror out feature is implemented on that computer, and then it can display only
the same video as the internal monitor. Table 3-10 shows the monitor types supported
and the maximum pixel depths available. The pixel depth determines the maximum
number of colors that can be displayed. The maximum pixel depth available depends on
the size of the monitor’s screen.

For more information about the video monitors, see “Video Timing Parameters” on
page 37.

4 VID GND Video ground

5 VID GND Video ground

6 BLUE Blue signal

7 CSYNC C sync

8 VSYNC Vertical sync

9 MLB.SYNC.EN.L Not used (reserved)

10 HSYNC Horizontal sync

11 DAC.ISET.1 Not used(reserved)

12 DAC.ISET.2 Not used (reserved)

13 SND GND Not used (reserved)

14 SND RIGHT Not used (reserved)

15 SND LEFT Not used (reserved)

16 +5V +5 volts

17 GND Ground

18 SDAT Not used (reserved)

19 SCLK Not used (reserved)

20 +12V +12 volts

21 –12V –12 volts

22 Dot Clock Scaled dot clock (scaled to 10 percent)

Table 3-9 Video mirror connector pin assignments (continued)

Pin Signal name Description

C H A P T E R 3

I/O Features

Video Timing Parameters 37

Video Timing Parameters 3

The Power Macintosh 5400 computer supports several different types of monitors and
screen sizes, as listed in Table 3-10.

Figure 3-3 shows simplified timing diagrams and identifies the horizontal and vertical
timing parameters in a video signal. Table 3-13 and Table 3-13 list the values of those
parameters for the different types of monitors.

* The Power Macintosh 5400 computer does not support screen sizes of 512 by 384 pixels.

Table 3-10 Maximum pixel depths for video monitors

Monitor type
Screen size,
in pixels

Maximum
pixel depth, in
bits per pixel

Maximum number of
colors displayed

12-inch color* 512 by 384 16 32,768

14-inch color 640 by 480 16 32,768

15-inch multiscan 800 by 600 16 32,768

VGA 640 by 480 8 256

SVGA 800 by 600 16 256

16-inch color 832 by 624 8 256

Table 3-11 Monitors supported

Monitor type Screen size (pixels)

12-inch color 512 by 384

14-inch color 640 by 480

15-inch multiscan 800 by 600

VGA 640 by 480

SVGA 800 by 600

16-inch color 832 by 624

C H A P T E R 3

I/O Features

38 Video Timing Parameters

Figure 3-3 Video timing diagram

Video

H sync space H image space

H line length

H back porch

 H sync pulse

 H front porch

HBLANK

/HSYNC

Black

Horizontal timing

Video

V sync space V image space

V line length

V back porch

V sync pulse

V front porch

VBLANK

/VSYNC

Vertical timing

White

Black

White

C H A P T E R 3

I/O Features

Video Timing Parameters 39

Table 3-13 lists the timing parameters for the smaller monitors listed: the 12-inch color
monitor, the 14-inch color monitor, and a standard VGA monitor.

Table 3-12 Video timing parameters for smaller monitors

Monitor type and dimensions

Parameter
12-inch color
(512 by 384)

14-inch color
(640 by 480)

VGA
(640 by 480)

Dot clock 15.67 MHz 30.24 MHz 25.18 MHz

Dot time 63.83 ns 33.07 ns 39.72 ns

Line rate 24.48 kHz 35.00 kHz 31.47 kHz

Line time 40.85 µs
(640 dots)

28.57 µs
(864 dots)

31.78 µs
(800 dots)

Horizontal active video 512 dots 640 dots 640 dots

Horizontal blanking 128 dots 224 dots 160 dots

Horizontal front porch 16 dots 64 dots 16 dots

Horizontal sync pulse 32 dots 64 dots 96 dots

Horizontal back porch 80 dots 96 dots 48 dots

Frame rate 60.15 Hz 66.67 Hz 59.94 Hz

Frame time 16.63 ms
(407 lines)

15.01 ms
(525 lines)

16.68 ms
(525 lines)

Vertical active video 384 lines 480 lines 480 lines

Vertical blanking 23 lines 45 lines 45 lines

Vertical front porch 1 line 3 lines 10 lines

Vertical sync pulse 3 lines 3 lines 2 lines

Vertical back porch 19 lines 39 lines 33 lines

C H A P T E R 3

I/O Features

40 Video Timing Parameters

Table 3-13 lists the timing parameters for SVGA monitors running at 60 and 72 frames
per second, and for the 16-inch color monitor.

Table 3-13 Video timing parameters for larger monitors

Monitor type and dimensions

Parameter

SVGA (800 by 600
at 60 frames
per second)

SVGA (800 by 600
at 72 frames
per second)

16-inch color
(832 x 624)

Dot clock 40.00 MHz 50.00 MHz 57.2832 MHz

Dot time 25.00 ns 20.00 ns 17.46 ns

Line rate 37.88 kHz 48.08 kHz 49.725 kHz

Line time 26.4 µs
(1056 dots)

20.80 µs
(1040 dots)

20.11 µs
(1152 dots)

Horizontal active video 800 dots 800 dots 832 dots

Horizontal blanking 256 dots 240 dots 320 dots

Horizontal front porch 40 dots 56 dots 32 dots

Horizontal sync pulse 128 dots 120 dots 64 dots

Horizontal back porch 88 dots 64 dots 224 dots

Frame rate 60.31 Hz 72.18 Hz 74.55 Hz

Frame time 16.58 ms
(628 lines)

13.85 ms
(666 lines)

13.41 ms
(667 lines)

Vertical active video 600 lines 600 lines 624 lines

Vertical blanking 28 lines 66 lines 43 lines

Vertical front porch 1 line 37 lines 1 line

Vertical sync pulse 4 lines 6 lines 3 lines

Vertical back porch 23 lines 23 lines 39 lines

C H A P T E R 4

Expansion Features 4Figure 4-0
Listing 4-0
Table 4-0

C H A P T E R 4

Expansion Features

42 RAM DIMMs

This chapter describes the expansion features of the Power Macintosh 5400 computer:
the RAM expansion slot, the L2 cache expansion slot, the PCI expansion slot, the DAV
connector on the video input module, and the communications slot.

Note
Apple does not support development of third-party cards for the video
input slot, nor does Apple support development of third-party level-2
(L2) cache cards, because the L2 cache controller is integrated into the
design of the cache card. ◆

RAM DIMMs 4

The Power Macintosh 5400 computer has two RAM expansion slots. The RAM
expansion slots accept a new type of memory module: the 8-byte DIMM (dual inline
memory module). As its name implies, the 8-byte DIMM has a 64-bit-wide data bus.

The 8-byte DIMM is a new industry standard. Its mechanical design is defined by the
MO-161 specification published by the JEDEC JC-11 committee; its electrical
characteristics are defined by the JEDEC Standard No. 21-C. The 8-byte DIMM connector
used in the Power Macintosh 5400 computer is Burndy Corporation’s part number
ELF168E5GC-3Z50 or equivalent.

The minimum bank size supported by the PSX IC is 4 MB and the largest is 32 MB; the
largest DIMM supported is a two-bank DIMM holding 64 MB. Table 4-1 shows the
single-bank DIMM configurations and sizes for a range of DRAM device sizes that are
supported on the Power Macintosh 5400 computer.

Table 4-1 Memory sizes and configurations

Device size DIMM configuration DIMM size
Maximum memory with
2 DIMMs installed

4 Mbit 512K by 64 4 MB 16 MB

4 Mbit 1 Mbit by 64 8 MB 24 MB

16 Mbit 1 Mbit by 64 8 MB 24 MB

16 Mbit 2 Mbits by 64 16 MB 40 MB

16 Mbit 4 Mbits by 64 32 MB 72 MB

C H A P T E R 4

Expansion Features

RAM DIMMs 43

The 8-byte DIMMs can be installed one or more at a time. The Power Macintosh 5400
computer supports only linear memory organization, therefore no performance gains are
seen when two DIMMs of the same size are installed. Any size DIMM can be installed in
either DIMM slot, and the combined memory of all of the DIMMs installed will be
configured as a contiguous memory space.

RAM DIMM Connectors 4
Table 4-2 gives the pin assignments for the RAM DIMM connectors.

Table 4-2 Pin assignments on the RAM DIMM connectors

Pin number Signal name Pin number Signal name

1 VSS 85 VSS

2 DQ(0) 86 DQ(32)

3 DQ(1) 87 DQ(33)

4 DQ(2) 88 DQ(34)

5 DQ(3) 89 DQ(35)

6 VCC 90 VCC

7 DQ(4) 91 DQ(36)

8 DQ(5) 92 DQ(37)

9 DQ(6) 93 DQ(38)

10 DQ(7) 94 DQ(39)

11 Reserved 95 Reserved

12 VSS 96 VSS

13 DQ(8) 97 DQ(40)

14 DQ(9) 98 DQ(41)

15 DQ(10) 99 DQ(42)

16 DQ(11) 100 DQ(43)

17 DQ(12) 101 DQ(44)

18 VCC 102 VCC

19 DQ(13) 103 DQ(45)

20 DQ(14) 104 DQ(46)

21 DQ(15) 105 DQ(47)

22 Reserved 106 Reserved

23 VSS 107 VSS

continued

C H A P T E R 4

Expansion Features

44 RAM DIMMs

24 Reserved 108 Reserved

25 Reserved 109 Reserved

26 VCC 110 VCC

27 /WE(0) 111 Reserved

28 /CAS(0) 112 /CAS(1)

29 /CAS(2) 113 /CAS(3)

30 /RAS(0) 114 /RAS(1)

31 /OE(0) 115 Reserved

32 VSS 116 VSS

33 A(0) 117 A(1)

34 A(2) 118 A(3)

35 A(4) 119 A(5)

36 A(6) 120 A(7)

37 A(8) 121 A(9)

38 A(10) 122 A(11)

39 Not connected 123 Not connected

40 VCC 124 VCC

41 Reserved 125 Reserved

42 Reserved 126 B(0)

43 VSS 127 VSS

44 /OE(2) 128 Reserved

45 /RAS(2) 129 /RAS(3)

46 /CAS(4) 130 /CAS(5)

47 /CAS(6) 131 /CAS(7)

48 /WE(2) 132 /PDE

49 VCC 133 VCC

50 Reserved 134 Reserved

51 Reserved 135 Reserved

52 DQ(16) 136 DQ(48)

53 DQ(17) 137 DQ(49)

54 VSS 138 VSS

continued

Table 4-2 Pin assignments on the RAM DIMM connectors (continued)

Pin number Signal name Pin number Signal name

C H A P T E R 4

Expansion Features

RAM DIMMs 45

55 DQ(18) 139 DQ(50)

56 DQ(19) 140 DQ(51)

57 DQ(20) 141 DQ(52)

58 DQ(21) 142 DQ(53)

59 VCC 143 VCC

60 DQ(22) 144 DQ(54)

61 Reserved 145 Reserved

62 Reserved 146 Reserved

63 Reserved 147 Reserved

64 Reserved 148 Reserved

65 DQ(23) 149 DQ(55)

66 Reserved 150 Reserved

67 DQ(24) 151 DQ(56)

68 VSS 152 VSS

69 DQ(25) 153 DQ(57)

70 DQ(26) 154 DQ(58)

71 DQ(27) 155 DQ(59)

72 DQ(28) 156 DQ(60)

73 VCC 157 VCC

74 DQ(29) 158 DQ(61)

75 DQ(30) 159 DQ(62)

76 DQ(31) 160 DQ(63)

77 Reserved 161 Reserved

78 VSS 162 VSS

79 PD(1) 163 PD(2)

80 PD(3) 164 PD(4)

81 PD(5) 165 PD(6)

82 PD(7) 166 PD(8)

83 ID(0) 167 ID(1)

84 VCC 168 VCC

Table 4-2 Pin assignments on the RAM DIMM connectors (continued)

Pin number Signal name Pin number Signal name

C H A P T E R 4

Expansion Features

46 RAM DIMMs

Table 4-3 describes the signals on the RAM DIMM connector.

RAM Address Multiplexing 4
Signals A[0–11] on each RAM DIMM make up a 12-bit multiplexed address bus that can
support several different types of DRAM devices. Table 4-4 shows the address
multiplexing modes used with several types of DRAM devices. The devices are
characterized by their bit dimensions: for example, a 256K by 4-bit device has 256K
addresses and stores 4 bits at a time.

Table 4-3 RAM DIMM signals

Signal name Description

A(0–11) Address inputs

/CAS(0–7) Column address strobe signals

DQ(0–63) Data input and output signals

ID(0–1) Memory module identification (not used)

/OE(0, 2) Output enable signals

PD(1–8) Presence detect signals

/PDE Presence detect enable signal (not used)

/RAS(0-3) Row address strobe signals

Reserved Reserved, don’t use.

VCC +5 V power

VSS Ground

/WE(0, 2) Read/write input signals

Table 4-4 Address multiplexing modes for various DRAM devices

Device size Device type
Size of row
address

Size of column
address

4 Mbits 512 K by 8 bits 10 9

4 Mbits 1 M by 4 bits 10 10

16 Mbits 1 M by 16 bits 10 10

16 Mbits 2 M by 8 bits 11 10

16 Mbits 2 M by 8 bits 12 9

16 Mbits 4 M by 4 bits 11 11

C H A P T E R 4

Expansion Features

RAM DIMMs 47

Table shows how the address signals to the RAM devices are multiplexed during the row
and column address phases for noninterleaved banks.

IMPORTANT

The PSX DRAM controller on the main logic board of the Power
Macintosh 5400 computer does not provide support for 4 M by 4 bits (12
by 10 addressing) or 1 M by 16 bits (12 by 8 addressing) DRAM
devices. ▲

RAM Devices 4
The memory controller in the PSX IC supports 1 MB, 4 MB, and 16 MB DRAM devices.
The access time (TRAS) of the DRAM devices is 70 ns or faster.

Note
The computer supplies +5 volts at VCC on the RAM expansion slot for
DRAM DIMMs. Power for DRAM devices that require 3.3 volts is not
supplied on the RAM expansion slot. ◆

RAM Refresh 4
The PSX IC provides a CAS-before-RAS refresh cycle every 15.6 µs. DRAM devices must
be compatible with this refresh cycle; for example, this cycle will refresh 2K-refresh parts
within 32 milliseconds.

RAM DIMM Dimensions 4
Figure 4-1 shows the dimensions of the RAM DIMM.

IMPORTANT

The JEDEC MO-161 specification shows three possible heights for the
8-byte DIMM. For Power Macintosh computers, developers should use
only the shortest of the three: 1.100 inches. Taller DIMMs put excessive
pressure on the DIMM sockets due to possible mechanical interference
inside the case. ▲

Table 4-5 Address multiplexing in noninterleaved banks

Individual signals on the DRAM_ADDR bus

A(11) A(10) A(9) A(8) A(7) A(6) A(5) A(4) A(3) A(2) A(1) A(0)

Row address 22 23 21 20 19 18 17 16 15 14 13 12

Column address 24 22 11 10 9 8 7 6 5 4 3

C H A P T E R 4

Expansion Features

48 RAM DIMMs

Figure 4-1 Dimensions of the RAM DIMM

+

40

41

10
11

84

+

+

Optional tabsOptional holes
2XO 3.00 ± 0.10
(0.118 ± 0.004)

138.32–138.58
(5.445–5.456)

133.22–133.48
(5.245–5.255)

C
o

m
p

o
n

en
t

ar
ea

127.35
(5.01)

11.43 (0.450)

3.175
(0.125)

36.83
(1.450)

54.61
(2.150)

4.00 (0.157) minimum
4.00 ± 0.10
 (0.157 ± 0.004)

Note: dimensions are in millimeters (inches)

9.40 (0.370) maximum

1.27 ± 0.10
 (0.50 ± 0.004)

3.00 (0.118)
17.78

(0.700)

43.18
(1.700)

115.57
(4.550)

27.94
(1.1)

maximum/

C H A P T E R 4

Expansion Features

Level-2 Cache DIMM 49

Level-2 Cache DIMM 4

The Power Macintosh 5400 computer has a slot for a level-2 (L2) cache on a DIMM.

The L2 cache DIMM contains the cache controller, tag, and data store memory. It is a
lookaside cache, which is connected to the PowerPC processor bus. Several signals are
also included to control cache operation. These signals include: /L2_DIS,
/MEM_INHIBIT, /L2_BR, /L2_BG, and L2_PRSNT.

Table 4-6 shows the pin and signal assignments on the L2 cache DIMM connector.

Table 4-6 Pin and signal assignments for level-2 cache DIMM connector

Pin Signal name Pin Signal name Pin Signal name Pin Signal name

1 +5 V 41 A15 81 D63 (LSB) 121 A16

2 D31 42 A13 82 D62 122 A14

3 D30 43 +3.3 V 83 D61 123 A12

4 D29 44 A11 84 GND 124 A10

5 D28 45 A9 85 D60 125 A8

6 D27 46 A7 86 D59 126 GND

7 +5 V 47 A5 87 D58 127 A6

8 D26 48 A3 88 D57 128 A4

9 D25 49 +3.3 V 89 D56 129 A2

10 D24 50 A1 90 GND 130 A0 (MSB)

11 D23 51 /WT 91 D55 131 /DBB

12 D22 52 /GBL 92 D54 132 GND

13 +5 V 53 reserved 93 D53 133 /CPU_BG

14 D21 54 /SRESET 94 D52 134 /CPU_BR

15 D20 55 +3.3 V 95 D51 135 L2_PRSNT

16 D19 56 TTYPE0 96 GND 136 reserved

17 D18 57 TTYP1 97 D50 137 TSIZ0

18 D17 58 TTYPE2 98 D49 138 GND

19 +5 V 59 TTYPE3 99 D48 139 TSIZ1

20 D16 60 TTYPE4 100 /L2_DIS 140 TSIZ2

21 /L2_BR 61 +3.3 V 101 /TBST 141 SHD

continued

C H A P T E R 4

Expansion Features

50 Level-2 Cache DIMM

Table 4-7 defines the signals on the level-2 cache DIMM connector.

22 /L2_BG 62 D15 102 GND 142 D47

23 TC0 63 D14 103 /CI 143 D46

24 TC1 64 D13 104 /RSRV 144 GND

25 +3.3 V 65 D12 105 reserved 145 D45

26 /HRESET 66 D11 106 /MEM_INHIBIT 146 D44

27 /TEA 67 +5 V 107 /AACK 147 D43

28 /TS 68 D10 108 GND 148 D42

29 GND 69 D9 109 /TA 149 D41

30 SYS_CLK 70 D8 110 /ARTRY 150 GND

31 +3.3 V 71 D7 111 /ABB 151 D40

32 A31 (LSB) 72 D6 112 A30 152 D39

33 A29 73 +5 V 113 A28 153 D38

34 A27 74 D5 114 GND 154 D37

35 A25 75 D4 115 A26 155 D36

36 A23 76 D3 116 A24 156 GND

37 +3.3 V 77 D2 117 A22 157 D35

38 A21 78 D1 118 A20 158 D34

39 A19 79 +5 V 119 A18 159 D33

40 A17 80 D0 (MSB) 120 GND 160 D32

Table 4-7 Signal descriptions for level-2 cache DIMM connector

Signal name Description

+5 V Power supply voltage of +5 volts for tag RAM (5% tolerance)

+ 3.3 V Power supply voltage of +3.3 volts for data RAM (5% tolerance)

GND Ground

A(0-31) Processor address bus signals 0 through 31

D(0-63) Processor data bus signals 0 through 63; sampled on the rising edge
of the CLK signal during a write cycle

/AACK Address acknowledge, same as AACK_ signal on PowerPC 603

continued

Table 4-6 Pin and signal assignments for level-2 cache DIMM connector (continued)

Pin Signal name Pin Signal name Pin Signal name Pin Signal name

C H A P T E R 4

Expansion Features

Level-2 Cache DIMM 51

/ARTRY Address retry, same as ARTRY_ signal on PowerPC 603

/ABB Address bus busy, same as ABB_ signal on PowerPC 603

/CI Cache inhibit, same as CI_ signal on PowerPC 603

/CPU_BG Bus transaction granted, same as BG_ signal on PowerPC 603

/CPU_BR Bus transaction requested, same as BR_ signal on PowerPC 603

/DBB Data bus busy, same as DBB_ signal on PowerPC 603

/GBL Global transaction

/HRESET Main logic board hardware reset

/L2_BG Bus grant to L2 cache; used only in copyback mode

/L2_BR Bus request from L2 cache; used only in copyback mode

/L2_DIS Disables cache when low; contents are invalidated

L2_PRSNT L2 cache present; tied directly to power rail on cache DIMM

/MEM_INHIBIT Indicates L2 cache will source the data for the current cycle.
Inhibits main logic board memory controller.

/RSRV Reservation signal, same as RSRV_ signal on PowerPC 603

reserved DO NOT USE

SHD Share

/SRESET Soft reset, same as SRESET_ signal on PowerPC 603

SYS_CLK System clock, same as SYSCLOCK signal on PowerPC 603

/TA Transfer acknowledge, same as TA_ signal on PowerPC 603

/TBST Transfer burst in progress, same as TBST_ signal on
PowerPC 603

TC(0-1) Transfer code, same as TC signal on PowerPC 603

/TEA Transfer error acknowledge, same as TEA_ signal on PowerPC 603

/TS Transfer start signal, same as TS_ signal on PowerPC 603

TSIZ (0-2) Transfer size for the data transaction

TTYPE(0-4) Transfer type, same as TT signal on PowerPC 603

/WT Write-thru, same as WT_ signal on PowerPC 603

Table 4-7 Signal descriptions for level-2 cache DIMM connector (continued)

Signal name Description

C H A P T E R 4

Expansion Features

52 PCI Expansion Slot

PCI Expansion Slot 4

The Power Macintosh 5400 computer uses the industry-standard peripheral component
interconnect (PCI) bus for an I/O expansion bus. The PCI bus is a 32-bit multiplexed
address and data bus. The PCI expansion slot has a 33.33 MHz system clock.

PCI I/O expansion cards are mounted horizontally in a 90-degree straight-through
adapter board, which is installed in the PCI expansion slot on the main logic board.

A total of 15 watts of power is provided for the PCI expansion slot. Both 5 volts and
3.3 volts are supplied; the total power consumed by both voltages must not exceed the
15-watts maximum.

The Power Macintosh 5400 computer requires that PCI cards use the 5-volts signaling
standard described in the PCI Local Bus Specification, Revision 2.0.

The Power Macintosh 5400 computer accepts standard 6.88-inch PCI cards as defined by
the PCI Local Bus Specification, Revision 2.0. The cards are required to use the standard
ISA fence described in the specification.

The PCI slots support all the required PCI signals and certain optional PCI signals. The
supported PCI signals are listed in Table 4-3.

Table 4-8 PCI signals

Signal name Description

AD [0–31] Address and data, multiplexed

C/BE[0–3] Bus command and byte enable signals, multiplexed

PAR Parity; used with AD and C/BE signals

FRAME# Cycle frame; asserted to indicate a bus transaction

TRDY# Target ready; selected device is able to complete the current phase

IRDY# Initiator ready; master device is able to complete the current phase

STOP# Stop; indicates the current target device is requesting the master to stop
the current transaction

DEVSEL# Device select; indicates that the driving device has decoded its address
as the target of the current access

IDSEL Initialization device select; used during configuration

REQ# Request; indicates to the arbiter that the asserting agent requires use of
the bus

GNT# Grant; indicates to the agent that access to the bus has been granted

CLK Clock; rising edge provides timing for all transactions

continued

C H A P T E R 4

Expansion Features

The DAV Connector 53

The PCI slot in the Power Macintosh 5400 computer does not support the optional 64-bit
bus extension signals or cache support signals.

For more information about the PCI expansion slot, refer to Designing PCI Cards and
Drivers for Power Macintosh Computers.

The DAV Connector 4

The optional video input card has a separate connector called the DAV (digital audio
video) connector. The DAV connector provides access to the video input card’s 4:2:2
unscaled YUV video input data bus and associated control signals. By means of a cable
to the DAV connector, a PCI expansion card can gain access to the digital video bus on
the video input card and use it to transfer real-time video data to the computer. Such a
PCI expansion card can contain a hardware video compressor or other video processor.

The DAV connector is a 60-pin flat ribbon connector located at the top edge of the video
input card. Figure 4-2 is a view of the main logic board showing the PCI expansion card
and the location of the DAV connector on the video input card.

Note
The interface of the 60-pin DAV connector is a superset of the interface
on the 34-pin DVA connector on the Power Macintosh 5200, Power
Macintosh 6200, and Quadra 630 computers. An adapter cable is
provided with the Power Macintosh 5400 video-in cards to connect
34-pin DVA compatible cards developed for the Power Macintosh 5200
and 6200 computers to the new 60-pin DAV connector. ◆

The DAV connector accepts YUV video and analog sound from the expansion card but
does not itself generate YUV video output or audio output signals.

RST# Reset; used to bring registers and signals to a known state

INTA#,
INTB#,
INTC#,
INTD#

Interrupt request pins; wired together on each slot

LOCK# Lock; indicates an operation that may require multiple transactions to
complete.

PERR# Parity error; used to report data parity errors during PCI transactions
excluding a Special Cycle transaction.

SERR# System error; used to report address parity errors, data parity errors
during a Special Cycle, or any other system error that will be
catastrophic.

Table 4-8 PCI signals (continued)

Signal name Description

C H A P T E R 4

Expansion Features

54 The DAV Connector

Figure 4-2 Location of the DAV connector

Figure 4-3 shows the orientation of the DAV connector on the video input module.

Figure 4-3 Orientation of the DAV connector

Video input module

Communications
module

PCI I/O expansion card

DAV connector on
video input module

Internal chassis
connector

Pin 1 DAV connector

C H A P T E R 4

Expansion Features

The DAV Connector 55

IMPORTANT

The DAV connector on the video input card provides some of the
functionality of the DAV connectors found on the Power Macintosh
Power Macintosh 7100 and 8100 models, and the Macintosh Quadra AV
models, but it is not compatible with any of those connectors. Refer to
Macintosh DAV Interface for NuBus Expansion Cards in Developer Note
Number 8 for more information.

AV cards designed for the DVA connector in the Power Macintosh 5200
and 6200 computers are compatible with the 60-pin DAV connector
when an adapter cable is used. ▲

Pin Assignments 4

The DAV connector on the video-in card for the Power Macintosh 5400 computer is a
60-pin dual-row type with 0.100-inch pin spacing. The pin assignments on the DAV
connector are shown in Table 4-9. The pins are numbered as shown in the table, with pin
1 across from pin 31 and pin 30 across from pin 30.

Table 4-9 Pin assignments on the DAV connector

Pin number Signal name Pin number Signal name

1 Ground 2 GEOPORT_CLK

3 Ground 4 LLC_OUT

5 Ground 6 PXQ_OUT

7 Ground 8 VS_OUT

9 Ground 10 HS_OUT

11 UV bit 7 12 UV bit 6

13 UV bit 5 14 UV bit 4

15 UV bit 3 16 UV bit 2

17 UV bit 1 18 UV bit 0

19 Y bit 7 20 Y bit 6

21 Y bit 5 22 Y bit 4

23 Y bit 3 24 Y bit 2

25 Y bit 1 26 Y bit 0

27 Ground 28 LLC_IN

29 Ground 30 PXQ_IN

31 Ground 32 VS_IN

33 Ground 34 HS_IN

continued

C H A P T E R 4

Expansion Features

56 The DAV Connector

Signal Descriptions 4

Table 4-10 gives descriptions of the signals on the DAV connector.

Using the YUV Bus 4

The video input module contains a digital video decoder and scaler (DESC), the Philips
SAA7140 IC. Logic on the video input card uses the CVBS port on the DESC and pulls
the FLD signal low, disabling the YUV bus. For an expansion card to use the YUV bus,

35 Ground 36 HREF_IN

37 Ground 38 FLD

39 IIC_DATA 40 IIC_CLK

41 Ground 42 SND_L

43 SND_RET 44 SND_R

45 Ground 46 AUDIO_SDIN

47 Ground 48 AUDIO_SDOUT

49 Ground 50 AUDIO_BITCLK

51 Ground 52 AUDIO_SYNC

53 Ground 54 NC

55 VID_RET 56 NC

57 VID_RET 58 NC

59 NC 60 NC

Table 4-10 Descriptions of the signals on the DAV connector

Signal name Signal description

LLC_OUT Clock reference signal

FLD YUV directional signal

HS_IN Horizontal reference signal

HS_OUT Horizontal sync signal

LLC_IN Line-locked clock signal

UV(bits 0–7) Digital chrominance data bus

VS_OUT Vertical sync signal

Y(bits 0–7) Digital luminance data bus

Table 4-9 Pin assignments on the DAV connector (continued)

Pin number Signal name Pin number Signal name

C H A P T E R 4

Expansion Features

The DAV Connector 57

the software associated with the card must set the FLD signal high so that the DESC will
accept data on the YUV bus. To do that, the software can use the Cuda Dispatch
Manager to issue a IIC command to write to register $E of the DESC. For information
about using the registers in the DESC IC, please refer to the SAA7140 Philips Desktop
Video Handbook.

Video Data Format 4

Digital video data is transmitted as lines and fields. Each line consists of an even number
of samples on the Y and UV buses as shown in Figure 4-4. HREF is high during a video
line and low during the horizontal blanking interval. The falling edge of the VS signal
indicates the beginning of a video field. For more information about digital video data in
YUV format, see Macintosh DAV Interface for NuBus Expansion Cards in Developer Note
Number 8.

Figure 4-4 Video data timing

Y 0

LLCLK

vdcCREFB

HREF

Y 7–0

UV 7–0

Start of a video line

Y1 Y2 Y3 Y4 Y5

U 0 V0 U2 V2 U4 V4

Y and UV data valid on the rising edge of LLCLK
when HREF and CREFB are high

Yn-5

LLCLK

vdcCREFB

HREF

Y 7–0

UV 7–0

End of a video line

Yn-4 Yn-3 Yn-2 Yn-1 Yn

Un-5 Vn-5 Un-3 Vn-3 Un-1 Vn-1

C H A P T E R 4

Expansion Features

58 The PCI-Bus Communications Slot

The PCI-Bus Communications Slot 4

The main logic board has a separate slot for an optional communications card. The
communications slot on Power Macintosh 5400 is a PCI-bus based communications slot
rather than a processor direct PDS-based communications slot like that found on the
Power Macintosh 5200 and 6200 computers.

The electrical interface of the communications slot is a parallel bus, the SCC lines, and
lines for supporting modem audio. The PSX custom IC provides bus conversion from the
host PowerPC 603e bus to the PCI parallel bus. Cards that use the communications slot
are memory mapped into the I/O space of the Power Macintosh 5400 computer via the
parallel bus. The communications slot supports SCC port A (modem port) for a universal
modem card that is compatible with both the communications slot in the Power
Macintosh 5200 and 6200 computers and PCI communications slot in the Power
Macintosh 5400 computer.

PCI-Bus Communications Slot Connector 4
The PCI-bus based communications slot connector is a 112-pin half-height microchannel
connector. A communications card mounts vertically in the connector and its I/O
connector is accessed through the communications port access hole on the right hand
side of the back panel. The size constraints of a communications card are 1.57 inches (40
mm) wide by 6 inches (152 mm) long.

A maximum of 2.5 watts of power is allocated to the communications slot. The
maximum possible current ratings for each power line are:

Voltage Current

+5 V 500 mA

+12 V 100 mA

Trickle +5 V 5 mA

–5 V 20 mA

Table 4-11 lists the pin assignments of the PCI-bus communications slot.

Table 4-11 Pin assignments for the PCI-bus communications slot connector

Odd-numbered pins Function Even-numbered pins Function

1 /DCD 2 /DTR

3 /CTS 4 /RTS

5 RxD 6 TxD

continued

C H A P T E R 4

Expansion Features

The PCI-Bus Communications Slot 59

7 IN_SENSE 8 SCC_ENAB

9 INT_MIC 10 MIC_SENSE

11 MIC_RET 12 EXT_AUD_L

13 Reserved 14 EXT_AUD_RET

15 GND 16 +12V

17 -5V 18 +12V

19 SYS_WAKEUP 20 Trickle +5

21 GND 22 GND

23 A1 24 A0

25 A3 26 A2

27 +3.3V 28 +3.3V

29 A5 30 A4

31 A7 32 A6

33 +5V 34 +5V

35 A8 36 C/BE(0)~

37 A10 38 A9

39 GND 40 GND

41 A12 42 A11

43 A14 44 A13

45 C/BE(1)~ 46 A15

47 GND 48 Gnd

49 SERR~ 50 PAR

51 PERR~ 52 SBO~

53 LOCK~ 54 SDONE

55 +3.3V 56 +3.3V

57 DEVSEL~ 58 STOP~

59 IRDY~ 60 TRDY~

61 +5V 62 +5V

63 C/BE(2)~ 64 FRAME~

65 A17 66 A16

67 GND 68 GND

continued

Table 4-11 Pin assignments for the PCI-bus communications slot connector (continued)

Odd-numbered pins Function Even-numbered pins Function

C H A P T E R 4

Expansion Features

60 The PCI-Bus Communications Slot

Universal Serial Modem Card 4
The PCI-bus communications slot of the Power Macintosh 5400 computer is not
compatible with cards designed for the 68030-bus communications slot of the Power
Macintosh 5200 and 6200 computers. Such cards will not physically fit into the
communications slot of the Power Macintosh 5400 computer, because the
communications slot is keyed at the opposite end. In addition, the two communications
slots are not fully signal compatible.

However, the signals on the communications slot in the Power Macintosh 5400 computer
are configured to make it possible to design a universal communications slot card that
works in the 68030-style PDS comm slot if access to the parallel bus is not required (for
example, a serial modem card). The power, ground, serial, and audio signals of the

69 A19 70 A18

71 A21 72 A20

73 A23 74 A22

75 GND 76 GND

77 C/BE(3)~ 78 IDSEL

79 A25 80 A24

81 A27 82 A26

83 +3.3V 84 +3.3V

85 A29 86 A28

87 A31 88 A30

89 +5V 90 +5V

91 REQ~ 92 GNT~

93 +5V 94 +5V

95 INT~ 96 Reserved

97 Reserved 98 RST~

99 GND 100 Reserved‘

101 CLK 102 Reserved

103 GND 104 Reserved

105 Reserved 106 Reserved

107 Reserved 108 Reserved

109 CommGnd 110 RefGnd

111 AudToSlot 112 AudFromSlot

Table 4-11 Pin assignments for the PCI-bus communications slot connector (continued)

Odd-numbered pins Function Even-numbered pins Function

C H A P T E R 4

Expansion Features

The PCI-Bus Communications Slot 61

communications slot in the Power Macintosh 5400 computer are located on the
connector in such a way that a dual-keyed (cutout) modem card will fit and operate in
the Power Macintosh 5200 and 6200, LC575, LC 630 and Power Macintosh 5400
communications slot. A simplified design diagram for a dual-keyed universal modem
card is shown in Figure 4-5.

Figure 4-5 Universal modem card for communications slot

IMPORTANT

Serial modem cards designed for universal operation must not attempt
to access the parallel bus of either the 68030-bus or the PCI-bus
communications slots to be compatible in both configurations. ▲

Table 4-12 lists the pin assignments on a universal serial modem card that operates in
either the 68030-bus or PCI-bus communications slots. The assignments are the same as

Pin number 1 location
odd pins on this sideEdge connector

Pin number 1 location
even pins on this side

RJ11

Secondary side
restricted component height,

see official drawing

Primary or
component side

6.0622
inches

1.8898
inches

C H A P T E R 4

Expansion Features

62 The PCI-Bus Communications Slot

those on the PCI-bus communications slot, listed in Table 4-11, with the PCI bus signals
removed and the addition of the key slot location.

Table 4-12 Pin assignments for a universal serial modem card

Odd-numbered pins Function Even-numbered pins Function

1 /DCD 2 /DTR

3 /CTS 4 /RTS

5 RxD 6 TxD

7 IN_SENSE 8 SCC_ENAB

9 INT_MIC 10 MIC_SENSE

11 MIC_RET 12 EXT_AUD_L

13 Not connected 14 EXT_AUD_RET

15 Gnd 16 +12V

17 –5V 18 Not connected

19 SYS_WAKEUP 20 Trickle+5

21 GND 22 Not connected

key (pin 23) key slot (cutout) key (pin 24) key slot (cutout)

key (pin 25) key slot (cutout) key (pin 26) key slot (cutout)

27 Not connected 28 Not connected

29 Not connected 30 Not connected

31 Not connected 32 Not connected

33 Not connected 34 +5V

35 Not connected 36 Not connected

37 Not connected 38 Not connected

39 Not connected 40 Not connected

41 Not connected 42 Not connected

43 Not connected 44 Not connected

45 Not connected 46 Not connected

47 GND 48 Not connected

49 Not connected 50 Not connected

51 Not connected 52 Not connected

53 Not connected 54 Not connected

55 Not connected 56 Not connected

continued

C H A P T E R 4

Expansion Features

The PCI-Bus Communications Slot 63

57 Not connected 58 Not connected

59 Not connected 60 Not connected

61 Not connected 62 +5V

63 Not connected 64 Not connected

65 Not connected 66 Not connected

67 Not connected 68 Not connected

69 Not connected 70 Not connected

71 Not connected 72 Not connected

73 Not connected 74 Not connected

75 GND 76 Not connected

77 Not connected 78 Not connected

79 Not connected 80 Not connected

81 Not connected 82 Not connected

83 Not connected 84 Not connected

85 Not connected 86 Not connected

87 Not connected 88 Not connected

89 Not connected 90 +5V

key key slot (cutout) key key slot (cutout)

key key slot (cutout) key key slot (cutout)

91 Not connected 92 Not connected

93 Not connected 94 Not connected

95 Not connected 96 Reserved

97 Reserved 98 RST~

99 GND 100 Reserved

101 Not connected 102 Not connected

103 GND 104 Reserved

105 Reserved 106 Reserved

107 Reserved 108 Reserved

109 CommGnd 110 RefGnd

111 AudFromSlot 112 AudToSlot

Table 4-12 Pin assignments for a universal serial modem card (continued)

Odd-numbered pins Function Even-numbered pins Function

C H A P T E R 5

Software Features 5Figure 5-0
Listing 5-0
Table 5-0

C H A P T E R 5

Software Features

66 ROM Software

The first part of this chapter describes the software in the ROM of the Power Macintosh
5400 computer. The second part describes the system software that supports the new
features of these computers.

For a description of the system software for the internal IDE hard disk, see Chapter 7,
“Software for the ATA (IDE) Hard Disk.”

ROM Software 5

The ROM is based on the ROM used in the current Power Macintosh models with the
necessary changes to support machine-specific hardware.

The following is a list of the most significant ROM changes:

■ Hardware initialization now includes support for MMU programming and other
PowerPC 603 microprocessor functions, addition of new diagnostics, and removal of
the 68040 check/support code.

■ The nanokernel has been modified to support the PowerPC microprocessor.

■ The software no longer supports 1- or 2- bit video modes.

■ The software supports 16-bit sound.

Machine Identification 5
The ROM includes new tables and code for identifying the two computers.

Applications can find out which computer they are running on by using the Gestalt
Manager routines; see Inside Macintosh: Overview. The gestaltMachineType value
returned by the Power Macintosh 5400 computer is ?? (hexadecimal ??).

System Software 5

The Power Macintosh 5400 computer is shipped with a version of System 7.5 software
preinstalled. The disk labeled “Install Me First” includes a system enabler file that
contains the resources the system needs to start up and initialize the computer.

As soon as the system software on disk takes over the startup process, it searches for all
system enablers that can start up the particular machine. Each system enabler contains a
resource that specifies which computers it is able to start up and the time and date of its
creation. If the system software finds more than one enabler for the particular computer,
it passes control to the one with the most recent time and date.

In general, the system enabler included in each reference release of system software is
able to start up all previous computers. The enablers for computers introduced after a
reference release may be independent or may use resources from the previous reference
release.

C H A P T E R 5

Software Features

New Features 67

The system enabler includes modifications to the video digitizer allowing it to run in
native mode to improve video capture performance.

New Features 5

The system software for the Power Macintosh 5400 computer includes the following new
features:

■ large volume support

■ Drive Setup (replaces HDSC setup)

■ transport-independent networking (Open Transport)

■ Open Firmware startup

■ Monitors & Sound (audio and video management)

■ Energy Saver software

Large Volume Support 5
The largest disk volume or partition supported by System 7.5 is 4 GB. The new system
software extends that limit to 2 terabytes.

IMPORTANT

The largest possible file is still just under 2 GB. ▲

The changes necessary to support the larger volume size affect many parts of the system
software. The affected software includes system-level and application-level components.

64-Bit Volume Addresses 5

The current disk driver application programming interface (API) has a 32-bit volume
address limitation. This limitation has been circumvented by the addition of a new 64-bit
extended volume API (PBXGetVolInfo) and 64-bit data types (UnsignedWide, Wide,
XVolumeParam, and XIOParam).

For the definitions of the new API and data types, please see “The API Modifications” in
Chapter 6, “Large Volume Support.”

System-Level Software 5

Several system components have been modified to use the 64-bit APIs to correctly
calculate true volume sizes and read and write data to and from large disks. The
modified system components are

■ virtual memory code

■ Disk Init file

■ FSM file

C H A P T E R 5

Software Features

68 New Features

■ Apple disk drivers

■ Hierarchical file system (HFS) ROM code

Application-Level Software 5

Current applications do not require modification to gain access to disk space beyond the
traditional 4 GB limit as long as they do not require the true size of the large partition.
Applications that need to obtain the true partition size must be modified to use the new
64-bit API and data structures. Typical applications include utilities for disk formatting,
partitioning, initialization, and backup.

The following application-level components of the system software have been modified
to use the 64-bit APIs:

■ Finder

■ Finder extensions (AppleScript, AOCE Mailbox, and Catalogs)

■ Drive Setup

■ Disk First Aid

In the past, the sum of the sizes of the files and folders selected in the Finder was limited
to the largest value that could be stored in a 32-bit number—that is, 4 GB. By using the
new 64-bit APIs and data structures, the Finder can now operate on selections whose
total size exceeds that limit. Even with very large volumes, the Finder can display
accurate information in Folder and Get Info windows and to obtain the true volume size
for calculating available space when copying.

The Finder extensions AppleScript, AOCE Mailbox, and Catalogs have been modified in
the same way as the Finder because their copy-engine code is similar to that in the
Finder.

The modified HDSC Drive Setup application is described in “Drive Setup” beginning on
page 69. The Disk First Aid application is not described in this developer note.

Limitations 5

The software modifications that support large partition sizes do not solve all the
problems associated with the use of large volumes. In particular, the modifications do
not address the following:

■ HFS file sizes are still limited to 2 GB or less.

■ Large allocation block sizes cause inefficient storage. On a 2 GB volume, the minimum
file size is 32 KB; on a 2 terabyte volume, the minimum file size is 32 MB.

■ Drives with the new large volume device driver will not mount on computers
running older versions of the Macintosh Operating System.

C H A P T E R 5

Software Features

New Features 69

Drive Setup 5
The software for the Power Macintosh 5400 computer includes a new disk setup utility
named Drive Setup. In addition to the ability to support large volumes, the Drive Setup
utility has several other enhancements over the older HDSC Setup utility, including

■ an improved user interface

■ support for multiple partitions

■ the ability to mount volumes from applications

■ the ability to start up (boot) from any HFS partition

■ support for removable media drives

Open Transport 5
Open Transport is the new communications and networking architecture that will
become the standard for Macintosh networking and communications. Open Transport
provides a mechanism for communications applications to operate independently from
underlying networks such as AppleTalk, TCP, or IPX. Open Transport provides a code
base and architecture that supports network stacks while eliminating many of the
interrupt latency problems associated with AppleTalk.

Note
Open Transport runs native on the PowerPC microprocessors. ◆

Open Transport has two major aspects: the client interfaces and the environment for
developing protocols and communications modules. The Open Transport client
interfaces are a superset of the XTI interface from X/Open, a consortium of UNIX®
vendors. XTI is a superset of TLI, a UNIX standard interface. By using the Open
Transport interfaces, applications (called clients) can operate independently of the
transport layer.

The environment for developing protocols and communications modules for Open
Transport also uses industry standards. These standards are the UNIX standard Streams,
and two other standards, Transport Provider Interface (TPI) and Data Link Provider
Interface (DLPI).

Open Transport does not use the conventional .ENET style drivers; instead it uses
Streams-based DLPI drivers that are more appropriate for use with PCI devices. In
addition to being consistent with industry standards, Streams-based DLPI drivers
provide higher performance than .ENET style drivers.

Apple Computer, Inc.’s, Open Transport software includes new stack implementations
for AppleTalk and MacTCP. Apple expects that third parties will provide
implementations of DECnet, IPX, and other network protocols.

The Open Transport implementation of AppleTalk has a significant feature not found in
the classic AppleTalk implementation for Macintosh computers. The Open Transport
implementation supports multihoming (sometimes called multiporting), which makes it

C H A P T E R 5

Software Features

70 New Features

possible for AppleTalk to be active on more than one network port on the machine at a
time.

The Open Transport implementation of TCP/IP is a replacement for MacTCP. It is
designed for use under the Open Transport software interface.

New Features of Open Transport 5

The new features of Open Transport include

■ a new API

■ dynamic loading and shared code

■ multihoming (multiporting)

■ an optional static node number (AppleTalk)

■ an optional NBP-to-catalog server (AppleTalk)

■ IP multicasting (MacTCP)

■ dynamic retransmission timers (MacTCP)

Compatibility 5

Open Transport is compatible with existing AppleTalk networks and supports existing
.ENET clients such as Soft Windows and DECnet.

Open Transport provides compatibility with 680x0-based computers by means of the
following features:

■ environment options

■ 680x0-based APIs and stacks

■ Open Transport APIs and stacks

■ API compatibility glue

■ use of parameter-block APIs with Open Transport stacks for 680x0-based applications

Open Transport provides compatibility with Power Macintosh computers by means of
the following features:

■ environment options

■ 680x0-based APIs and stacks run in emulation mode

■ Open Transport APIs and stacks run in native mode

■ API compatibility glue runs in mixed mode

■ 680x0-based applications can use parameter-block APIs with Open Transport stacks

■ 680x0-based applications can use Open Transport APIs and stacks

■ native applications can use parameter block APIs with 680x0-based stacks

■ native applications can use parameter block APIs with Open Transport stacks

C H A P T E R 5

Software Features

New Features 71

Open Firmware Startup 5
The Open Firmware startup process in PCI-compatible Macintosh computers conforms
to the IEEE Standard 1275 for Boot Firmware and the PCI Bus Binding to IEEE 1275-1994
specification. These specifications are listed in “Supplemental Reference Documents,” in
the preface.

The Open Firmware startup process is driven by startup firmware (also called boot
firmware) stored in the Macintosh ROM and in PCI card expansion ROMs. While the
startup firmware is running, the Macintosh computer starts up and configures its
hardware (including peripheral devices) independently of any operating system. The
computer then finds an operating system in ROM or on a mass storage device, loads it
into RAM, and terminates the Open Firmware startup process by giving the operating
system control of the PowerPC main processor. The operating system may be the
Macintosh Operating System or a different system, provided it uses the PowerPC
instruction set.

The Open Firmware startup process includes these specific features:

■ Startup firmware is written in the Forth language, as defined by the IEEE Standard
1275. Firmware code is stored in a tokenized representation called FCode, an
abbreviated version of Forth in which most Forth words are replaced by single bytes
or 2-byte groups. The startup firmware in the Power Macintosh ROM includes an
FCode loader that installs FCode in system RAM so that drivers can run on the
PowerPC main processor. Expansion card firmware can modify the Open Firmware
startup process by supplying FCode that the computer’s startup firmware loads and
runs before launching an operating system.

■ The startup firmware creates a data structure of nodes called a device tree, in which
each PCI device is described by a property list. The device tree is stored in system
RAM. The operating system that is ultimately installed and launched can search the
device tree to determine what devices are available.

■ Device drivers required during system startup (called boot drivers) are also stored in
the expansion ROM on the PCI card. Plug-in expansion cards must contain all the
driver code required during startup. The boot drivers are native drivers and are
embedded in the FCode in the expansion ROM. The startup firmware in the Power
Macintosh ROM installs the boot drivers in system RAM and lets them run on the
PowerPC main processor.

■ The startup firmware in the Power Macintosh ROM contains debugging facilities for
both FCode and some kinds of operating-system code. These facilities can help
expansion card designers develop the firmware for new peripheral devices
compatible with Macintosh computers.

You can write PCI expansion ROM code in standard Forth words and then reduce the
result to FCode by using an FCode tokenizer, a program that translates Forth words into
FCodes. The Forth vocabulary that you can use is presented in IEEE Standard 1275.

The burden on developers to provide Forth boot drivers need not be heavy. Developers
can choose the level of support that they provide. The following are the three possible
levels of support:

C H A P T E R 5

Software Features

72 New Features

■ No driver. The expansion ROM contains minimal FCode. The Open Firmware startup
process recognizes the card and installs a node in the device tree, but no driver code is
loaded and no device initialization occurs.

■ Run-time driver. Only a small amount of Forth code is required to install an
OS-dependent run-time driver in the device’s property list. Sample code is provided
in Designing PCI Cards and Drivers for Power Macintosh Computers.

■ Boot driver. Expansion cards that need to be used at startup time must contain a boot
driver with the required methods for the type of device (typically Open, Close, Read,
and Write). Sample code is provided in Designing PCI Cards and Drivers for Power
Macintosh Computers.

Monitors & Sound Control Panel 5
The Monitors & Sound control panel software is a new all in one control panel for
configuring the audio and video input and output features of the Power Macintosh 5400
computer. The control panel combines the functions of three control panels used up until
now: the Monitors and Sound control panels found on all Macintosh computers and the
Video control panel used with A/V Macintosh computers.

Figure 5-1 shows the main window of the Monitors & Sound control panel

Figure 5-1 Main window of the Monitors & Sound control panel

C H A P T E R 5

Software Features

New Features 73

The Monitors & Sound control panel is a QuickTime component control panel

Energy Saver Software 5
The system software for the Power Macintosh 5400 computer supports a superset of the
Macintosh Energy Saver power-management application software. The enhanced Energy
Saver application fully employs the capabilities of Energy-Star compliant features in
Macintosh computers and peripherals, such as hard disk drives and displays.

The Energy Saver application, shown expanded for Sleep preferences in Figure 5-2,
provides desktop computer users access to power-saving features previously available
only in portable computer power-management software. The user experience provided
by the human interface to the new power management software is consistent across
portable and desktop Macintosh computers.

Figure 5-2 Energy Saver application dialog box

Features of the New Energy Saver Application 5
The Energy Saver power management software allows control of these features:

■ idle-time energy savings

n computer sleep time

C H A P T E R 5

Software Features

74 Performance Enhancements

n display sleep time

n hard disk spin down time

■ scheduled energy savings

n scheduling of startup

n scheduling of shutdown including document auto-save

■ wakeup preferences

n blink power-on light when waking up

n play user defined sound when waking up

n wake up when modem detects a telephone ring

The Energy Saver software provides users with a single control panel to configure all of
the energy management features of their Macintosh computer system. The improved
single control panel interface presents a clearer conceptual model of what energy saving
features of the Macintosh computer can be managed. It also delivers a user experience
that is as consistent as possible across desktop Macintosh computers and portable
Macintosh computers. In addition, the new Energy Saver look and feel is appropriate for
existing and future Macintosh system software models. Last but not least, Energy Saver
satisfies the EPA requirements for Energy Star compliance.

To find out more about how to use all of the capabilities if the Energy Saver control
panel, see the User Guide and Macintosh Guide help files that accompany the shipping
versions of the Power Macintosh 5400 computer.

Performance Enhancements 5

The system software for the Power Macintosh 5400 computer includes the following
performance enhancements:

■ a new Dynamic Recompilation Emulator

■ a Resource Manager completely in native code

■ an improved math library

■ new BlockMove extensions

Dynamic Recompilation Emulator 5
The Dynamic Recompilation Emulator (or DR Emulator) is an extension to the current
interpretive emulator providing on-the-fly translation of 680x0 instructions into
PowerPC instructions for increased performance. The DR Emulator operates as an
enhancement to a modified version of the existing interpretive emulator.

The design of the DR Emulator mimics a hardware instruction cache and employs a
variable size translation cache. Each compiled 680x0 instruction requires on average
fewer than 20 PowerPC instructions. In operation, the DR Emulator depends on locality
of execution to make up for the extra cycles used in translating the code.

C H A P T E R 5

Software Features

Performance Enhancements 75

The DR Emulator provides a high degree of compatibility for 680x0 code. One area
where compatibility will be less than that of the current interpretive emulator is for
self-modifying code that does not call the cache flushing routines. Such code also has
compatibility problems on Macintosh Quadra models with the cache enabled.

Resource Manager in Native Code 5
The Resource Manager in the software for the Power Macintosh 5400 computer is similar
to the one in the earlier Power Macintosh computers except that it is completely in native
PowerPC code. Because the Resource Manager is intensively used both by system
software and by applications, the native version provides an improvement in system
performance.

The Process Manager has been modified to remove patches it formerly made to the
Resource Manager.

Math Library 5
The new math library (MathLib) is an enhanced version of the floating-point library
included in the ROM in the first generation of Power Macintosh computers.

The new math library is bit compatible in both results and floating-point exceptions with
the math library in the first-generation ROM. The only difference is in the speed of
computation.

The new math library has been improved to better exploit the floating-point features of
the PowerPC microprocessor. The math library now includes enhancements that assist
the compiler in carrying out its register allocation, branch prediction, and overlapping of
integer and floating-point operations.

Compared with the previous version, the new math library provides much improved
performance without compromising its accuracy or robustness. It provides performance
gains for often-used functions of up to 15 times.

The application interface and header files for the math library have not been changed.

New BlockMove Extensions 5
The system software for the Tsunami computer includes new extensions to the
BlockMove routine. The extensions provide improved performance for programs
running in native mode.

The new BlockMove extensions provide several benefits for developers.

■ They’re optimized for the PowerPC 603 processor, rather than the PowerPC 601.

■ They’re compatible with the new dynamic recompilation emulator.

■ They provide a way to handle cache-inhibited address spaces.

■ They include new high-speed routines for setting memory to zero.

C H A P T E R 5

Software Features

76 Performance Enhancements

Note
The new BlockMove extensions do not use the string instructions,
which are fast on the PowerPC 601 but slow on other PowerPC
implementations.

Some of the new BlockMove extensions can be called only from native code.

Except for BlockZero and BlockZeroUncached, the new BlockMove extensions use
the same parameters as BlockMove. Calls to BlockZero and BlockZeroUncached
have only two parameters, a pointer and a length, the same as the second and third
parameters of BlockMove.

Table 5-1 summarizes the BlockMove routines according to three criteria: whether the
routine can be called from 680x0 code, whether it is okay to use for moving 680x0 code,
and whether it is okay to use with buffers or other uncacheable destination locations.

The fastest way to move data is to use the BlockMoveData routine. It is the
recommended method whenever you are certain that the data is cacheable and does not
contain executable 680x0 code.

The BlockMove routine is slower than the BlockMoveData routine only because it has
to clear out the software cache used by the DR Emulator. If the DR Emulator is not in
use, the BlockMove routine and the BlockMoveData routine are the same.

IMPORTANT

The versions of BlockMove for cacheable data use the dcbz instruction
to avoid unnecessary prefetching of destination cache blocks. For
uncacheable data, you should avoid using those routines because the
dcbz instruction faults on uncacheable or write-through locations,
making execution extremely slow. ▲

Table 5-1 Summary of BlockMove routines

BlockMove version

Can be
called from
680x0 code

Okay to use
for moving
680x0 code

Okay to
use with
buffers

BlockMove Yes Yes No

BlockMoveData Yes No No

BlockMoveDataUncached No No Yes

BlockMoveUncached No Yes Yes

BlockZero No — No

BlockZeroUncached No — Yes

C H A P T E R 5

Software Features

Hardware Support Features 77

IMPORTANT

Driver software cannot call the BlockMove routines directly. Instead,
drivers must use the BlockCopy routine, which is part of the Driver
Services Library. The BlockCopy routine is an abstraction that allows
you to postpone binding the specific type of BlockMove operation until
implementation time. ▲

The Driver Services Library is a collection of useful routines that Apple Computer
provides for developers working with the new Power Macintosh computers. For more
information, please refer to Designing PCI Cards and Drivers for Power Macintosh
Computers.

Hardware Support Features 5

The system software for the Power Macintosh 5400 computer includes the following
features to support the hardware:

■ PCI bus support

■ POWER-clean native code

■ POWER emulation (for PowerPC 601 compatibility)

■ Display Manager

■ support of native drivers

■ IDE hard drive support

PCI Bus Support 5
The Power Macintosh 5400 computer does not use NuBus™ or Macintosh LC PDS slots
for hardware expansion, but instead use the industry standard PCI bus architecture. To
support these computers as well as future Macintosh models that do not use the NuBus
architecture, new system software includes a bus-neutral expansion architecture that is
used by system software in place of Slot Manager calls that are specific to NuBus.

Removal of Slot Manager Dependencies 5

The system software that controls NuBus cards in current Macintosh models has many
explicit dependencies on the Slot Manager. The system software for models that use PCI
bus slots requires changes to each of those dependencies so that PCI cards can operate
with the system in the same fashion as NuBus cards.

The system software that formerly called the Slot Manager has been modified to use
other services. The new Display Manager provides the means of obtaining video-specific
information that was previously obtained by way of the Slot Manager. For example,
QuickDraw currently calls the Slot Manager at startup time to check the consistency of
the 'scrn' resource. In the software for the Power Macintosh 5400 computer,
QuickDraw calls the new Display Manager to check this consistency.

C H A P T E R 5

Software Features

78 Hardware Support Features

The following components formerly used the Slot Manager; they have been modified to
use the services of the Display Manager:

■ the Monitors Control Panel

■ QuickDraw

■ Palette Manager

■ Device Manager

PCI Compatibility 5

To support a third party NuBus-to-PCI bridge product for PCI-based computers, it is
important to retain Slot Manager capability. Also, several important applications (such as
DECnet™ and SoftWindows™) rely on Slot Manager calls to indicate the presence of
networking cards. For compatibility, the new expansion architecture will support
existing PCI-based cards by way of particular Slot Manager calls.

For more information about PCI expansion cards, please refer to Designing PCI Cards and
Drivers for Power Macintosh Computers.

POWER-Clean Native Code 5
The instruction set of the PowerPC 601 microprocessor includes some of the same
instructions as those found in the instruction set of the POWER processor, and the
compiler used to generate native code for the system software in the first generation of
Power Macintosh models generated some of those POWER-only instructions. However,
the PowerPC 603e microprocessor used in the Power Macintosh 5400 computes does not
support the POWER-only instructions, so a new POWER-clean version of the compiler is
being used to compile the native code fragments.

Note
The term POWER-clean refers to code that is free of the POWER
instructions that would prevent it from running correctly on a
PowerPC 603 or PowerPC 604 microprocessor. ◆

Here is a list of the POWER-clean native code fragments in the system software.

■ interface library

■ private interface library

■ native QuickDraw

■ MathLib

■ Mixed Mode Manager

■ Code Fragment Manager

■ Font Dispatch

■ Memory Manager

■ standard text

C H A P T E R 5

Software Features

Hardware Support Features 79

■ the FMSwapFont function

■ standard C library

POWER Emulation 5
The first generation of Power Macintosh computers included emulation for certain
PowerPC 601 instructions that would otherwise cause an exception. The emulation code
dealt with memory reference instructions to handle alignment and data storage
exceptions. It also handled illegal instruction exceptions caused by some PowerPC
instructions that were not implemented in the PowerPC 601. In the second generation of
Power Macintosh computers, the emulation code has been revised to include the
POWER instructions that are implemented on the PowerPC 601 but not on the
PowerPC 603.

Note
Although the term POWER emulation is often used, a more appropriate
name for this feature is PowerPC 601 compatibility. Rather than
supporting the entire POWER architecture, the goal is to support those
features of the POWER architecture that are available to programs
running in user mode on the PowerPC 601-based Power Macintosh
computers. ◆

POWER-Clean Code 5

Because the emulation of the POWER-only instructions degrades performance, Apple
Computer encourages developers to revise any applications that use those instructions
to conform with the PowerPC architecture. Emulation works, but performance is
degraded; POWER-clean code is better.

Limitations of PowerPC 601 Compatibility 5

The emulation code in the second-generation Power Macintosh computers allows
programs compiled for the PowerPC 601 to execute without halting on an exception
whenever they use a POWER-only feature. For most of those features, the emulation
matches the results that are obtained on a Power Macintosh computer with a
PowerPC 601. However, there are a few cases where the emulation is not an exact match;
those cases are summarized here.

■ MQ register. Emulation does not match the undefined state of this register after
multiply and divide instructions.

■ div and divo instructions. Emulation does not match undefined results after an
overflow.

■ Real-time clock registers. Emulation matches the 0.27 percent speed discrepancy of
the Power Macintosh models that use the PowerPC 601 microprocessor, but the values
of the low-order 7 bits are not 0.

■ POWER version of dec register. Emulation includes the POWER version, but
decrementing at a rate determined by the time base clock, not by the real-time clock.

C H A P T E R 5

Software Features

80 Hardware Support Features

■ Cache line compute size (clcs) instruction. Emulation returns values appropriate
for the type of PowerPC microprocessor.

■ Undefined SPR encodings. Emulation does not ignore SPR encodings higher than
32.

■ Invalid forms. Invalid combinations of register operands with certain instructions
may produce results that do not match those of the PowerPC 601.

■ Floating-point status and control register (FPSCR). The FPSCR in the PowerPC 601
does not fully conform to the PowerPC architecture, but the newer PowerPC
processors do.

Emulation and Exception Handling 5

When an exception occurs, the emulation code first checks to see whether the instruction
encoding is supported by emulation. If it is not, the code passes the original cause of the
exception (illegal instruction or privileged instruction) to the application as a native
exception.

If the instruction is supported by emulation, the code then checks a flag bit in the
emulator’s context block definition to see whether emulation has been enabled. If
emulation is not enabled at the time, the emulator generates an illegal instruction
exception.

Note
There is a mechanism to turn off POWER emulation so that developers
can verify that they have removed the POWER-only instructions from
their applications. ◆

In the first generation of Power Macintosh computers, emulation also allowed access to
the performance monitor control registers, which are privileged SPRs. In the
second-generation machines, access to privileged SPRs is emulated only for the
performance monitor registers and only if the processor supports the performance
monitor; otherwise, the emulator generates a privileged instruction exception. Notice
that the emulator generates a privileged instruction exception even if the original
exception was an illegal instruction exception. It does this to provide exception reporting
that is consistent with that of the first-generation Power Macintosh computers.

Code Fragments and Cache Coherency 5

Whereas the PowerPC 601 microprocessor has a single cache for both instructions and
data, the PowerPC 603 has separate instruction and data caches. As long as applications
deal with executable code by using the Code Fragment Manager, cache coherency is
maintained. Applications that bypass the Code Fragment Manager and generate
executable code in memory, and that do not use the proper cache synchronization
instructions or CFM calls, are likely to encounter problems when running on the
PowerPC 603.

C H A P T E R 5

Software Features

Hardware Support Features 81

IMPORTANT

The emulation software in the Power Macintosh 5400 computer cannot
make the separate caches in the PowerPC 603 behave like the combined
cache in the PowerPC 601. Applications that generate executable code in
memory must be modified to use the Code Fragment Manager or
maintain proper cache synchronization by other means. ▲

Display Manager 5
Until now, system software has used the NuBus-specific Slot Manager to get and set
information about display cards and drivers. New system software removes this explicit
software dependency on the architecture of the expansion bus. The Display Manager
provides a uniform API for display devices regardless of the implementation details of
the devices.

In a computer that uses PCI expansion cards, the Slot Manager is generally not available
to provide information about display cards; instead, the Expansion Manager must be
used. The Display Manager makes the actual calls to either the Slot Manager or the
Expansion Manager, as appropriate, thus isolating the bus-specific calls to a single
component and avoiding the need to change additional system software in the future.
See the section “Removal of Slot Manager Dependencies” on page 77.

Support of Native Drivers 5
The Power Macintosh 5400 computer uses a new native-driver model for system
software and device driver developers. Several components of system software are being
modified to support native drivers. The modified components are

■ Device Manager

■ interrupt services

■ driver loader library

■ driver support library

■ Slot Manager stubs

■ Macintosh startup code

■ interface libraries

■ system registry

For more information, refer to Designing PCI Cards and Drivers for Power Macintosh
Computers.

C H A P T E R 6

Large Volume Support 6Figure 6-0
Listing 6-0
Table 6-0

C H A P T E R 6

Large Volume Support

84 Overview of the Large Volume File System

This chapter describes the large volume file system for the Power Macintosh 5400
computer. The large volume file system is a version of the hierarchical file system (HFS)
that has been modified to support volume sizes larger than the current 4 GB limit. It
incorporates only the changes required to achieve that goal.

Overview of the Large Volume File System 6

The large volume file system includes

■ modifications to the HFS ROM code, Disk First Aid application, and Disk Init file

■ a new extended API that allows reporting of volume size information beyond the
current 4 GB limit

■ new device drivers and changes to the Device Manager API to support devices that
are greater than 4 GB

■ a new version of Drive Setup that supports large volumes and chainable drivers
(Chainable drivers are needed to support booting large volumes on earlier Macintosh
models.)

API Changes 6
The system software on the Power Macintosh 5400 computer allows all current
applications to work without modifications. Unmodified applications that call the file
system still receive incorrect values for large volume sizes. The Finder and other utility
programs that need to know the actual size of a volume have been modified to use the
new PBXGetVolInfo function to obtain the correct value. (PBXGetVolInfo is an
extended version of the PBHGetVInfo function.)

The existing low-level driver interface does not support I/O to a device with a range of
addresses greater than 4 GB because the positioning offset (in bytes) for a read or write
operation is a 32-bit value. To correct this problem, a new extended I/O parameter block
record has been defined. This extended parameter block has a 64-bit positioning offset.
The new parameter block and the extended PBXGetVolInfo function are described in
“The API Modifications” beginning on page 85.

Allocation Block Size 6
The format of HFS volumes has not changed. What has changed is the way the HFS
software handles the allocation block size. Existing HFS code treats the allocation block
as a 16-bit integer. The large volume file system uses the full 32 bits of the allocation
block size parameter. In addition, any software that deals directly with the allocation
block size from the volume control block must now treat it as a true 32-bit value.

Even for the larger volume sizes, the number of allocation blocks is still defined by a
16-bit integer. As the volume size increases, the size of the allocation block also increases.
For a 2 GB volume, the allocation block size is 32 KB and therefore the smallest file on

C H A P T E R 6

Large Volume Support

The API Modifications 85

that disk will occupy at least 32 KB of disk space. This inefficient use of disk space is not
addressed by the large volume file system.

The maximum number of files will continue to be less than 65,000. This limit is directly
related to the fixed number of allocation blocks.

File Size Limits 6
The HFS has a maximum file size of 2 GB. The large volume file system does not remove
that limit because doing so would require a more extensive change to the current API
and would incur more compatibility problems.

Compatibility Requirements 6
The large volume file system requires at least a 68020 microprocessor or a Power
Macintosh model that emulates it. In addition, the file system requires a Macintosh IIci
or more recent model. On a computer that does not meet both those requirements, the
large volume file system driver will not load.

The large volume file system requires System 7.5 or higher and a new Finder that
supports volumes larger than 4 GB (using the new extended PBXGetVolInfo function).

The API Modifications 6

The HFS API has been modified to support volume sizes larger than 4 GB. The
modifications consist of two extended data structures and a new extended
PBXGetVolInfo function.

Data Structures 6
This section describes the two modified data structures used by the large volume file
system:

■ the extended volume parameter block

■ the extended I/O parameter block

Extended Volume Parameter Block 6

In the current volume parameter record (volumeParam instance of HParamBlockRec),
volume size information is clipped at 2 GB. Because HFS volumes can now exceed 4 GB,
a new extended volume parameter block is needed in order to report the larger size
information. The XVolumeParam record contains 64-bit integers for reporting the total
bytes on the volume and the number of free bytes available (field names
ioVTotalBytes and ioVFreeBytes). In addition, several of the fields that were

C H A P T E R 6

Large Volume Support

86 The API Modifications

previously signed are now unsigned (field names ioVAtrb, ioVBitMap, ioAllocPtr,
ioVAlBlkSiz, ioVClpSiz, ioAlBlSt, ioVNxtCNID, ioVWrCnt, ioVFilCnt, and
ioVDirCnt).

struct XVolumeParam {

ParamBlockHeader

unsigned long ioXVersion; // XVolumeParam version == 0

short ioVolIndex; // volume index

unsigned long ioVCrDate; // date & time of creation

unsigned long ioVLsMod; // date & time of last modification

unsigned short ioVAtrb; // volume attributes

unsigned short ioVNmFls; // number of files in root directory

unsigned short ioVBitMap; // first block of volume bitmap

unsigned short ioAllocPtr; // first block of next new file

unsigned short ioVNmAlBlks; // number of allocation blocks

unsigned long ioVAlBlkSiz; // size of allocation blocks

unsigned long ioVClpSiz; // default clump size

unsigned short ioAlBlSt; // first block in volume map

unsigned long ioVNxtCNID; // next unused node ID

unsigned short ioVFrBlk; // number of free allocation blocks

unsigned short ioVSigWord; // volume signature

short ioVDrvInfo; // drive number

short ioVDRefNum; // driver reference number

short ioVFSID; // file-system identifier

unsigned long ioVBkUp; // date & time of last backup

unsigned short ioVSeqNum; // used internally

unsigned long ioVWrCnt; // volume write count

unsigned long ioVFilCnt; // number of files on volume

unsigned long ioVDirCnt; // number of directories on volume

long ioVFndrInfo[8]; // information used by the Finder

uint64 ioVTotalBytes; // total number of bytes on volume

uint64 ioVFreeBytes; // number of free bytes on volume

};

Field descriptions

ioVolIndex An index for use with the PBHGetVInfo function.
ioVCrDate The date and time of volume initialization.
ioVLsMod The date and time the volume information was last modified. (This

field is not changed when information is written to a file and does
not necessarily indicate when the volume was flushed.)

ioVAtrb The volume attributes.
ioVNmFls The number of files in the root directory.
ioVBitMap The first block of the volume bitmap.
ioAllocPtr The block at which the next new file starts. Used internally.

C H A P T E R 6

Large Volume Support

The API Modifications 87

ioVNmAlBlks The number of allocation blocks.
ioVAlBlkSiz The size of allocation blocks.
ioVClpSiz The clump size.
ioAlBlSt The first block in the volume map.
ioVNxtCNID The next unused catalog node ID.
ioVFrBlk The number of unused allocation blocks.
ioVSigWord A signature word identifying the type of volume; it’s $D2D7 for

MFS volumes and $4244 for volumes that support HFS calls.
ioVDrvInfo The drive number of the drive containing the volume.
ioVDRefNum For online volumes, the reference number of the I/O driver for the

drive identified by ioVDrvInfo.
ioVFSID The file-system identifier. It indicates which file system is servicing

the volume; it’s zero for File Manager volumes and nonzero for
volumes handled by an external file system.

ioVBkUp The date and time the volume was last backed up (it’s 0 if never
backed up).

ioVSeqNum Used internally.
ioVWrCnt The volume write count.
ioVFilCnt The total number of files on the volume.
ioVDirCnt The total number of directories (not including the root directory) on

the volume.
ioVFndrInfo Information used by the Finder.

Extended I/O Parameter Block 6

The extended I/O parameter block is needed for low-level access to disk addresses
beyond 4 GB. It is used exclusively by PBRead and PBWrite calls when performing I/O
operations at offsets greater than 4 GB. To indicate that you are using an XIOParam
record, you should set the kUseWidePositioning bit in the ioPosMode field.

Because file sizes are limited to 2 GB, the regular IOParam record should always be used
when performing file level I/O operations. The extended parameter block is intended
only for Device Manager I/O operations to large block devices at offsets greater than
4 GB.

The only change in the parameter block is the parameter ioWPosOffset, which is of
type int64.

struct XIOParam {

QElemPtr qLink; // next queue entry

short qType; // queue type

short ioTrap; // routine trap

Ptr ioCmdAddr; // routine address

ProcPtr ioCompletion;// pointer to completion routine

OSErr ioResult; // result code

StringPtr ioNamePtr; // pointer to pathname

C H A P T E R 6

Large Volume Support

88 The API Modifications

short ioVRefNum; // volume specification

short ioRefNum; // file reference number

char ioVersNum; // not used

char ioPermssn; // read/write permission

Ptr ioMisc; // miscellaneous

Ptr ioBuffer; // data buffer

unsigned long ioReqCount; // requested number of bytes

unsigned long ioActCount; // actual number of bytes

short ioPosMode; // positioning mode (wide mode set)

int64 ioWPosOffset;// wide positioning offset

};

Field descriptions

ioRefNum The file reference number of an open file.
ioVersNum A version number. This field is no longer used and you should

always set it to 0.
ioPermssn The access mode.
ioMisc Depends on the routine called. This field contains either a new

logical end-of-file, a new version number, a pointer to an access
path buffer, or a pointer to a new pathname. Because ioMisc is of
type Ptr, you’ll need to perform type coercion to interpret the value
of ioMisc correctly when it contains an end-of-file (a LongInt
value) or version number (a SignedByte value).

ioBuffer A pointer to a data buffer into which data is written by _Read calls
and from which data is read by _Write calls.

ioReqCount The requested number of bytes to be read, written, or allocated.
ioActCount The number of bytes actually read, written, or allocated.
ioPosMode The positioning mode for setting the mark. Bits 0 and 1 of this field

indicate how to position the mark; you can use the following
predefined constants to set or test their value:
CONST

fsAtMark = 0; {at current mark}

fsFromStart = 1;{from beginning of file}

fsFromLEOF = 2;{from logical end-of-file}

fsFromMark = 3;{relative to current mark}

You can set bit 4 of the ioPosMode field to request that the data be
cached, and you can set bit 5 to request that the data not be cached.
You can set bit 6 to request that any data written be immediately
read; this ensures that the data written to a volume exactly matches
the data in memory. To request a read-verify operation, add the
following constant to the positioning mode:
CONST

rdVerify = 64; {use read-verify mode}

C H A P T E R 6

Large Volume Support

The API Modifications 89

You can set bit 7 to read a continuous stream of bytes, and place the
ASCII code of a newline character in the high-order byte to
terminate a read operation at the end of a line.

ioPosOffset The offset to be used in conjunction with the positioning mode.

New Extended Function 6
This section describes the extended PBXGetVolInfo function that provides volume size
information for volumes greater than 4 GB.

Before using the new extended call, you should check for availability by calling the
Gestalt function. Make your call to Gestalt with the gestaltFSAttr selector to
check for new File Manager features. The response parameter has the
gestaltFSSupports2TBVolumes bit set if the File Manager supports large volumes
and the new extended function is available.

PBXGetVolInfo 6

You can use the PBXGetVolInfo function to get detailed information about a volume. It
can report volume size information for volumes up to 2 terabytes.

pascal OSErr PBXGetVolInfo (XVolumeParam paramBlock, Boolean

async);

paramBlock A pointer to an extended volume parameter block.
async A Boolean value that specifies asynchronous (true) or synchronous

(false) execution.

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both:

Arrow Meaning

→ Input

← Output

↔ Both

Parameter block

→ ioCompletion ProcPtr Pointer to a completion routine.

← ioResult OSErr Result code of the function.

↔ ioNamePtr StringPtr Pointer to the volume’s name.

↔ ioVRefNum short On input, a volume specification;
on output, the volume reference
number.

C H A P T E R 6

Large Volume Support

90 The API Modifications

DESCRIPTION

The PBXGetVolInfo function returns information about the specified volume. It is
similar to the PBHGetVInfo function described in Inside Macintosh: Files except that it
returns additional volume space information in 64-bit integers.

→ ioXVersion unsigned long Version of XVolumeParam (value
= 0).

→ ioVolIndex short Index used for indexing through
all mounted volumes.

← ioVCrDate unsigned long Date and time of initialization.

← ioVLsMod unsigned long Date and time of last modification.

← ioVAtrb unsigned short Volume attributes.

← ioVNmFls unsigned short Number of files in the root
directory.

← ioVBitMap unsigned short First block of the volume bitmap.

← ioVAllocPtr unsigned short Block where the next new file
starts.

← ioVNmAlBlks unsigned short Number of allocation blocks.

← ioVAlBlkSiz unsigned long Size of allocation blocks.

← ioVClpSiz unsigned long Default clump size.

← ioAlBlSt unsigned short First block in the volume block
map.

← ioVNxtCNID unsigned long Next unused catalog node ID.

← ioVFrBlk unsigned short Number of unused allocation
blocks.

← ioVSigWord unsigned short Volume signature.

← ioVDrvInfo short Drive number.

← ioVDRefNum short Driver reference number.

← ioVFSID short File system handling this volume.

← ioVBkUp unsigned long Date and time of last backup.

← ioVSeqNum unsigned short Used internally.

← ioVWrCnt unsigned long Volume write count.

← ioVFilCnt unsigned long Number of files on the volume.

← ioVDirCnt unsigned long Number of directories on the
volume.

← ioVFndrInfo[8] long Used by the Finder.

← ioVTotalBytes uint64 Total number of bytes on the
volume.

← ioVFreeBytes uint64 Number of free bytes on the
volume.

C H A P T E R 6

Large Volume Support

The API Modifications 91

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBXGetVolInfo are

Trap macro Selector

_HFSDispatch $0012

RESULT CODES

noErr 0 Successful completion, no error occurred
nsvErr –35 No such volume
paramErr –50 No default volume

C H A P T E R 7

Software for the
ATA (IDE) Hard Disk 7

Figure 7-0
Listing 7-0
Table 7-0

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

94 Introduction to ATA Software

This chapter describes the system software that controls ATA (AT-Attachment) devices,
such as ATA hard disk drives (sometimes referred to as integrated drive electronics (IDE)
drives) installed in a Macintosh computer. To use the information in this chapter, you
should already be familiar with writing programs for the Macintosh computer that call
device drivers to manipulate devices directly. You should also be familiar with the ANSI
specification X3.279-1996 “AT Attachment Interface with Extensions (ATA-2)”.

Introduction to ATA Software 7

Support for ATA disk drives is incorporated in the ROM software. System software for
controlling ATA disk drives is provided by the ATA disk driver, which is loaded into
RAM from the drives media by the ATA Manager. The relationship of the ATA disk
driver and the ATA Manager is shown in Figure 7-1.

Figure 7-1 Relationship of the ATA Manager to the Macintosh system architecture

CD-ROM
driver

SCSI
hard disk

driver

File Manager

Device Manager

ATA disk
driver

CD-ROM
SCSI

hard disk
Other SCSI

devices

SCSI interface

Peripheral
devices

System
software

Application

SCSI Manager

ATA interface

ATA Manager

ATA/IDE
hard disk

Other SCSI
device
drivers

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

Introduction to ATA Software 95

At the system level, the ATA disk driver and ATA Manager work in the same way that
the SCSI Manager and associated SCSI device drivers work. The ATA disk driver
provides drive partition, data management, and error-handling services for the
Macintosh Operating System as well as support for determining device capacity and
controlling device-specific features. The ATA Manager provides an interface to the ATA
disk drive for the ATA disk driver.

ATA disk drives appear on the desktop the same way SCSI disk drives currently do.
Except for applications that perform low-level services, such as formatting and
partitioning utilities, applications interact with the ATA disk drives in a device-
independent manner through the File Manager.

ATA Disk Driver 7
The ATA disk driver has the following features:

■ Uses the ATA Manager for system and bus independence.

■ Supports multiple partitions (volumes).

■ Recognizes both Macintosh partitioned and non-partitioned media.

■ Adheres to the New Driver Rules described in Designing PCI Cards and Drivers for the
Macintosh Family.

■ Supports both synchronous and asynchronous requests from the file system.

The ATA disk driver supports all ATA drives that adhere to the ANSI ATA specification
X3.279-1996.

The ATA disk driver relies on the services of the ATA Manager, which provides the ATA
protocol engine and relieves the driver of system and bus dependencies. The main
functions of the driver are managing the media and monitoring the status of the drive.

The ATA disk driver is responsible for providing block-oriented access to the storage
media. The file systems treat the media as one or more logical partitions or volumes in
which data at any address can be read or written indefinitely.

The ATA disk driver provides operating system–dependent services through a set of
driver routines required to interface with the Macintosh Operating System. In addition,
it provides additional control and status functions that are specific to this
implementation of the ATA disk driver. The required disk driver routines, as specified in
Inside Macintosh: Devices, are open, close, prime, control, and status.

There are two versions of the ATA disk driver, a RAM-based version which is installed
on the drive media by the Drive Setup application, and a ROM-resident version. At
system startup time, if a RAM-based driver is not found on the ATA drive media by the
ATA Manager, the ATA disk driver in the ROM is selected as the driver for the drive.
Note that this is different from the SCSI driver loading sequence, which always requires
a RAM-based driver be installed on the media. The ATA disk driver in ROM is a subset
of the ATA disk driver on the media and should not be used for normal operation. It
provides emergency access to the ATA drive. The ATA disk driver installed on the media
by the Drive Setup application provides the latest features and optimal performance.

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

96 ATA Disk Driver Reference

The RAM-based ATA disk driver supports all modes of PIO and DMA operations as
defined in the ANSI ATA-2 Specification. When the driver is opened for an ATA drive,
the ATA disk driver configures the ATA Manager and the drive for optimal performance
based upon both the system and drive capabilities. Typically, DMA modes are selected
over PIO modes.

The ATA disk driver supports conservation of system power by spinning down the disk
drive to reduce power consumption. Spinning down the drive also flushes the drive
write cache to prevent data loss. The ATA disk driver spins down the disk drive in
response to a Sleep demand, the “Set Power Mode” control call (csCode 70), system
shutdown and restart, and when no access has been made to the drive within the time
specified in the Energy Saver Control Panel.

The ATA disk driver usually has a driver reference number of –54 (decimal), but may
also have a different reference number if -54 is taken when the driver is loaded. The
driver name is .ATDISK. Like all Macintosh device drivers, the ATA disk driver can be
called by using either the driver reference number or the driver name .ATDISK.

The ATA disk driver does not provide request queuing. All driver requests are either
completed immediately or are passed to the ATA Manager for further processing.
However, the driver does process asynchronous requests using the ATA Manager to
notify it when an operation has completed.

ATA Manager 7
The ATA Manager manages the ATA controller and its protocol. It provides data
transport services between ATA devices and the system, directing commands to the
appropriate device and handling interrupts from the devices.

The ATA Manager schedules I/O requests from the ATA disk driver, the operating
system, and applications. It is also responsible for managing the hardware interface to
the ATA controller electronics.

When making calls to the ATA Manager you have to pass and retrieve parameter
information through a parameter block. The size and content of the parameter block
depends on the function being called. However, all calls to the ATA Manager have a
common parameter block header structure. The structure of the ataPBHdr parameter
block is common to all ATA parameter block data types. Several additional ATA
parameter block data types have been defined for the various functions of the ATA
Manager. The additional parameter block data types, which are specific to the function
being called, are described in “ATA Manager Reference” beginning on page 110.

ATA Disk Driver Reference 7

This section describes the Macintosh device driver routines provided by the ATA disk
driver. The information in this section assumes that you are already familiar with how to
use device driver services on the Macintosh computer. If you are not familiar with

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Disk Driver Reference 97

Macintosh device drivers, refer to the chapter “Device Manager” in Inside Macintosh:
Devices for additional information.

High-Level Device Manager Routines 7
The ATA disk driver supports the required set of routines for handling requests from the
Device Manager, as defined in the chapter “Device Manager” of Inside Macintosh: Devices.
Those routines are briefly defined here for convenience. Additional control functions
supported in the ATA disk driver are defined in “ATA Disk Driver Control and Status
Functions” beginning on page 99.

Open Routine 7

The open routine should not be called to open the ATA disk driver. The ATA disk driver
requires a physical drive ID from the ATA Manager, and is called by the ATA Manager
after being loaded from the drive media. An open call to the ATA disk driver returns a
result of openErr if it has not been opened previously, and returns a result of noErr
and does not reopen if it is already open.

When opened, the ATA disk driver initializes itself for the drive specified and registers
itself for control of the drive with the ATA Manager. The driver installs itself in the
system Unit Table and installs a system Drive Queue entry for each file system partition
(volume) found on the media. After opening the ATA disk driver is able to respond to all
other Close, Prime, Status, and Control calls.

RESULT CODES

Close Routine 7

The close routine instructs the ATA disk driver to terminate execution. The driver
deregisters for control of the drive with the ATA Manager, removes the Drive Queue
entries for each volume associated with the drive, and deallocates all memory used
during operation. The driver does not remove itself from the Unit Table.

RESULT CODES

noErr 0 Successful completion, no error occurred
openErr –23 Could not open the driver
DRVRCantAllocate –1793 Global memory allocation error
ATABufFail –1796 Device buffer test failed

noErr 0 Successful completion, no error occurred

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

98 ATA Disk Driver Reference

Prime Routine 7

The prime routine performs logical block read and write operations to a specified
volume with automatic retries on errors. The driver accepts either the standard 32-bit
address or a 64-bit large volume address, both of which must be aligned on a 512 byte
boundary representing a logical block address on the volume. The prime routine
performs either a read or write command as specified by the caller.

RESULT CODES

Status Routine 7

The status routine returns status information about the ATA disk driver. The type of
information returned is specified in the csCode field and the information itself is
pointed to by the csParamPtr field.

The status functions supported by the ATA disk driver are shown in Table 7-1.

RESULT CODES

noErr 0 Successful completion, no error occurred
ioErr –36 I/O error
paramErr –50 Invalid parameter specified
nsDrvErr –56 No such drive installed

Table 7-1 Status functions supported by the ATA disk driver

Value of
csCode Definition

8 Return drive status information

43 Return driver Gestalt information

44 Return boot partition

45 Return partition mounting status

46 Return partition write protect status

70 Power mode status information

noErr 0 Successful completion, no error occurred
statusErr –18 Unimplemented status function; could not complete requested

operation
nsDrvErr –56 No such drive installed

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Disk Driver Reference 99

Control Routine 7

The ATA driver implements many of the control functions supported by the SCSI hard
disk driver and defined in Inside Macintosh: Devices. The ATA disk driver also
implements several new functions defined in Designing PCI Cards and Drivers for Power
Macintosh Computers. The control functions are listed below and described in “ATA Disk
Driver Control and Status Functions” beginning on page 99.

RESULT CODES

ATA Disk Driver Control and Status Functions 7
The ATA disk driver supports a standard set of control functions for ATA disk drive
devices. The functions are used for control, status, and power management.

Table 7-2 Control function supported by the ATA disk driver

Value of
csCode Definition

5 Verify media

6 Format media

7 Eject media

21 Return drive icon

22 Return media icon

23 Return drive characteristics

44 Enable partition as startup partition

45 Enable partition to be mounted

46 Set partition write protected

48 Disable partition mounting

49 Disable partition write protection

60 Mount volume

70 Set power mode

noErr 0 Successful completion, no error occurred
controlErr –17 Unimplemented control function; could not complete

requested operation
nsDrvErr –56 No such drive installed

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

100 ATA Disk Driver Reference

verify 7

The verify control function requests a read verification of the data on the ATA hard
drive media. This function performs no operation and returns noErr if the logical drive
number is valid.

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both.

Parameter block

RESULT CODES

format 7

The format control function initializes the hard drive for use by the operating system.
Because ATA hard drives are low-level formatted at the factory, this function does not
perform any operation. The driver always returns noErr if the logical drive number is
valid.

Parameter block

RESULT CODES

Arrow Meaning
→ Input
← Output
↔ Both

→ csCode A value of 5.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← ioResult See result codes.

noErr 0 Successful completion, no error occurred
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 6.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← ioResult See result codes.

noErr 0 Successful completion, no error occurred
nsDrvErr –56 The specified logical drive number does not exist

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Disk Driver Reference 101

eject 7

The eject control function is used by the driver to determine when a volume becomes
unmounted. If the unmounted volume was the last mounted volume of the drive, the
drive is placed in a low power mode to conserve power. If the drive is also ejectable
(PCMCIA, for example), a drive ejection is initiated.

Parameter block

RESULT CODES

return drive icon 7

The return drive icon control function returns a pointer to the device icon and the
device location string. The drive icon for ATA hard disk devices is shown in Figure 7-2.

Figure 7-2 ATA hard disk drive icon

Parameter block

RESULT CODES

→ csCode A value of 7.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← ioResult See result codes.

noErr 0 Successful completion, no error occurred
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 21.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[0–1] Address of drive icon and location string (information is in

ICN# format).
← ioResult See result codes.

noErr 0 Successful completion, no error occurred
nsDrvErr –56 The specified logical drive number does not exist

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

102 ATA Disk Driver Reference

return media icon 7

The return media icon control function returns a pointer to the media icon and the
location string. The media icon will differ depending on the media (hard drive, CD-ROM
drive, or PCMCIA drive).

Parameter block

RESULT CODES

return drive characteristics 7

The return drive characteristics function returns information about the
characteristics of the specified drive as defined in Inside Macintosh, Volume V.

Parameter block

RESULT CODES

enable startup partition 7

The enable startup partition control function enables the specified partition to
be the startup (boot) partition. The partition is specified either by its logical drive
number or its block address on the media. The current entry for the boot partition is

→ csCode A value of 22.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[0–1] Address of drive icon and location string (information is in

ICN# format).
← ioResult See result codes.

noErr 0 Successful completion, no error occurred
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 23.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[0–1] Drive information.

$0601 = primary, fixed, SCSI, internal.
$0201 = primary, removable, SCSI, internal.

← ioResult See result codes.

noErr 0 Successful completion, no error occurred
nsDrvErr –56 The specified logical drive number does not exist

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Disk Driver Reference 103

cleared. A controlErr is returned if the partition does not have a partition map entry
on the media or could not be enabled as the startup partition.

Parameter block

RESULT CODES

enable partition mounting 7

The enable partition mounting control function enables the specified partition to
be mounted when the drive is recognized. The partition is specified either by its logical
drive number or its block address on the media. A controlErr is returned if the
partition does not have a partition map entry on the media or could not be enabled for
mounting.

Parameter block

RESULT CODES

enable partition write protect 7

The enable partition write protect control function enables software write
protection on the specified partition. The partition is specified either by its logical drive
number or its block address on the media. A controlErr is returned if the partition
does not have a partition map entry on the media or write protection could not be
enabled for the partition.

→ csCode A value of 44.
→ ioVRefNum The logical drive number or 0 if using partition block address
→ csParam[] The partition block address (long) if ioVRefNum param = 0.
← ioResult See result codes.

noErr 0 Successful completion, no error occurred
controlErr –17 Unimplemented control function; could not complete

requested operation
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 45.
→ ioVRefNum The logical drive number or 0 if using partition block address
→ csParam[] The partition block address (long) if ioVRefNum param = 0.
← ioResult See result codes.

noErr 0 Successful completion, no error occurred
controlErr –17 Unimplemented control function; could not complete

requested operation
nsDrvErr –56 The specified logical drive number does not exist

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

104 ATA Disk Driver Reference

Parameter block

RESULT CODES

clear partition mounting 7

The clear partition mounting control function prevents a partition from being
mounted when the drive is recognized. The partition is specified either by its logical
drive number or its block address on the media. A controlErr is returned if the
partition does not have a partition map entry on the media or partition mounting could
not be cleared.

Parameter block

RESULT CODES

clear partition write protect 7

The clear partition write protect control function disables software write
protection for the specified partition. The partition is specified either by its logical drive
number or its block address on the media. A controlErr is returned if the partition
does not have a partition map entry on the media or write protection could not be
cleared.

→ csCode A value of 46.
→ ioVRefNum The logical drive number or 0 if using partition block address
→ csParam[] The partition block address (long) if ioVRefNum param = 0.
← ioResult See result codes.

noErr 0 Successful completion, no error occurred
controlErr –17 Unimplemented control function; could not complete

requested operation
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 48.
→ ioVRefNum The logical drive number or 0 if using partition block address
→ csParam[] The partition block address (long) if ioVRefNum param = 0.
← ioResult See result codes.

noErr 0 Successful completion, no error occurred
controlErr –17 Unimplemented control function; could not complete

requested operation
nsDrvErr –56 The specified logical drive number does not exist

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Disk Driver Reference 105

Parameter block

RESULT CODES

mount volume 7

The mount volume control function instructs the drive to post a Disk Inserted event
for the specified partition. The partition is specified either by its logical drive number or
its block address on the media.

Parameter block

RESULT CODES

set power mode 7

The set power mode control function changes the drive power mode to one of four
modes: active, standby, idle, and sleep. It can be used to reduce drive power
consumption.

In the idle mode, the nonessential electronics on the ATA hard drive are disabled. For
example, the read and write channels are disabled during the idle state. The spindle
motor remains enabled during the idle state, so the drive still responds immediately to
any commands requesting media access.

In the standby mode, the head is parked and the spindle motor is disabled. The drive
interface remains active and is still capable of responding to commands. However, it can

→ csCode A value of 49.
→ ioVRefNum The logical drive number or 0 if using partition block address
→ csParam[] The partition block address (long) if ioVRefNum param = 0.
← ioResult See result codes.

noErr 0 Successful completion, no error occurred
controlErr –17 Unimplemented control function; could not complete

requested operation
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 60.
→ ioVRefNum The logical drive number or 0 if using partition block address
→ csParam[] The partition block address (long) if ioVRefNum param = 0.
← ioResult See result codes.

noErr 0 Successful completion, no error occurred
controlErr –17 Unimplemented control function; could not complete

requested operation
nsDrvErr –56 The specified logical drive number does not exist

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

106 ATA Disk Driver Reference

take several seconds to respond to media access commands, because the drive’s spindle
motor must return to full speed before media access can take place.

In the sleep mode, both the drive interface and the spindle motor are disabled. The
driver must reset and reconfigure the drive before another access to the drive can be
made. Since many drives do not support the sleep mode, and because there is little
power savings difference between standby and sleep modes, the ATA disk driver may
put the drive in standby mode instead.

Parameter block

RESULT CODES

drive info 7

The ATA disk driver provides a drive status function for retrieving status information
from the drive. The drive info status function returns the same type of information
that disk drivers are required to return for the status function, as described in the
chapter “Device Manager” in Inside Macintosh: Devices.

Parameter block

RESULT CODES

→ csCode A value of 70.
→ ioVRefNum The logical drive number.
→ csParam[0] The most significant byte contains one of the following codes:

0 = enable the active mode
1 = enable the standby mode
2 = enable the idle mode
3 = enable the sleep mode

← ioResult See result codes.

noErr 0 Successful completion, no error occurred.
controlErr –17 The power management information couldn’t be returned

due to a manager error.
nsDrvErr –56 The specified logical drive number does not exist.

→ csCode A value of 8.
→ ioVRefNum The logical drive number.
→ csParam[] The csParam field contains status information about the internal

ATA disk drive.
← ioResult See result codes.

noErr 0 Successful completion, no error occurred
nsDrvErr –56 The specified logical drive number does not exist

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Disk Driver Reference 107

driver gestalt 7

The driver gestalt status function provides the application information about the
ATA disk driver and the attached device. Several calls are supported under this function.
A Gestalt selector is used to specify a particular call.

The DriverGestaltParam data type defines the ATA Gestalt structure. Refer to
Designing PCI Cards and Drivers for the Macintosh Family for information related to the
ATA gestalt structure.

The fields driverGestaltSelector and driverGestaltResponse are 32-bit fields
that contain the gestalt selector and possible responses. The selectors and responses are
defined in the parameter block definition.

Parameter block

→ csCode A value of 43.
→ ioVRefNum The logical drive number.
→ driverGestaltSelector Gestalt function selector. This is a 32-bit ASCII

field containing one of the following selectors:
sync Indicate synchronous or

asynchronous driver.
devt Specify type of device the driver

is controlling.
intf Specify the device interface.
boot Specify PRAM value to designate

this driver or device.
vers Specify the version number of the

driver.
lpwr Indicates low power mode support.
purg Request if the driver can be closed

and or purged.
wide Indicates large volume support.
ejec Eject control function requirements.

← driverGestaltResponse Returned result based on the driver gestalt
selector. The possible four-character return
values are:
TRUE If the sync driver selector is

specified, this Boolean value
indicates that the driver is
synchronous; a value of FALSE
indicates asynchronous.

'disk' If the devt driver selector is
specified, this value indicates a
hard disk driver.

'ide ' If the intf driver selector is
specified, this value indicates the
interface is ATA.

nnnn If the vers selector is specified,
the current version number of the
driver is returned.

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

108 ATA Disk Driver Reference

RESULT CODES

get startup partition 7

The get startup partition status function returns 1 if the specified partition is the
startup partition, 0 if it is not. The partition is specified either by its logical drive number
or its block address on the media.

Parameter block

RESULT CODES

TRUE If the lpwr selector is specified,
this value indicates the power
mode control and status function
are supported.

TRUE If the wide selector is specified,
this value indicates the driver
supports large volumes.

value If the ejec selector is specified,
this value indicates when the ejec
call should be made. Bit 0, if set,
means don’t issue eject call on
Restart. Bit 1, if set, means don’t
issue eject call on Shutdown.

If the purg selector is specified,
this value indicates whether the
driver can close and or purged
from memory. A value of 0
indicates that the driver cannot be
closed. A value of 3 indicates that
the driver can be closed, but not
purged. A value of 7 indicates that
the driver can be both closed and
purged from memory.

← ioResult See result codes.

noErr 0 Successful completion, no error occurred
statusErr –18 Unknown selector was specified
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 44.
→ ioVRefNum The logical drive number or 0 if using partition block address
→ csParam[] The partition block address (long) if ioVRefNum param = 0.
← ioResult See result codes.

noErr 0 Successful completion, no error occurred
nsDrvErr –56 The specified logical drive number does not exist

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Disk Driver Reference 109

get partition mount status 7

The get partition mount status status function returns 1 if the specified
partition has mounting enabled, 0 if not enabled or the partition does not have a
partition map entry on the media. The partition is specified either by its logical drive
number or its block address on the media.

Parameter block

RESULT CODES

get partition write protect status 7

The get partition write protect status status function returns 1 if the
specified partition is software write protected, 0 if it is not. The partition is specified
either by its logical drive number or its block address on the media.

Parameter block

RESULT CODES

get power mode 7

The get power mode status function returns the current power mode state of the
internal hard disk.

→ csCode A value of 46.
→ ioVRefNum The logical drive number or 0 if using partition block address
→ csParam[] The partition block address (long) if ioVRefNum param = 0.
← ioResult See result codes.

noErr 0 Successful completion, no error occurred
nsDrvErr –56 The specified logical drive number does not exist

→ csCode A value of 45.
→ ioVRefNum The logical drive number or 0 if using partition block address
→ csParam[] The partition block address (long) if ioVRefNum param = 0.
← ioResult See result codes.

noErr 0 Successful completion, no error occurred
nsDrvErr –56 The specified logical drive number does not exist

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

110 ATA Manager Reference

Parameter block

RESULT CODES

ATA Manager Reference 7

This section defines the data structures and functions that are specific to the version 3.0
of the ATA Manager. The section “The ATA Parameter Block” shows the data structure of
the ATA parameter block. Version 3.0 of the ATA Manager supports DMA data transfers.
The section “Setting Data Transfer Timing,” discusses how the ATA Manager interacts
with ATA devices to setup DMA transfers. The “Functions” section describes the
functions for managing and performing data transfers through the ATA Manager.

The ATA Parameter Block 7
This section defines the fields that are common to all ATA Manager functions that use the
ATA parameter block. The fields used for specific functions are defined in the description
of the functions to which they apply. You use the ATA parameter block for all calls to the
ATA Manager. The ataPBHdr data type defines the ATA parameter block.

ATA Manager 3.0 defines ATA parameter block version 3, which is required for the
specification of ANSI ATA-2 compliant transfer timings, and DMA timing in particular.
Parameter block versions 1 and 2 are still supported, but full use of version 3 is
recommended when the best data transfer performance of the device is required.

The parameter block includes a field, MgrFCode, in which you specify the function
selector for the particular function to be executed; you must specify a value for this field.
Each ATA function may use different fields of the ATA parameter block for parameters
specific to that function.

→ csCode A value of 70.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[] The most significant byte of this field contains one of the

following values:
1 = drive is in standby mode.
2 = drive is in idle mode.
3 = drive is in sleep mode.

← ioResult See result codes.

noErr 0 Successful completion, no error occurred.
statusErr –18 The power management information couldn’t be returned due

to a manager error.
nsDrvErr –56 The specified logical drive number does not exist.

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Manager Reference 111

An arrow preceding the comment indicates whether the parameter is an input parameter,
an output parameter, or both.

The following unique typedef identifiers are used in the ATA Manager parameter block
and function definitions:

SInt8 A signed 8-bit field

SInt16 A signed 16-bit field

SInt32 A signed 32-bit field

UInt8 An unsigned 8-bit field

UInt16 An unsigned 16-bit field

UInt32 An unsigned 32-bit field

The ATA parameter block header structure is defined as follows:

typedef struct ataPBHdr /* ATA Manager parameter */

/* block header structure */

{

Ptr ataLink; /* Reserved, initiaize to 0 */

SInt16 ataQType; /* Type byte */

UInt8 ataPBVers; /* → Parameter block */

/* version number */

UInt8 hdrReserved; /* Reserved */

Ptr hdrReserved2; /* Reserved */

ProcPtr ataCompletion; /* Universal completion */

/* routine pointer */

OSErr ataResult; /* ← Returned result */

UInt8 MgrFCode; /* → Manager function code */

UInt8 ataIOSpeed; /* → I/O timing class */

UInt16 ataFlags; /* → Control options */

SInt16 hdrReserved3; /* Reserved */

long deviceID; /* → Device ID */

UInt32 TimeOut; /* → Transaction timeout */

/* value */

Ptr ataPtr1; /* Client storage Ptr 1 */

Ptr ataPtr2; /* Client storage Ptr 2 */

UInt16 ataState; /* Reserved, init to 0 */

SInt16 intSemaphores; /* Reserved */

SInt32 hdrReserved5; /* Reserved */

} ataPBHdr;

Arrow Meaning
→ Input
← Output
↔ Both

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

112 ATA Manager Reference

Field descriptions

ataLink This field is reserved for use by the ATA Manager. It is used
internally for queuing I/O requests. It must be initialized to 0
before calling the ATA Manager and should be ignored upon return.
This field should not be changed until the requested operation has
completed.

ataQType This field is the queue type byte for safety check. It should be
initialized to 0.

ataPBVers This field contains the parameter block structure version number.
Values 1 through 3 are currently supported. Any higher values or a
value of 0 result in a paramErr.

hdrReserved This field is reserved for future use. To ensure future compatibility,
all reserved fields should be set to 0.

hdrReserved2 This field is reserved for future use. To ensure future compatibility,
all reserved fields should be set to 0.

ataCompletion This field contains the completion routine pointer to be called on
completion of the request. When this field is set to 0, it indicates a
synchronous I/O request; a nonzero value indicates an
asynchronous I/O request. The routine this field points to is called
either when the request has finished without error or when the
request has terminated due to an error. This field is valid for any
manager request. The completion routine is called as follows:
pascal void (*RoutinePtr) (ataPB *)

The completion routine is called with the associated manager
parameter block in the stack.

ataResult Completion status. This field is returned by the ATA Manager after
the request is completed. The value in this field is invalid until the
operation is complete. Refer to Table 7-7 on page 144 for a list of the
possible error codes returned in this field.

MgrFCode This field is the function selector for the ATA Manager. The
functions are defined in Table 7-4 on page 118. An invalid code in
this field results in an ATAFuncNotSupported error.

ataPIOSpeed This field specifies the I/O speed requirement for the ATA device. It
is ignored in version 3.0 of the ATA Manager. The method for
determining the I/O speed for version 3 of the ATA Manager is
provided in the ATA_SetDevConfig function description.

For parameter block versions 1 and 2, this field specifies the I/O
cycle timing requirement of the specified device. This field should
contain the equivalent of word 51 of the identify drive data, as
defined in the ATA-2 specification. Values 0 through 3 are
supported by version 2 of the ATA Manager. See the ATA-2
specification for the definitions of the timing values. If a timing
value higher than one supported is specified, the manager operates
in the fastest timing mode supported by the manager. Until the
timing value is determined by examining the identify drive data
returned by the ATA_Identify function, the client should request
operations using the slowest mode (PIO mode 0).

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Manager Reference 113

In ATA Manager version 1, the value in this field is always valid.
That is, this timing value is used to complete the requested
operation. With version 2, the value in this field is only valid if the
CurrentSpeed bit is set to 0 in the ataFlags field. If the
CurrentSpeed bit is set to 1, the manager uses the timing mode
set previously by the ATA_SetDevConfig command for the
device, or the default value, which is mode 0.

ataFlags This 16-bit field contains control settings that indicate special
handling of the requested function. The control bits are defined in
Table 7-3 on page 114.

hdrReserved3 This field is reserved for future use. To ensure future compatibility,
all reserved fields should be set to 0.

deviceID A number that uniquely identifies an ATA device. This field consists
of the following structure:
typedef struct /* Device ID structure */
{
ushort Reserved; /* The upper word is reserved */
ushort devNum; /* Consists of device ID */
ushort busNum /* bus ID */
} deviceIdentification;

Version 3. 0 of the ATA Manager supports two ATA devices per bus.
The devices are physically numbered 0 and 1 respectively. Earlier
versions of the ATA Manager used an unsigned 16-bit integer to
specify the device number. In version 3.0 of the ATA Manager the
devNum is used to distinguish between two devices on the bus
specified by busNum. In systems with only one ATA device this
value is always 0.

TimeOut This field specifies the transaction timeout value in milliseconds. A
value of zero disables the transaction timeout detection.

ataPtr1 This pointer field is available for application use. It is not modified
or used by the ATA Manager.

ataPtr2 This pointer field is available for application use. It is not modified
or used by the ATA Manager.

ataState This field is used by the ATA Manager to keep track of the current
bus state. This field must contain zero when calling the ATA
Manager.

intSemaphores This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

hdrReserved5 This field is reserved for future use. To ensure future compatibility,
all reserved fields should be set to 0.

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

114 ATA Manager Reference

Table 7-3 describes the functions of the control bits in the ataFlags field.

Table 7-3 Control bits in the ataFlags field

Name Bit Definition

— 0–2 Reserved.

RegUpdate 3 When set to 1 this bit indicates that a set of device
registers should be reported back on completion of the
request. This bit is valid for the ATA_ExecI/O function
only. Refer to the description on page 118 for details.
The following device registers are reported back:

Sector count register

Sector number register

Cylinder register(s)

SDH register

ProtocolType 5-4 These two bits specify the type of command:

00 = Standard ATA
11 = ATAPI

These bits indicate how the protocol should be handled
for the command type. Setting the bits to ATAPI and
providing a non-zero packet command pointer
indicates that a packet command should be sent prior
to any data transfers. For ATA command values of A0
and A1 hexadecimal, this field should contain the
ATAPI setting. For all other ATA commands, the field
must contain the ATA setting.

— 6 Reserved

UseDMA 7 When set to 1, this bit indicates the data transfer is to be
via DMA. DMA transfers are only valid with version
3.0 or higher of the ATA Manager and on system
hardware that supports DMA. DMA transfers to and
from ATA devices use different command codes from
the PIO transfers. The state of this bit must correspond
to the command code.

continued

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Manager Reference 115

SGType 9-8 This 2-bit field specifies the type of scatter gather list
passed in. This field is only valid for read/write
operations.

The following types are defined:

00 = Scatter gather disabled

01 = Scatter gather type I enabled

10 = Reserved

11 = Reserved

When set to 0, this field indicates that the ioBuffer
field contains the host buffer address for this transfer,
and the ioReqCount field contains the byte transfer
count.

When set to 1, this field indicates that the ioBuffer
and the ioReqCount fields of the parameter block for
this request point to a host scatter gather list and the
number of scatter gather entries in the list, respectively.

The format of the scatter gather list is a series of the
following structure definition:

typedef struct /* SG entry structure */
{

uchar* ioBuffer; /* → Data buffer pointer */
ulong ioReqCount; /* → Byte count */

} IOBlock;

QLockOnError 10 When set to 0, this bit indicates that an error during the
transaction should not freeze the I/O queue for the
device. When an error occurs on an I/O request with
this bit set to 0, the next queued request is processed
following this request. When an error occurs on an
I/O request with this bit set to 1, the I/O queue is
halted and the user must issue an ATA_QRelease
command to continue. A status code of hexadecimal
$717 is returned for subsequent asynchronous I/O
requests until the I/O Queue Release command is
issued.

Immediate 11 When this bit is set to 1, it indicates that the request
must be executed as soon as possible and the status of
the request must be returned. It forces the request to the
head of the I/O queue for immediate execution. When
this bit is set to 0, the request is queued in the order
received and is executed according to that order.

continued

Table 7-3 Control bits in the ataFlags field (continued)

Name Bit Definition

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

116 ATA Manager Reference

Setting Data Transfer Timing 7
This section defines the mechanism used by version 3.0 of the ATA Manager to setup and
adjust the system hardware and software for optimized data transfers from and to the
ATA devices.

Beginning with version 3.0 of the ATA Manager, all cycle timing for data transfer is
accomplished through the ATA_SetDevConfig function, defined on page 139. The
timing values in the ataPIOSpeed field (used by version 2.0 of the ATA Manager) in the
parameter block header are ignored, and PIO, singleword DMA, and multiword DMA
data transfer times are specified separately in the ATA_SetDevConfig function
parameter block. In addition, minimum cycle times are determined for PIO and
multiword DMA transfers with the ATA_SetDevConfig function.

The ATA-2 specification requires that ATA devices report cycle timing requirements and
transfer mode information through the ATA Identify Device command. In order to
synchronize the system ATA controller speed to the device speed, the Identify Device
information must be interpreted by the ATA Manager. The ATA Manager receives the
necessary information from the client in the ATA_SetDevConfig function. Five fields in

ATAioDirection 13-12 This bit field specifies the direction of data transfer. Bit
values are binary and defined as follows:

00 = No data transfer

10 = Data direction in (read)

01 = Data direction out (write)

11 = Reserved

These bits do not need to specify the direction of the
ATAPI command packet bytes.

ByteSwap 14 When set to 1, this bit indicates that every byte of data
prior to transmission on write operations and upon
reception on read operations is to be swapped. When
this bit is set to 0, it forces bytes to go out in the
LSB-MSB format compatible with IBM clones.
Typically, this bit should be set to 0. Setting this bit has
performance implications because the byte swap is
performed by the software. Use this bit with caution.
ATAPI command packet bytes are swapped when this
bit is set to 1.

UseConfigSpeed 15 When set to 1, this bit indicates that the current I/O
speed setting specified in the most recent call to the
ATA_SetDevConfig command should be used to
transfer data across the ATA interface. If a
ATA_SetDevConfig command has not been issued
since power on, then the default setting of PIO mode 0
and singleword DMA mode 0 are used.

Table 7-3 Control bits in the ataFlags field (continued)

Name Bit Definition

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Manager Reference 117

the ATA_SetDevConfig parameter block are used in various combinations to specify
the timing and transfer mode values for PIO, multiword DMA, and singleword DMA
data transfers.

Setting Up PIO Data Transfers 7

To set up PIO data transfers, the ATA Manager takes the values specified in the
ataPIOSpeedMode and ataPIOCycleTime fields of the ATA_SetDevConfig
parameter block to create a cycle time that approximates the specified cycle time and
maintains the appropriate device signal timing requirements for the specified PIO
transfer mode.

Setting Up Multiword and Singleword DMA Data Transfers 7

To set up multiword DMA data transfers, the ATA Manager takes the values in
ataMultiSpeed and ataMultiCycle fields of the ATA_SetDevConfig parameter
block to create a multiword DMA cycle time in system hardware that maintains the
timing required by the multiword DMA mode while not exceeding the indicated cycle
time.

To set up singleword DMA data transfers, the ATA Manager takes the value specified in
the ataSingleDMASpeed field of the ATA_SetDevConfig parameter block to create
the appropriate cycle timing for the device. The ATA-2 specification has no
recommended timing values for singleword DMA data transfer modes, only minimum
cycle times.

When both the ataSingleDMASpeed and ataMultiDMASpeed fields in the
ATA_SetDevConfig function parameter block are set to zero and the UseDMA flag in
the ataFlags field is set true, the ATA Manager uses singleword DMA mode 0 timing
for data transfers.

The UseConfigSpeed flag of the ataFlags field in the ataPBHdr parameter block
header must be set for both the ataExecIO and ATA_SetDevConfig functions to
utilize new timing configuration information. When the UseConfigSpeed flag is not
set, new timing values are not calculated and saved during a ATA_SetDevConfig
function call. When the UseConfigSpeed flag is not set and the UseDMA flag is
specified, timing is set to singleword DMA mode 0. If the UseConfigSpeed flag is not
set for an ataExecIO function, PIO mode 0 timing is use for commands and PIO data
transfers.

Additional reference documentation related to Identify Device data transfer timing
information for ATA devices can be found in the ANSI ATA-2 specification.

Functions 7
This section describes the ATA Manager functions that are used to manage and perform
data transfers. Each function is requested through a parameter block specific to that
service. A request for an ATA function is specified by a function code within the
parameter block. The entry point for all the functions is the same.

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

118 ATA Manager Reference

ATA Manager function names and codes are shown in Table 7-4.

ATA_ExecIO 7

You can use the ATA_ExecIO function to perform all data I/O transfers to or from an
ATA device. Your application must provide all of the parameters needed to complete the
transaction prior to calling the ATA Manager. On return, the parameter block contains
the result of the request.

A prior call to the ATA_SetDevConfig function is recommended to obtain the optimal
performance from the device. See page 139 for information about the
ATA_SetDevConfig function.

The manager function code for the ATA_ExecIO function is $01.

Table 7-4 ATA Manager functions

Function name Code Description

ATA_ExecIO $01 Execute ATA I/O

ATA_MgrModifyEventMask $88 Modify driver event mask

ATA_MgrDriveEject $89 Eject the drive

ATA_MgrInquiry $90 ATA Manager inquiry

ATA_BusInquiry $03 Bus inquiry

ATA_QRelease $04 I/O queue release

ATA_NOP $00 No operation

ATA_Abort $10 Terminate command

ATA_RegAccess $12 ATA device register access

ATA_Identify $13 Get the drive identification data

ATA_ResetBus $11 Reset ATA bus

ATA_DrvrRegister $85 Register the driver reference number

ATA_DrvrDeregister $87 Deregister the driver reference number

ATA_FindRefNum $86 Look up the driver reference number

ATA_GetDevConfig $8A Get the device configuration

ATA_SetDevConfig $8B Set the device configuration

ATA_GetLocationIcon $8C Get device location icon and string

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Manager Reference 119

The parameter block associated with the ATA_ExecIO function is defined below:

typedef struct /* ATA_ExecIO structure */

{

ataPBHdr /* See definition on page 111 */

SInt8 ataStatusReg; /* ← Last device status register */

/* image */

SInt8 ataErrorReg; /* ← Last device error register */

/* image (valid if bit 0 of */

/* Status field is set) */

SInt16 ataReserved; /* Reserved */

UInt32 BlindTxSize; /* → Data transfer size */

UInt8 *ioBuffer; /* → Data buffer pointer */

UInt32 ataActualTxCnt; /* ← Actual number of bytes */

/* transferred */

UInt32 ataReserved2; /* Reserved */

devicePB RegBlock; /* → Device register images */

ATAPICmdPacket *packetCDBPtr; /* ATAPI packet command block

pointer */

UInt16 ataReserved3[6]; /* Reserved */

} ataExecIO;

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 111.
ataStatusReg This field contains the last device status register image. See the

ATA-2 specification for status register bit definitions.
ataErrorReg This field contains the last device error register image. This field is

valid only if the error bit (bit 0) of the Status register is set. See the
ATA-2 specification for error register bit definitions.

ataReserved Reserved. All reserved fields are set to 0 for future compatibility.
BlindTxSize This field specifies the maximum number of bytes that can be

transferred for each interrupt or detection of a data request. Bytes
are transferred in blind mode (no byte level handshake). Once an
interrupt or a data request condition is detected, the ATA Manager
transfers up to the number of bytes specified in the field from or to
the selected device. The typical number is 512 bytes.
The BlindTxSize field is used only for PIO transfers. It is ignored
for DMA data transfers.

ioBuffer This field contains either the host buffer address and the requested
transfer length, or the pointer to a scatter gather list and the number
of scatter gather entries. If the SGType bits of the ataFlags field
are set, an IOBlk contains the scatter gather information. The
IOBlk is defined as follows:

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

120 ATA Manager Reference

typedef struct

{

uchar* ioBuffer; /* ↔ Data buffer ptr */

ulong ioReqCount; /* ↔ Transfer length */

} IOBlk;

ioBuffer This field contains the host buffer address for the
number of bytes specified in the ioReqCount field.
On returning, the ioBuffer field is updated to
reflect data transfers. When the SGType bits of the
ataFlags field are set, the ioBuffer field points
to a scatter gather list. The scatter gather list
consists of a series of IOBlk entries.

ioReqCount This field contains the number of bytes to transfer
either from or to the buffer specified in ioBuffer.
On returning, the ioReqCount field is updated to
reflect data transfers (0 if successful; otherwise, the
number of bytes that remained to be transferred
prior to the error condition). When the SGType bits
of the ataFlags field are set, the ioReqCount
field contains the number of scatter gather entries
in the list pointed to by the ioBuffer field.

ataActualTxCnt This field contains the total number of bytes transferred for this
request. This field is currently not supported.

ataReserved2 This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

RegBlock This field contains the ATA device register image structure. Values
contained in this structure are written out to the device during the
command delivery state. The caller must provide the image prior to
calling the ATA Manager. The ATA device register image structure
is defined as follows:

typedef struct /* Device register images */

{ UInt8 Features; /* → Features register */

/* image */

UInt8 Count; /* ↔ Sector count */

UInt8 Sector; /* ↔ Sector start/finish */

UInt8 Reserved; /* Reserved */

UInt16 Cylinder; /* ↔ Cylinder 68000 format */

UInt8 SDH; /* ↔ SDH register image */

UInt8 Command; /* → Command register image */

} devicePB;

packetCDBPtr This field contains the packet pointer for ATAPI. The ATAPI bit of
the ProtocolType field must be set for this field to be valid.
Setting the ATAPI protocol bit also signals the Manager to initiate
the transaction without the DRDY bit set in the status register of the

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Manager Reference 121

device. For ATA commands, this field should contain 0 in order to
insure compatibility in the future.

ataReserved3[6] These fields are reserved. To ensure future compatibility, all
reserved fields should be set to 0.

RESULT CODES

See Table 7-7 on page 144 for possible result codes returned by the ATA Manager.

ATA_MgrInquiry 7

The ATA_MgrInquiry function gets information, such as the version number, about the
ATA Manager.

The manager function code for the ATA_MgrInquiry function is $90.

The parameter block associated with this function is defined below:

typedef struct /* ATA inquiry structure */

{

ataPBHdr /* See definition on page 111 */

NumVersion MgrVersion

UInt8 MGRPBVers; /* ← Manager PB version */

/* number supported */

UInt8 Reserved1; /* Reserved */

UInt16 ataBusCnt; /* ← Number of ATA buses in

system */

UInt16 ataDevCnt; /* ← Number of ATA devices

detected */

UInt8 ataPIOMaxMode; /* ← Maximum PIO speed mode */

UInt8 Reserved2; /* Reserved */

UInt16 Reserved3; /* Reserved */

UInt8 ataSingleDMAModes; /* ← Singleword DMA modes */

/* supported */

UInt8 ataMultiDMAModes;/* ← Multiword DMA modes */

/* supported */

UInt16 Reserved[16]; /* Reserved */

} ataMgrInquiry;

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 111.
MgrVersion On return, this field contains the version number of the

ATA Manager.

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

122 ATA Manager Reference

MGRPBVers This field contains the number corresponding to the latest version
of the parameter block supported. A client may use any parameter
block definition up to this version.

Reserved Reserved. All reserved fields are set to 0 for future compatibility.
ataBusCnt On return, this field contains the total number of ATA buses in the

system. This field contains a zero if the ATA Manager has not been
initialized.

ataDevCnt On return, this field contains the total number of ATA devices
detected on all ATA buses. The current architecture allows only one
device per bus. This field will contain a zero if the ATA Manager has
not been initialized.

ataPIOMaxMode This field specifies the maximum PIO speed mode that the ATA
Manager supports. Refer to the ATA-2 specification for information
on mode timing.

ataSingleDMAModes
This bit-significant field specifies the maximum DMA mode that the
manager can support. Refer to ATA-2 specification for information
on DMA mode timing.

ataMultiDMAModes
This bit-significant field specifies the Multiword DMA transfer
modes that the manager can support. The least-significant bit
indicates support for Multiword DMA transfer mode 0. Refer to
ATA-2 specification for information on DMA mode timing.

Reserved[16] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

RESULT CODES

See Table 7-7 on page 144 for possible result codes returned by the ATA Manager.

ATA_BusInquiry 7

The ATA_BusInquiry function gets information about a specific ATA bus. This function
is provided for possible future expansion of the Macintosh ATA architecture.

The manager function code for the ATA_BusInquiry function is $03.

The parameter block associated with this function is defined below:

typedef struct /* ATA bus inquiry structure */

{

ataPBHdr /* See definition on page 111 */

UInt16 ataEngineCount; /* ← TBD; zero for now */

UInt16 ataReserved; /* Reserved */

UInt32 ataDataTypes; /* ← TBD; zero for now */

UInt16 ataIOpbSize; /* ← Size of ATA I/O PB */

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Manager Reference 123

UInt16 ataMaxIOpbSize; /* ← TBD; zero for now */

UInt32 ataFeatureFlags; /* ← TBD */

UInt8 ataVersionNum; /* ← HBA Version number */

UInt8 ataHBAInquiry; /* ← TBD; zero for now */

UInt16 ataReserved2; /* Reserved */

UInt32 ataHBAPrivPtr; /* ← Ptr to HBA private data */

UInt32 ataHBAPrivSize; /* ← Size of HBA private data */

UInt32 ataAsyncFlags; /* ← Capability for callback */

UInt32 ataReserved3[4]; /* Reserved */

UInt32 ataReserved4; /* Reserved */

SInt8 ataReserved5[16]; /* TBD */

SInt8 ataHBAVendor[16]; /* ← HBA Vendor ID */

SInt8 ataContrlFamily[16];/* ← Family of ATA controller */

SInt8 ataContrlType[16]; /* ← Controller model number */

SInt8 ataXPTversion[4]; /* ← Version number of XPT */

SInt8 ataReserved6[4]; /* Reserved */

SInt8 ataHBAversion[4]; /* ← Version number of HBA */

UInt8 ataHBAslotType; /* ← Type of slot */

UInt8 ataHBAslotNum; /* ← Slot number of the HBA */

UInt16 ataReserved7; /* Reserved */

UInt32 ataReserved8; /* Reserved */

} ataBusInquiry;

Field descriptions

ataPBHdr See the definition of the ataPBHdr structure on page 111.
ataEngineCount This field is currently set to 0.
ataReserved Reserved. All reserved fields are set to 0.
ataDataTypes Not supported by current ATA architecture. Returns a bit map of

data types supported by this HBA. The data types are numbered
from 0 to 30; 0 through 15 are reserved for Apple definition and 16
through 30 are available for vendor use. Returns 0.

ataIOpbSize This field contains the size of the I/O parameter block supported.
ataMaxIOpbSize This field specifies the maximum I/O size for the HBA. This field is

currently not supported and returns 0.
ataFeatureFlags This field specifies supported features. This field is not supported; it

returns a value of 0.
ataVersionNum The version number of the HBA is returned. The current version

returns a value of 1.
ataHBAInquiry Reserved.
ataHBAPrivPtr This field contains a pointer to the HBA’s private data area. This

field is not supported; it returns a value of 0.
ataHBAPrivSize This field contains the byte size of the HBA’s private data area. This

field is not supported; it returns a value of 0.

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

124 ATA Manager Reference

ataAsyncFlags These flags indicate which types of asynchronous events the HBA is
capable of generating. This field is not supported; it returns a value
of 0.

ataHBAVendor This field contains the vendor ID of the HBA. This is an ASCII text
field. It is not supported.

ataContrlFamilyReserved.
ataContrlType This field identifies the specific type of ATA controller. This field is

not supported; it returns a value of 0.
ataXPTversion Reserved.
ataHBAversion This field specifies the version of the HBA. This field is not

supported; it returns a value of 0.
ataHBAslotType This field specifies the type of slot. This field is not supported; it

returns a value of 0.
ataHBAslotNum This field specifies the slot number of the HBA. This field is not

supported; it returns a value of 0.

RESULT CODES

See Table 7-7 on page 144 for possible result codes returned by the ATA Manager.

ATA_QRelease 7

The ATA_QRelease function releases the frozen I/O queue of the selected device.

When the ATA Manager detects an I/O error and the QLockOnError bit of the
parameter block is set for the request, the ATA Manager freezes the queue for the
selected device. No pending or new requests are processed or receive status until the
queue is released through the ATA_QRelease function. Only those requests with
the Immediate bit set in the ATAFlags field of the ataPBHdr parameter block are
processed. Consequently, for the ATA I/O queue release command to be processed, it
must be issued with the Immediate bit set in the parameter block. An ATA I/O queue
release command issued while the queue isn’t frozen returns the noErr status.

The manager function code for the ATA_QRelease function is $04.

The parameter block associated with this function is defined below:

struct ataQRelease /* ATA QRelease structure */

{

ataPBHdr /* See definition on page 111 */

UInt16 Reserved[24];

} ataQRelease;

Field descriptions

ataPBHdr See the definition of the ataPBHdr structure on page 111.
Reserved[24] Reserved. All reserved fields should be set to 0.

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Manager Reference 125

RESULT CODES

See Table 7-7 on page 144 for possible result codes returned by the ATA Manager.

ATA_NOP 7

The ATA_NOP function performs no operation across the interface and does not
change the state of either the manager or the device. It returns noErr if the drive
number is valid.

The manager function code for the ATA_NOP function is $00.

The parameter block associated with this function is defined below:

struct ataNOP /* ATA NOP structure */

{

ataPBHdr /* See definition on page 111 */

UInt16 Reserved[24];

} ataQRelease;

Field descriptions

ataPBHdr See the definition of the ataPBHdr structure on page 111.
Reserved[24] Reserved. All reserved fields should be set to 0.

RESULT CODES

See Table 7-7 on page 144 for possible result codes returned by the ATA Manager.

ATA_Abort 7

The ATA_Abort function terminates a specified queued I/O request. This function
applies to asynchronous I/O requests only. The ATA_Abort function searches through
the I/O queue associated with the selected device and aborts the matching I/O request.
The current implementation does not abort if the found request is in progress. If the
specified I/O request is not found or has started processing, an ATAUnableToAbort
status is returned. If aborted, the ATAReqAborted status is returned.

It is up to the application that called the ATA_Abort function to clean up the aborted
request. Clean up includes parameter block deallocation and operating system reporting.

The manager function code for the ATA_Abort function is $10.

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

126 ATA Manager Reference

The parameter block associated with this function is defined as follows:

typedef struct /* ATA abort structure */

{

ataPBHdr /* See definition on page 111 */

ataPB* AbortPB /* Address of the parameter block */

/* of the function to be aborted */

UInt16 Reserved[22] /* Reserved */

} ataAbort;

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 110.
AbortPB This field contains the address of the I/O parameter block to be

aborted.
Reserved This field is reserved. To ensure future compatibility, all reserved

fields should be set to 0.

RESULT CODES

See Table 7-7 on page 144 for possible result codes returned by the ATA Manager.

ATA_RegAccess 7

The ATA_RegAccess function enables access to a particular device register of a selected
device. This function is used for diagnostic and error recovery processes.

The manager function code for the ATA_RegAccess function is $12.

The parameter block associated with this function is defined below:

typedef struct /* Register access structure */

{

struct ataPBHdr /* See definition on page 111 */

UInt16 ataRegSelect /* → Device register selector */

union {

UInt8 ataByteRegValue; /* ↔ Byte register value to */

/* read or to be written */

UInt16 ataWordRegValue; /* ↔ Word register value to */

/* read or to be written */

} ataRegValue;

UInt16 ataRegMask; /* → Mask for registers(s) to */

/* update */

ataTaskFile ataRegisterImage; /* ↔ Register images */

UInt8 ataAltSDevCReg; /* ↔ Alternate status(R) or */

/* Device Control(W) register */

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Manager Reference 127

/* image */

UInt8 Reserved[3]; /* Reserved */

UInt16 Reserved[16]; /* Reserved */

} ataRegAccess;

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 111.
ataRegSelect This field specifies which one of the device registers to access. The

selectors for the registers supported by the ATA_RegAccess
function are listed in Table 7-5. If ataRegSelect is “FFFF”, then
ataRegMask describes which register(s) are to be accessed as part
of a multiregister access.

ataRegValue This field is either the source or destination of values for individual
register accesses. For byte accesses, the upper half of the word is
used. Word accesses (such as the data register) use the entire word.
This field is the source or destination for the data register
component of multiregister accesses.

ataRegMask This field is valid only if the ataRegSelect field contains 0xFFFF.
It indicates which of the associated registers is to be read into or
written from the ataRegValue, ataRegisterImage and
ataAltSDevCReg fields in a single ATA Manager function call. The
mask bits corresponding to the selected registers are listed in
Table 7-6. Bit 0 is the least significant bit of the field.

ataRegisterImageAn image of the task file registers. For a multiregister read, this
field is the destination; it is the source for multiregister writes. Note
that the data and alternate status and device control registers have
individual fields separate from this field.

ataAltSDevCReg For multiregister writes, this field is the source for device control
writes and the destination for alternate status reads.

Table 7-5 ATA register selectors

Selector name Selector Register description

DataReg 0 Data register (16-bit access only)

ErrorReg 1 Error register (R) or features register (W)

SecCntReg 2 Sector count register

SecNumReg 3 Sector number register

CylLoReg 4 Cylinder low register

CylHiReg 5 Cylinder high register

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

128 ATA Manager Reference

The register mask selectors are defined in Table 7-6.

RESULT CODES

See Table 7-7 on page 144 for possible result codes returned by the ATA Manager.

ATA_Identify 7

The ATA_Identify function returns the device identification data from the selected
device. The identification data contains information necessary to perform I/O to the
device. Refer to the ATA-2 Specification for the format and the information description
provided by the data.

The manager function code for the ATA_Identify function is $13.

SDHReg 6 SDH register

StatusReg
CmdReg

7 Status register (R) or command register (W)

AltStatus
DevCntr

14 Alternate status (R) or device control (W)

Table 7-6 Register mask selectors

Mask bit Register description

0 Data register

1 Error register

2 Sector count register

3 Sector number register

4 Cylinder low register

5 Cylinder high register

6 ataTFSDH register

7 Status/command register

8-13 Reserved (set to 0)

14 Alternate status/device control register

15 Reserved (set to 0)

Table 7-5 ATA register selectors (continued)

Selector name Selector Register description

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Manager Reference 129

The parameter block associated with this function is defined below:

typedef struct
{
ataPBHdr
SInt8 ataStatusReg; /* ← Last ATA status image */
sInt8 ataErrorReg; /* ← Last ATA error image */
SInt16 Reserved; /* Reserved */
UInt32 BlindTxSize; /* ← Set to 512 on return */
UInt8 *DataBuf; /* ↔ Buffer for the data */
UInt32 ataRequestCount; /* ← Indicates remaining

 byte count */
UInt32 ataActualTxCnt; /* ← Actual transfer count */
UInt32 ataReserved2; /* Reserved */
devicePB RegBlock; /* ← taskfile image sent */

/* for the command */
UInt16 Reserved3[8]; /* Reserved */

} ataIdentify;

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 111.
ataStatusReg Last ATA taskfile status register image.
ataErrorReg Last ATA taskfile error register image. This field is only valid if the

LSB (error bit) of the ataStatusReg field is set.
BlindTxSize Last ATA taskfile error register image. This field is only valid if the

LSB (error bit) of the ataStatusReg field is set. Set to 512 upon
return.

DataBuf A pointer to the data buffer for the device identify data. The length
of the buffer must be at least 512 bytes.

ataRequestCountNumber of remaining bytes to transfer.
ataActualTxCnt Number of bytes transferred.
RegBlock Taskfile image sent to the device.

RESULT CODES

See Table 7-7 on page 144 for possible result codes returned by the ATA Manager.

ATA_ResetBus 7

The ATA_ResetBus function performs a soft reset operation to the selected ATA bus.
The ATA interface doesn’t provide a way to reset individual units on the bus.
Consequently, all devices on the bus will be reset.

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

130 ATA Manager Reference

IMPORTANT

This function should be used with caution since it may terminate any
active requests to devices on the bus. ▲

The manager function code for the ATA_ResetBus function is $11.

The parameter block associated with this function is defined below:

typedef struct /* ATA reset structure */

{

ataPBHdr /* See definition on page 111 */

SInt8 Status; /* ← Last ATA status register image */

SInt8 Reserved2; /* Reserved */

UInt16 Reserved[23]; /* Reserved */

} ataResetBus;

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 111.
Status This field contains the last device status register image following

the bus reset. See the ATA-2 specification for definitions of the status
register bits.

Reserved[23] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

RESULT CODES

See Table 7-7 on page 144 for possible result codes returned by the ATA Manager.

ATA_DrvrRegister 7

The ATA_DrvrRegister function registers the driver reference number passed in for
the selected drive. The function doesn’t check for the existence of another driver.

The manager function code for the ATA_DrvrRegister function is $85.

The parameter block associated with ataPBVers of 1 is defined below:

typedef struct /* Driver registration */

/* structure for ataPBVers 1 */

{

ataPBHdr /* See definition on page 111 */

SInt16 drvrRefNum; /* → Driver reference number */

UInt16 FlagReserved; /* Reserved (should be zero)*/

UInt16 deviceNextID; /* Not used */

SInt16 Reserved[21]; /* Reserved */

} ataDrvrRegister;

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Manager Reference 131

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 111.
drvrRefNum This field specifies the driver reference number to be registered.

This value must be less than 0 to be valid.
FlagReserved Reserved.
deviceNextID Not used by this function.
Reserved[21] This field is reserved. To ensure future compatibility, all reserved

fields should be set to 0.

The parameter block associated with ataPBVers of 2 or greater is defined below:

typedef struct /* Driver registration */

/* structure for ataPBVers 2 */

/* or greater */

{

ataPBHdr /* See definition on page 111 */

SInt16 drvrRefNum; /* → Driver reference number */

UInt16 drvrFlags; /* → Driver flags, set to 0 */

UInt16 deviceNextID; /* Not used */

SInt16 Reserved; /* Reserved (should be 0) */

ProcPtr ataEHandlerPtr; /* → Event handler routine */

/* pointer */

SInt32 drvrContext; /* → Value to pass in with */

/* event handler */

UInt32 ataEventMask; /* → Masks of various events */

/* for event handlers */

SInt16 Reserved[14]; /* Reserved */

} ataDrvrRegister;

The version 2 parameter block also allows another type of registration; “notify-all”
driver registration. The “notify-all” driver registration is identified by a value of -1 in the
deviceID field of the header and bit 0 of drvrFlags set to 0. The “notify-all” driver
registration is used if notification of all device insertions is desired. Registered default
drivers are called if no media driver is found on the media. Typically, an INIT driver will
register as a “notify-all” driver. The single driver may register as a “notify-all” driver,
and then later, register for one or more devices on the bus.

Note
All PCMCIA/ATA and notify-all device drivers must register using the
parameter block version 2 and utilize the event handling capability in
order to insure proper operation. See the description of the
ataEHandlerPtr, driverContent, and ataEventMask fields for
additional information related to event handling.

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

132 ATA Manager Reference

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 111.
drvrRefNum This field specifies the driver reference number to be registered.

This value must be less than 0 to be valid.
drvrFlags No bit definition has been defined for the field. This field shall be

set to 0 in order to insure compatibility in the future.
deviceNextID Not used by this function.
Reserved Reserved.
ataEHandlerPtr A pointer to event handler routine for the driver. This routine is

called whenever an event happens, and the mask bit for the
particular event is set in the ataEventMask field.
The calling convention for the event handler is as follows:
pascal SInt16 (ataEHandlerPtr) (ATAEventRec*);

where ATAEventRec is defined as follows:
typedef struct
{ UInt16 evenCode; /* ATA event code */

UInt16 phyDrvRef; /* ID associated with */
/* the event */

SInt32 drvrContext;/* Context passed in by */
/* driver */

} ATAEventRec;

drvrContext A value to be passed in when the event handler is called. This value
is loaded in the ATAEventRec before calling the event handler.

ataEventMask The mask defined in this field is used to indicate whether the event
handler should be called or not, based on the event. The event
handler is only called if the mask for the event has been set (1). If
the mask is not set (0) for an event, the ATA Manager takes no
action. The following masks have been defined:
Bits Event mask
0x00 Null event
0x01 Online event - a device has come online
0x02 Offline event - a device has gone offline
0x03 Device removed event - a device has been removed
0x04 Reset event - a device has been reset
0x05 Offline request event - a request to put the device

offline has been detected
0x06 Eject request event - a request to eject a device has

been detected
0x07 Configuration update event - the system configuration

has changed (more devices)
0x08 - 0x1F Reserved

Reserved[21] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

RESULT CODES

See Table 7-7 on page 144 for possible result codes returned by the ATA Manager.

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Manager Reference 133

ATA_DrvrDeregister 7

The ATA_DrvrDeRegister function deregisters the driver reference number passed in
for the selected drive. After successful completion of this function, the driver reference
number for the drive is set to 0, which indicates that there is no driver in control of
this device.

The manager function code for the ATA_DrvrDeRegister function is $87.

For notify-all driver deregistration, the ataEHandlerPtr field is used to match the
entry (the deviceID field is invalid for the notify-all driver registration/deregistration).
If a driver is registered as both a “notify-all” and for a specific device, the driver must
deregister for each separately.

All “notify-all” device drivers must deregister using the parameter block version 2. The
version 1 and version 2 or greater parameter blocks for this function are as follows:

typedef struct /* Driver registration */

/* structure for ataPBVers 1 */

{

ataPBHdr /* See definition on page 111 */

SInt16 drvrRefNum; /* Not used*/

UInt16 FlagReserved; /* Reserved */

UInt16 deviceNextID; /* Not used */

SInt16 Reserved[21]; /* Reserved */

} ataDrvrRegister;

typedef struct /* Driver registration */

/* structure for ataPBVers 2 */

/* or greater */

{

ataPBHdr /* See definition on page 111 */

SInt16 drvrRefNum; /* → Driver reference number */

UInt16 drvrFlags; /* → Driver flags, set to 0 */

UInt16 deviceNextID; /* Not used */

SInt16 Reserved; /* Reserved (should be 0) */

ProcPtr ataEHandlerPtr; /* → Event handler routine */

/* pointer */

SInt32 drvrContext; /* → Value to pass in with */

/* event handler */

UInt32 ataEventMask; /* → Masks of various events */

/* for event handlers */

SInt16 Reserved[14]; /* Reserved */

} ataDrvrRegister;

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

134 ATA Manager Reference

Field descriptions

ataPBHdr

drvrRefNum Not used for this function.
drvrFlags No bits have been defined for this field. This field shall be set to 0 in

order to insure compatibility in the future.
deviceNextID Not used for this function.
Reserved Reserved
ataEHandlerPtr A pointer to the driver event handler routine. This field is only used

for notify-all driver deregistration. This field is not used for other
driver deregistration. Since this field is used to identify the correct
“notify-all” driver entry, this field must be valid for “notify-all”
driver deregistration.

drvrContext Not used for this function.
ataEventMask Not used for this function.

RESULT CODES

See Table 7-7 on page 144 for possible result codes returned by the ATA Manager.

ATA_FindRefNum 7

The ATA_FindRefNum function allows an application to determine whether a driver has
been installed for a given device. You pass in a device ID and the function returns the
current driver reference number registered for the given device. A value of 0 indicates
that no driver has been registered. The deviceNextID field contains a device ID of the
next device in the list. The end of the list is indicated with a value of 0xFF.

To create a list of all drivers for the attached devices, pass in 0xFF for deviceID. This
causes deviceNextID to be filled with the first device in the list. Each successive driver
can be found by moving the value returned in deviceNextID into deviceID until the
function returns 0xFF in deviceNextID, which indicates the end of the list.

The manager function code for the ATA_FindRefNum function is $86.

The parameter block associated with this function for ataPBVers version 1 is defined as
follows:

typedef struct /* Driver registration for */

/* ataPBVers version 1 */

{

ataPBHdr /* See definition on page 111 */

SInt16 drvrRefNum; /* ← Contains the driver refNum */

UInt16 FlagReserved; /* Reserved */

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Manager Reference 135

UInt16 deviceNextID; /* ← Contains the next drive ID */

SInt16 Reserved[21]; /* Reserved */

} ataDrvrRegister;

The parameter block associated with this function for ataPBVer version 2 is defined as
follows:

typedef struct /* Driver registration for */

/* ataPBVers version 2 */

/* or greater */

{

ataPBHdr /* See definition on page 111 */

SInt16 drvrRefNum; /* ← Driver reference number */

UInt16 drvrFlags; /* → Reserved, set to 0 */

UInt16 deviceNextID; /* Used to specify the next */

/* drive ID */

SInt16 Reserved; /* Reserved (should be 0) */

ProcPtr ataEHandlerPtr; /* ← Event handler routine */

/* pointer */

SInt32 drvrContext; /* ← Value to pass in with */

/* event handler */

UInt32 ataEventMask; /* ← Current setting of the */

/* Mask of various events */

/* for event handler */

SInt16 Reserved[14]; /* Reserved */

} ataDrvrRegister;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 110.
drvrRefNum On return, this field contains the reference number for the device

specified in the deviceID field of the ataPBHdr data.
FlagReserved This field is reserved. To ensure future compatibility, all reserved

fields should be set to 0.
deviceNextID On return, this field contains the deviceID of the next device on

the list.
ataEHandlerPtr Currently registered event handler routine pointer for the selected

device. This field is only valid for ataPBVers of 2 or greater.
drvrContext Currently registered value to be passed along when the event

handler is called. This field is only valid for ataPBVers of 2 or
greater.

ataEventMask Current event mask value for the selected device. This field is only
valid for ataPBVers of 2 or greater.

Reserved[nn] Reserved. To ensure future compatibility, all reserved fields should
be set to 0.

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

136 ATA Manager Reference

RESULT CODES

See Table 7-7 on page 144 for possible result codes returned by the ATA Manager.

ATA_GetDevConfig 7

The ATA_GetDevConfig function allows an application to determine what the
configuration is for a specified socket.

The manager function code for the ATA_GetDevConfig function is $8A.

The parameter block associated with this function is defined as follows:

typedef struct

{

ataPBHdr /* See definition on page 111 *

SInt32 ConfigSetting; /* → 32 bits of configuration */

/* information */

UInt8 ataPIOSpeedMode; /* → Default PIO mode setting*/

UInt8 Reserved3; /* Reserved for word alignment*/

UInt16 pcValid; /* → PCMCIA unique */

UInt16 RWMultipleCount; /* Reserved */

UInt16 SectorsPerCyl; /* Reserved */

UInt16 Heads; /* Reserved */

UInt16 SectorsPerTrack; /* Reserved */

UInt16 socketNum; /* ← Socket number */

UInt8 socketType; /* ← Type of socket */

UInt8 deviceType; /* ← Type of active device */

UInt8 pcAccessMode; /* → Access mode of socket */

UInt8 pcVcc; /* → device voltage */

UInt8 pcVpp1; /* → Vpp 1 voltage */

UInt8 pcVpp2; /* → Vpp 2 voltage */

UInt8 pcStatus; /* → Status register setting */

UInt8 pcPin; /* → Pin register setting */

UInt8 pcCopy; /* → Copy register setting */

UInt8 pcConfigIndex; /* → Option register setting */

UInt8 ataSingleDMASpeed; /* → Single word DMA */

/* timing class */

UInt8 ataMultiDMASpeed; /* → Default Multiword DMA */

/* timing class */

UInt16 ataPIOCycleTime; /* → Default cycle time for */

/* PIO mode */

UInt16 ataMultiCycleTime; /* → Default cycle time for */

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Manager Reference 137

/* multiword DMA mode */

UInt16 Reserved[7]; /* Reserved*/

} ataGetDevConfig;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 110.
ConfigSetting This 32-bit field contains various configuration information. The

bits have the following definitions:
Bits 0-5: reserved
Bit 6: ATAPI packet DRQ handling setting

0 = Wait for an interrupt before sending the ATAPI
command packet
1 = Wait for the assertion of DRQ in the status register
before sending the ATAPI command packet. This is
the default setting.

Bits 7-31: Reserved, set to 0
ataPIOSpeedMode This field indicates the value for the PIO mode currently used

for commands and PIO data transfers. This value can be
modified with the ATA_SetDevConfig function. In parameter
block versions 1 and 2, this field is an integer. In parameter
block versions 3 and higher, this field is bit-significant, where
the low-order bit indicates that PIO mode 0 is the current mode.

pcValid This 16-bit field applies to systems that support PCMCIA card
services. The following values are defined:
bit 0 = when set, the value in the pcAccessMode field is valid
bit 1 = when set, the value in the pcVcc field is valid
bit 2 = when set, the value in the pcVpp1 field is valid
bit 3 = when set, the value in the pcVpp2 field is valid
bit 4 = when set, the value in the pcStatus field is valid
bit 5 = when set, the value in the pcPin field is valid
bit 6 = when set, the value in the pcCopy field is valid
bit 7 = when set, the value in the pcConfigIndex field is valid
bits 14-8 = reserved (set to 0)
bit 15 = reserved

PWMultipleCount This field is reserved for future expansion. To ensure future
compatibility, all reserved fields should be set to 0.

SectorsPerCylinder
This field is reserved for future expansion. To ensure future
compatibility, all reserved fields should be set to 0.

Heads This field is reserved for future expansion. To ensure future
compatibility, all reserved fields should be set to 0.

SectorsPerTrack This field is reserved for future expansion. To ensure future
compatibility, all reserved fields should be set to 0.

socketNum This field contains the socket number for the device used by the
card services. A value of 0xFF indicates the device is not a card
services client.

socketType This field specifies the type of socket. The values are defined as:
00 = unknown socket type

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

138 ATA Manager Reference

01 = internal ATA bus
02 = media bay socket
03 = PCMCIA socket

deviceType This field specifies the type of device. The possible values are
defined as:
00 = unknown or no device present
01 = standard ATA device detected
02 = ATAPI device detected
03 = PCMCIA ATA device detected

pcAccessMode This field specifies the current mode of the socket. This field is
valid only when bit 0 of the pcValid filed is set. The mode
values are:
0 = I/O mode
1 = memory mode

pcVcc This field specifies the voltage on Vcc in tenths of a volt. The
value in this field is only valid when bit 1 of the pcValid field
is set.

pcVpp1 This field specifies the voltage of Vpp1 in tenths of a volt. The
value in this field is valid only when bit 2 of the pcValid field
is set.

pcVpp2 This field specifies the voltage of Vpp2 in tenths of a volt. The
value in this field is valid only when bit 3 of the pccValid field
is set.

pcStatus This field specifies the current card register setting of a PCMCIA
device. The value in this field is valid only when bit 4 of the
pccValid field is set.

pcPin This field specifies the current card pin register setting of a
PCMCIA device. The value in this field is valid only when bit 5
of the pccValid field is set.

pcCopy This field specifies the current setting of the card socket/copy
register of a PCMCIA device. The value in this field is valid only
when bit 6 of the pccValid field is set.

pcConfigIndex This field specifies the current setting of the card option register
of a PCMCIA device. The value in this field is valid only when
bit 7 of the pccValid field is set.

ataSingleDMASpeed This bit-significant field indicates which single word DMA
mode, if any, is currently configured for use with DMA
transfers. The DMA transfer mode may be modified with the
ATA_SetDevConfig function.

ataMultiDMASpeed This bit-significant field indicates which multiword DMA mode,
if any, is currently configured for use with DMA transfers. The
DMA transfer mode may be modified by the
ATA_SetDevConfig function.

ataPIOCycleTime This word field specifies the minimum cycle time in
microseconds of mode 3 or higher PIO transfers. For more
information about the information contained in this field, see
the ataPIOCycleTime field in the ATA_SetDevConfig
description beginning on page 139.

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Manager Reference 139

The actual cycle time may be higher than this value if the system
hardware is unable to create the requested cycle time while
maintaining signal timing for the PIO mode in use.

ataMultiCycleTime This word field specifies the minimum cycle time in
microseconds of mode 1 or higher multiword DMA data
transfers. For more information about the information contained
in this field, see the ataMultiCycleTime field in the
ATA_SetDevConfig function description beginning on
page 139.
The actual cycle time may be higher than this value if the system
hardware is unable to create the requested cycle time while
maintaining signal timing for the multiword DMA mode in use.

RESULT CODES

See Table 7-7 on page 144 for possible result codes returned by the ATA Manager.

ATA_SetDevConfig 7

The ATA_SetDevConfig function allows an application to set the configuration
parameters of a specified socket. Part of the device configuration includes setting up the
parameters for I/O transfer speed. The section “Setting Data Transfer Timing” beginning
on page 116 includes a discussion of how to use the ATA Manager to setup the software
for data transfers, including DMA data transfers.

The manager function code for the ATA_SetDevConfig function is $8B.

The parameter block associated with this function is defined as follows:

typedef struct

{

ataPBHdr

char ConfigSetting; /* → 32 bits of configuration */

/* information */

ushort ataPIOSpeedMode; /* → Default PIO mode setting*/

ushort Reserved3; /* Reserved for word alignment*/

ulong pcValid; /* → PCMCIA unique */

ulong RWMultipleCount; /* Reserved */

ulong SectorsPerCyl; /* Reserved */

ulong Heads; /* Reserved */

ulong SectorsPerTrack; /* Reserved */

ulong Reserved4[2]; /* Reserved */

ushort pcAccessMode; /* → Access mode of socket */

ushort pcVcc; /* → device voltage */

ushort pcVpp1; /* → Vpp 1 voltage */

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

140 ATA Manager Reference

ushort pcVpp2; /* → Vpp 2 voltage */

ushort pcStatus; /* → Status register setting */

ushort pcPin; /* → Pin register setting */

ushort pcCopy; /* → Copy register setting */

ushort pcConfigIndex; /* → Option register setting */

ushort ataSingleDMASpeed; /* → Single word DMA */

/* timing class */

ushort ataMultiDMASpeed; /* → Multiple word DMA */

/* timing class */

ulong ataPIOCycleTime; /* → Cycle time for PIO mode */

ulong ataMultiCycleTime; /* → Cycle time for multiword */

/* DMA mode */

ulong Reserved[7]; /* Reserved*/

} ATA_SetDevConfig;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 110.
ConfigSetting This 32-bit field contains various configuration information. The

bits have the following definitions:
Bits 0-5: Reserved, set to 0
Bit 6: ATAPI packet DRQ handling setting

0 = Wait for an interrupt before sending the ATAPI
command packet
1 = Wait for the assertion of DRQ in the status register
before sending the ATAPI command packet. This is
the default setting.

Bits 7-31: Reserved, set to 0
ataPIOSpeedMode This field contains the PIO mode to be used for commands and

PIO data transfers. For parameter block version 3 or higher, the
value is bit-significant, with the low-order bit signifying PIO
Mode 0. Be sure to carefully note the difference in bit positions
between this field and the corresponding “Advanced PIO
Modes” field of the ATA-2 Identify Device information.

pcValid This 16-bit field applies to systems that support PCMCIA card
services. The following values are defined:
bit 0 = when set, the value in the pcAccessMode field is valid
bit 1 = when set, the value in the pcVcc field is valid
bit 2 = when set, the value in the pcVpp1 field is valid
bit 3 = when set, the value in the pcVpp2 field is valid
bit 4 = when set, the value in the pcStatus field is valid
bit 5 = when set, the value in the pcPin field is valid
bit 6 = when set, the value in the pcCopy field is valid
bit 7 = when set, the value in the pcConfigIndex field is valid
bits 14-8 = reserved (set to 0)
bit 15 = reserved

PWMultipleCount This field is reserved for future expansion. To ensure future
compatibility, all reserved fields should be set to 0.

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Manager Reference 141

SectorsPerCylinder
This field is reserved for future expansion. To ensure future
compatibility, all reserved fields should be set to 0.

Heads This field is reserved for future expansion. To ensure future
compatibility, all reserved fields should be set to 0.

SectorsPerTrack This field is reserved for future expansion. To ensure future
compatibility, all reserved fields should be set to 0.

Reserved4[2] This field is reserved.
pcAccessMode This field specifies the mode of the socket. This field is valid

only when bit 0 of the pcValid filed is set. The mode values are:
0 = I/O mode
1 = memory mode

pcVcc This field specifies the new voltage setting for Vcc in tenths of a
volt. The value in this field is only valid when bit 1 of the
pcValid field is set.

pcVpp1 This field specifies the new voltage setting for Vpp1 in tenths of
a volt. The value in this field is valid only when bit 2 of the
pcValid field is set.

pcVpp2 This field specifies the new voltage setting for Vpp2 in tenths of
a volt. The value in this field is valid only when bit 3 of the
pccValid field is set.

pcStatus This field specifies the new card register setting for a PCMCIA
device. The value in this field is valid only when bit 4 of the
pccValid field is set.

pcPin This field specifies the new card pin register setting for a
PCMCIA device. The value in this field is valid only when bit 5
of the pccValid field is set.

pcCopy This field specifies the new card socket/copy register setting for
a PCMCIA device. The value in this field is valid only when bit
6 of the pccValid field is set.

pcConfigIndex This field specifies the new card option register setting for a
PCMCIA device. The value in this field is valid only when bit 7
of the pccValid field is set.

ataSingleDMASpeed This bit-significant field specifies the singleword DMA mode for
DMA data transfers. It corresponds to the high-order byte of
word 62 of the Identify Device data described in the ATA-2
specification. If word 62 is not supported by the device, then it
reflects word 52 converted to bit significance. The ATA software
supports word 62 modes 0 through 2, as defined in the ATA-2
specification. If the specified timing mode is higher than the
values supported by the software, then the highest possible
mode is selected for transfers.
The ATA Manager selects the transfer rate that satisfies the
requirements of the mode and the system DMA hardware. The
rate and mode are used on subsequent DMA transfers until
changed by another ATA_SetDevConfig function call. The
default singleword DMA mode is mode 0.
For additional information related to setting the I/O data

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

142 ATA Manager Reference

transfer speed, see “Setting Data Transfer Timing” beginning on
page 116.

ataMultiDMASpeed This bit-significant field specifies the multiword DMA cycle
mode for DMA data transfers. It corresponds to the high-order
byte of word 63 of the Identify Device data described in the
ATA-2 specification. If word 63 is not supported by the device,
then this value should be zero which indicates that multiword
DMA should not be attempted. The ATA software supports
word 63 modes 0 through 2, as defined in the ATA-2
specification. If the specified timing mode is higher than the
values supported by the software, then the highest supported
mode is selected for DMA transfers. This field is used in
conjunction with the value set in the ataMultiCycleTime
field. The ATA Manager selects the transfer rate that satisfies the
requirements of the mode specified in ataMultiCycleTime
field and the system DMA hardware. The rate and mode are
used on subsequent DMA transfers until changed by another
ATA_SetDevConfig function call. The default setting for DMA
mode is singleword DMA mode 0.
For additional information related to setting the I/O data
transfer speed, see “Setting Data Transfer Timing” beginning on
page 116.

ataPIOCycleTime This word field is used in conjunction with the ataIOSpeed
field of the ataPBHdr structure to specify the cycle time for
command and PIO data transfers. The value in this field
represents word 68 of the Identify Device information, as
defined in the ATA-2 specification. If this value is not zero, the
ATA Manager selects the closest approximation of the cycle time
supported by the system hardware which does not exceed the
value and still meets the timing requirements of the selected
mode.

If this value is zero, the ATA Manager uses the minimum cycle
times from the ATA-2 specification for the mode. The resulting
cycle timing represents the maximum timing for PIO mode 2,
because that is the highest mode supported without reporting
word 68 of the Identify Device information.

ataMultiCycleTime This word field is used in conjunction with the
ataMultiDMASpeed field to specify the cycle time for
multiword DMA data transfers. The value represents the same
value reported in word 65 or word 66 of the Identify Device
information, as specified in the ATA-2 specification. If the value
specified in this field is not zero, the ATA Manager selects the
closest cycle time supported by the system hardware that does
not exceed the value and meets the other timing requirements of
the mode specified in the ataMultiDMASpeed field.

If the value is zero, the ATA Manager uses the minimum cycle
times specified in the ATA-2 specification for the selected mode.
The resulting cycle timing represents the minimum timing for

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

ATA Manager Reference 143

multiword DMA mode 0, because that is the highest mode
supported without reporting word 65 or word 66 of the Identify
Device information.

RESULT CODES

See Table 7-7 on page 144 for possible result codes returned by the ATA Manager.

ATA_GetLocationIcon 7

The ATA_GetLocationIcon function returns a pointer to the structure defining the
location icon data for the selected device. The structure contains the icon data and an
icon string for the device.

The manager function code for the ATA_SetDevConfig function is $8C.

The parameter block associated with this function is defined as follows:

typedef struct

{

ataPBHdr

ulong iconData; /* Pointer to icon data and */

/* the size of the data */

} ATA_GetLocationIcon;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 110.
iconData This field contains two fields, a pointer to a structure that contains

the icon data, and the size in bytes of the icon data. The structure
that contains the actual icon data is defined as:
struct DriverLocationIcon
{
ushort locationIcon[256];
char locationString;
} DriverLocationIcon;

The locationIcon field is the device icon data. The
locationString field is string in C string format.

RESULT CODES

See Table 7-7 for possible result codes returned by the ATA Manager.

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

144 Result Code Summary

Result Code Summary 7

A summary of the ATA result codes is provided in Table 7-7. ATA Parameter block
versions 2 and greater have a different numbering scheme from that of version 1. The
error code number values for parameter block version 1 are contained in parenthesis.

Table 7-7 ATA Manager result codes

Error
code Name Description
0 0 noErr Successful completion, no error

detected

-50 paramErr Invalid parameter specified

-56 nsDrvErr No such drive installed

-9396 (-1780) AT_AbortErr Command aborted bit set in
error register

-9397 (-1781) AT_RecalErr Recalibrate failure detected by
device

-9398 (-1782) AT_WrFltErr Write fault bit set in status
register

-9399 (-1783) AT_SeekErr Seek complete bit not set on
completion

-9400 (-1784) AT_UncDataErr Uncorrected data bit set in error
register

-9401 (-1785) AT_CorDataErr Data corrected bit set in status
register

-9402 (-1786) AT_BadBlkErr Bad block bit set in error register

-9403 (-1787) AT_DMarkErr Data mark not found bit set in
error register

-9404 (-1788) AT_IDNFErr ID not found bit set in error
register

-9405 (-1791) AT_NRdyErr Drive ready condition not
detected

-9345 (-1817) AT_BusyErr Selected device bust (BUSY bit
set)

-9376 DRVRCantAllocate Global memory allocation error

-9375 NoATAMgr No ATA Manager installed in the
system (MgrInquiry failure)

-9374 ATAInitFail ATA Manager initialization
failure

-9373 ATABufFail Device buffer test failed

-9372 ATADevUnSupported Device type not supported

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

Result Code Summary 145

-9371 ATAEjectDrvErr Could not eject the drive

-9360 (-1802) ATAMgrNotInitialized ATA Manager not initialized

-9359 (-1803) ATAPBInvalid Invalid device base address
detected (=0)

-9358 (-1804) ATAFuncNotSupported An unknown manager function
code specified

-9357 (-1805) ATABusy Selected device is busy; device
isn’t ready to go to next phase yet

-9356 (-1806) ATATransTimeOut Timeout: Transaction timeout
detected

-9355 (-1807) ATAReqInProg I/O channel in use—cannot
proceed

-9354 (-1808) ATAUnknownState Device in unknown state

-9353 (-1809) ATAQLocked I/O queue locked—cannot
proceed

-9352 (-1810) ATAReqAborted The request was aborted

-9351 (-1811) ATAUnableToAbort Request to abort couldn’t be
honored

-9350 (-1812) ATAAbortedDueToRst The I/O queue entry aborted due
to a bus reset

-9349 (-1813) ATAPIPhaseErr Unexpected phase detected

-9348 (-1814) ATAPIExCntErr Warning: OVerrun/underrun
condition detected (data valid)

-9347 (-1815) ATANoClientErr No client present to handle event

-9346 (-1816) ATAInternalErr Card services returned an error

-9345 (-1817) ATABusErr Bus error detected on I/O

-9344 (-1818) AT_NoAddrErr Invalid taskfile base address

-9343 (-1799) DriverLocked Current driver must be removed
before adding another

-9342 (-1800) CantHandleEvent Particular event could not be
handled

-9341 ATAMgrMemoryErr Manager memory allocation error

-9340 ATASDFailErr Shutdown failure

-9339 ATAXferParamErr I/O transfer parameters
inconsistent

-9338 ATAXferModeErr I/O transfer mode not supported

-9337 ATAMgrConsistencyErr Manager detected internal
inconsistency

-9328 ATAInvalidDrvNum Invalid driver number from event

Table 7-7 ATA Manager result codes (continued)

Error
code Name Description

C H A P T E R 7

Software for the ATA (IDE) Hard Disk

146 Result Code Summary

-9327 ATAMemoryErr Memory allocation error

-9226 ATANoDDMErr No DDM found on media

-9325 ATANoDriverErr No driver found on the media

Table 7-7 ATA Manager result codes (continued)

Error
code Name Description

147

Index

A

abbreviations xii–xiii
ADB (Apple Desktop Bus) ports 25
ADB connector 25
ADB controller 19
Apple SuperDrive 26
AppleTalk stack for Open

Transport 69
ATA (IDE) hard disk 13, 27–30

compared with SCSI drives 95
connector and pin

assignments 29
dimensions 27
signals 30

ATA (IDE) software
ATA Manager 94, 96
device driver 94
hard disk device driver 95

ATA_Abort function 125
ATA_BusInquiry function 122
ATA_DrvrDeregister function 133
ATA_DrvrRegister function 130
ATA_ExecIO function 118
ATA_FindRefNum function 134
ATA_GetDevConfig function 136
ATA_GetLocationIcon

function 143
ATA_Identify function 128
ATA_MgrInquiry function 121
ATA_NOP function 125
ATA_QRelease function 124
ATA_RegAccess function 126
ATA_ResetBus function 129
ATA_SetDevConfig function 139
ATA-2 specification 94
ATA disk driver 95, 96–110
close routine 97
control functions 99–110
control routine 99
Device Manager routines 97–99
drive info function 106
driver gestalt function 107
driverGestalt parameter

block 107
driver name 96
driver reference number 96
eject function 101
format function 100

get partition mount status
function 109

get partition write protect
status function 109

get power mode function 109
get startup partition

function 108
making calls to 96
open routine 97
prime routine 98
return drive
characteristics
function 102

return media icon
function 102

set power mode function 105
status routine 98
verify function 100

ATA Manager 94, 110–146
making calls to 110
parameter block 96
purpose of 95, 96

ATA Manager functions
ATA_Abort 125
ATA_BusInquiry 122
ATA_DrvrDeregister 133
ATA_DrvrRegister 130
ATA_ExecIO 118
ATA_FindRefNum 134
ATA_GetDevConfig 136
ATA_GetLocationIcon 143
ATA_Identify 128
ATA_MgrInquiry 121
ATA_NOP 125
ATA_QRelease 124
ATA_RegAccess 126
ATA_ResetBus 129
ATA_SetDevConfig 139

ATA parameter block header 111
ataPBHdr structure 111–116
.ATDISK driver name 96
AWACS custom IC 19

B

back view 5
BlockCopy routine 77

block diagram 17
BlockMoveData routine 76
BlockMoveDataUncached

routine 76
BlockMove extensions 75–76
BlockMove routine 76
BlockMoveUncached routine 76
BlockZero routine 76
BlockZeroUncached routine 76

C

cache coherency 80
clock speed 16
close routine 97
Code Fragment Manager 80
color lookup table (CLUT) 20
communications modules 9
communications slot 58
compatibility

ATA (IDE) hard disk 13
PDS cards 12
with the PowerPC 601 79, 80

connectors
ADB 25
DVA 53–56
floppy disk 26
hard disk 29
SCSI 31
serial I/O 24
sound input jack 33
sound output jacks 33
video input 9

control routine 99
Cuda IC 19
custom ICs 18

AWACS 19
Cuda 19
PSX IC 18
Valkyrie-AR 20

D

data transfer timing 116
DAV connector in other models 55

I N D E X

148

dcbz instruction 76
Device Manager 87
digital video scaler IC 57
Display Manager 77, 81

components modified for 78
display memory 20
display RAM 20
DLPI drivers compared with

.ENET drivers 69
DMA 114, 116, 138
DMA data transfers 139
DMA transfer mode 138
drive info function 106
driver gestalt function 107
driverGestalt parameter

block 107
Driver Services Library 77
Drive Setup utility 69
dual inline memory modules

for RAM 42
DVA connector 53–57

compared with DAV
connector 55

on video input module 53
pin assignments 55
signal descriptions 56
video data format 57

Dynamic Recompilation
Emulator 74

E

eject function 101
Emulator, Dynamic

Recompilation 74
.ENET drivers compared with

DLPI drivers 69
ethernet card

10Base2 9
10BaseT 9

expansion bus 52
Expansion Manager 81
expansion slots 52

F

FCode 71
features summary 2
Finder modifications for large

volume support 68, 84
floating-point library 75

floppy disk connector 26
floppy disk drive 26
format function 100
Forth language 71

vocabulary reference 71
front view 4

G

Gestalt function 89
gestaltMachineType value 66
Gestalt Manager 66
get partition mount status

function 109
get partition write protect

status function 109
get power mode function 109
get startup partition

function 108
GPi (general purpose input)

signal 25

H

hard disk 13, 27
dimensions 27

hard disk connector 29
pin assignments on 29
signals on 30

HFS volume format 84

I, J

interpretive emulator 74

K

keyboard
Power key 6
reset and NMI functions 34

L

L2 cache DIMM 49
large partition support. See also

large volume support

large volume support 67, 84
64-bit addresses 67
allocation blocks 85
extended API 67
extended data structures 85
extended parameter block 86, 87
limitations 68
maximum file size 85
modified applications 68
requirements 85

level-2 cache. See L2 cache
logic board

access to 6

M

machine identification 66
Macintosh Quadra 605 computer 3
MacTCP stack for Open

Transport 69
math library 75
MC68HC05 microcontroller 19
memory

sizes and configurations of 42
memory control IC. See PSX IC
microphone 33

power for 33
mirror mode 9
mirror output 35
modem card 9
modem port 24, 25
multihoming, in Open Transport 70
multiword DMA 138
mutliword DMA, setting up 117

N

native drivers 81
components modified for 81

O

open firmware startup
process 71–72

boot drivers 71, 72
device tree 71
property list 71
standards for 71

open routine 97

I N D E X

149

Open Transport 69–70
AppleTalk stack for 69
client interface 69
compatibility with 680x0

systems 70
compatibility with other

networks 70
compatibility with Power

Macintosh systems 70
development environment 69
DLPI drivers 69
features of 70
MacTCP stack for 69

optional modules
communications 9
TV tuner 7
video input 8

P

parameter RAM 19
PBXGetVolInfo function 89
PCI bus

Slot Manager dependencies 77
software support for 77

PCI expansion bus 52
PCI expansion slots 52

signals not supported 53
signals on 52

PDS cards, compatibility with 12
power, to expansion slots 52
POWER-clean code 79
POWER-clean native code 78
POWER emulation 79

exception handling 80
POWER instructions

emulation of 79
POWER instructions, emulation

of 79
Power key, on keyboard 6
Power key, on remote control 6
PowerPC 601 microprocessor 79, 80

compatibility limitations 79
compatibility with 79

PowerPC 603e microprocessor
clock speed 16
features of 16

PowerPC 604 microprocessor 78,
79, 80

prime routine 98
PSX IC 18

Q

QuickDraw 77

R

RAM devices 47
access time of 47
refresh operation 47

RAM DIMMs 42
address multiplexing for 46–??
connectors 43
connector type 42
devices in 46, 47
dimensions of 47
installation of 43
signal descriptions 46

RAM DIMM specifications 42
remote control 8
Resource Manager in native

code 75
return drive characteristics

function 102
return drive icon function 101
return media icon function 102
ROM software 66

S

safe shut down 6
screen buffers 20
SCSI bus termination 32
SCSI connector 31
serial I/O ports 24

modem power 25
set power mode function 105
singleword DMA 138
singleword DMA, setting up 117
Slot Manager 77, 78, 81

compatibility with existing PCI
cards 78

sound
buffers 34
filters 34
input routing 33
modes of operation 34
playthrough feature 34
routing of inputs 33
sample rates 34
sample size 34

sound IC 19

sound input jack 33
sound output jacks 33
standard abbreviations xii–xiii
status routine 98
Streams network protocol 69
summary of features 2
System 7.5 67

T, U

terminator, for SCSI bus 32
TV picture sizes 8
TV tuner module 7

picture sizes 8
TV channels 8
with video input module 9

V, W

Valkyrie-AR IC 20
VCB allocation block size 84
verify function 100
video data format 57
video display mirror output 35
video input module 8

DVA connector on 53
input connectors 9
input from TV tuner module 9
monitors supported 9
window size 9

video mirror mode 9
video monitors

colors displayed 36
timing parameters 37–40
types and sizes 37

X

XIOParam data structure 87
XTI interface, with Open

Transport 69
XVolumeParam parameter block 86

Y, Z

YUV digital video 53, 57
data format of 57
for clearer picture 7, 8

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter IINTX printer. Final pages
were created on the Varityper VT600
imagesetter. Line art was created using
Adobe™ Illustrator. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

WRITER
Steve Schwander

COPY EDITOR
John Hammett

ILLUSTRATOR
Sandee Karr

PRODUCTION EDITOR
Alex Solinski

Special thanks to Paul Freeburn, Steve
Parsons, Paul Thompson, Stan Robbins, and
Rich Schnell

	Power Macintosh 5400 Computer
	Contents
	Figures and Tables
	About This Note
	Contents of This Note
	Supplemental Reference Documents
	For More Information

	Conventions and Abbreviations
	Typographical Conventions
	Standard Abbreviations

	Introduction
	Summary of Features
	Comparison With Power Macintosh 5200 Computer
	External Features
	Front View
	Back View
	Access to the Logic Board
	Front Panel Push Buttons
	Power On and Off

	Optional Features
	TV Tuner
	Video Input
	Video Display Mirror Out
	Communications

	Compatibility Issues
	Microprocessor Differences
	POWER- Clean Code
	Completion Serialized Instructions
	Split Cache
	Data Alignment

	Communications Slot
	DAV Slot
	Expansion Slot
	RAM Expansion
	RAM DIMM Dimensions
	Cache Expansion
	ATA (IDE) Hard Disk

	Architecture
	Block Diagram and Main ICs
	PowerPC 603e Microprocessor
	Memory Subsystem
	ROM
	Second Level Cache (Optional)
	System RAM
	Custom ICs
	PSX IC
	OÕHare IC

	AWACS Sound IC
	Cuda IC
	Valkyrie- AR IC

	Display RAM

	I/ O Features
	Serial I/ O Ports
	ADB Port
	Disk Drives
	Floppy Disk Drive
	ATA (IDE) Hard Disk
	Hard Disk Specifications
	Hard Disk Connectors
	Pin Assignments
	ATA (IDE) Signal Descriptions

	CD- ROM Drive

	SCSI Bus
	SCSI Connectors
	SCSI Bus Termination

	Sound
	Sound Output
	Sound Input
	Sound Input Specifications
	Routing of the Sound Signals
	Digitizing Sound
	Sound Modes

	Keyboard
	Built- in Video
	Optional Video Display Mirror Output Feature
	External Video Monitors

	Video Timing Parameters

	Expansion Features
	RAM DIMMs
	RAM DIMM Connectors
	RAM Address Multiplexing
	RAM Devices
	RAM Refresh
	RAM DIMM Dimensions

	Level- 2 Cache DIMM
	PCI Expansion Slot
	The DAV Connector
	Pin Assignments
	Signal Descriptions
	Using the YUV Bus
	Video Data Format

	The PCI- Bus Communications Slot
	PCI- Bus Communications Slot Connector
	Universal Serial Modem Card

	Software Features
	ROM Software
	Machine Identification

	System Software
	New Features
	Large Volume Support
	64- Bit Volume Addresses
	System- Level Software
	Application- Level Software
	Limitations

	Drive Setup
	Open Transport
	New Features of Open Transport
	Compatibility

	Open Firmware Startup
	Monitors & Sound Control Panel
	Energy Saver Software
	Features of the New Energy Saver Application

	Performance Enhancements
	Dynamic Recompilation Emulator
	Resource Manager in Native Code
	Math Library
	New BlockMove Extensions

	Hardware Support Features
	PCI Bus Support
	Removal of Slot Manager Dependencies
	PCI Compatibility

	POWER- Clean Native Code
	POWER Emulation
	POWER- Clean Code
	Limitations of PowerPC 601 Compatibility
	Emulation and Exception Handling
	Code Fragments and Cache Coherency

	Display Manager
	Support of Native Drivers

	Large Volume Support
	Overview of the Large Volume File System
	API Changes
	Allocation Block Size
	File Size Limits
	Compatibility Requirements

	The API Modifications

	Software for the ATA (IDE) Hard Disk
	Introduction to ATA Software
	ATA Disk Driver
	ATA Manager

	ATA Disk Driver Reference
	High- Level Device Manager Routines

	ATA Manager Reference
	The ATA Parameter Block
	Setting Data Transfer Timing
	Setting Up PIO Data Transfers
	Setting Up Multiword and Singleword DMA Data Transfers

	Functions

	Result Code Summary

	Index

