

ð

Developer Press

 Apple Computer, Inc. 1995

ð

Developer Note

Macintosh PowerBook Duo 2300c
Computer

Thi d t t d ith F M k 4 0 4

ð

Apple Computer, Inc.

 1995, Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.
The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, GeoPort,
LaserWriter, LocalTalk, Macintosh,
Macintosh Quadra, MacTCP,
PowerBook, and Power Macintosh are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
AOCE, Apple Desktop Bus,
AppleScript, Finder, Mac, Macintosh
PC Exchange, PowerBook Duo, Power
Macintosh, and QuickDraw are
trademarks of Apple Computer, Inc.

Adobe Illustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
America Online is a service mark of
Quantum Computer Services, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
DECnet is a trademark of Digital
Equipment Corporation.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
IBM is a registered trademark of
International Business Machines
Corporation.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Motorola is a registered trademark of
Motorola Corporation.

NuBus is a trademark of Texas
Instruments.
PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.
Windows is a trademark of Microsoft
Corporation.
Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, APDA will replace
the media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Thi d t t d ith F M k 4 0 4

iii

Contents

Figures and Tables vii

Preface

About This Note

ix

Contents of This Note ix
Supplementary Documents x
Conventions and Abbreviations xi

Typographical Conventions xi
Abbreviations xii

Chapter 1

Introduction

1

Features 2
Configurations 3
Appearance 3
Accessory Devices 4
Compatibility Issues 4

Size of Case 5
Microprocessor Differences 5

Completion Serialized Instructions 5
Split Cache 5
Data Alignment 5

POWER-Clean Code 6
Power Manager Interface 6

Chapter 2

Architecture

7

Processor And Memory Subsystem 9
Main Processor 9
RAM 9
ROM 10
PBX Memory Controller IC 10

Memory Control 10
Bus Bridge 10

I/O Subsystem 10
Whitney Peripheral Support IC 11
Combo IC 11
Singer IC 12
Power Manager IC 12
Display Controller IC 12
Baboon Disk Drive IC 12

Thi d t t d ith F M k 4 0 4

iv

Chapter 3

Input and Output Features

13

Displays 14
Internal IDE Hard Disk Drive 15

Hard Disk Specifications 15
Hard Disk Connector 16

Pin Assignments 17
IDE Signal Descriptions 19
Terminator 19

Power Requirements 20

Chapter 4

Software Features

21

ROM Software 22
PowerPC 603 Microprocessor 22
Machine Identification 22
Memory Controller Software 23
Power Manager Software 23
Display Controller Software 23
Sound Features 23
IDE Disk Mode 24
Ethernet Driver 24
Trackpad Software 24

System Software 25
Control Strip 26
Support for IDE Disk Drives 26
Large Partition Support 26

64-bit Volume Addresses 26
System-Level Software 26
Application-Level Software 27
Limitations 27

Drive Setup 27
Improved File Sharing 28
Dynamic Recompilation Emulator 28
Resource Manager in Native Code 28
Math Library 28
New BlockMove Extensions 29
POWER-Clean Native Code 30
POWER Emulation 31

POWER-Clean Code 31
Emulation and Exception Handling 31
Code Fragments and Cache Coherency 32
Limitations of PowerPC 601 Compatibility 32

QuickDraw Acceleration API 33
Display Manager 33

v

Chapter 5

Power Manager Interface

35

About the Power Manager Interface 36
Things That May Change 36
Checking for Routines 37
Power Manager Interface Functions 37
Header File for Power Manager Dispatch 57

Chapter 6

Large Volume Support

65

Overview of the Large Volume File System 66
API Changes 66
Allocation Block Size 66
File Size Limits 67
Compatibility Requirements 67

The API Modifications 67
Data Structures 67

Extended Volume Parameter Block 67
Extended I/O Parameter Block 69

New Extended Function 71

Chapter 7

Software for the ATA Hard Disk

75

Introduction to the ATA Software 76
ATA Disk Driver 77
ATA Manager 77

ATA Disk Driver Reference 78
Standard Device Routines 78

The Control Routine 78
The Status Routine 79

Control Functions 80
Status Functions 88

ATA Manager Reference 93
The ATA Parameter Block 93
Functions 98

Using the ATA Manager With Drivers 126
Notification of Device Events 127
Device Driver Loading 128

New API Entry Point for Device Drivers 128
Loading a Driver From the Media 130
Notify-All Driver Notification 130
ROM Driver Notification 131

Device Driver Purging 131
Setting the I/O Speed 133

Error Code Summary 134

vi

Appendix

Color Lookup Table

137

Glossary

147

Index

149

vii

Figures and Tables

Chapter 1

Introduction

1

Figure 1-1

Front view of the computer 3

Figure 1-2

Back view of the computer 4

Table 1-1

Configurations 3

Chapter 2

Architecture

7

Figure 2-1

Block diagram 8

Chapter 3

Input and Output Features

13

Figure 3-1

Maximum dimensions of the internal IDE hard disk 16

Figure 3-2

Location of the connector on the hard disk 17

Figure 3-3

Connector pin arrangement 17

Table 3-1

Pin assignments on the IDE hard disk connector 17

Table 3-2

Signals on the IDE hard disk connector 19

Table 3-3

Hard disk power requirements 20

Chapter 4

Software Features

21

Table 4-1

Summary of

BlockMove

 routines 29

Chapter 5

Power Manager Interface

35

Table 5-1

Interface functions and their selector values 38

Chapter 7

Software for the ATA Hard Disk

75

Figure 7-1

ATA software model 76

Table 7-1

Control functions 79

Table 7-2

Status functions 80

Table 7-3

Control bits in the

ataFlags

 field 96

Table 7-4

ATA Manager functions 99

Table 7-5

Event masks 104

Table 7-6

Bits in

pcValid

 field 114

Table 7-7

ATA register selectors 122

Table 7-8

Register mask bits 122

Table 7-9

Event codes send by the ATA Manager 127

Thi d t t d ith F M k 4 0 4

viii

Table 7-10

Input parameter bits for the old API 129

Table 7-11

Input parameter bits for the new API 129

Table 7-12

Purge permissions and responses 132

Table 7-13

ATA driver error codes 134

Appendix

Color Lookup Table

137

Table A-1

Color lookup table 137

ix

P R E F A C E

About This Note

This developer note describes the Macintosh PowerBook Duo 2300c
computer, emphasizing the features that are new or different from those
of earlier PowerBook Duo computers. This developer note is a supplement
to the

Macintosh PowerBook Duo Developer Note

, described in the section
“Supplementary Documents,” later in this preface.

This developer note is intended to help hardware and software developers
design products that are compatible with the Macintosh products described in
the note. If you are not already familiar with Macintosh computers or if you
would simply like more technical information, you may wish to read the
supplementary reference documents described in this preface.

Contents of This Note 0

This developer note is arranged in seven chapters and an appendix:

■

Chapter 1, “Introduction,” describes the Macintosh PowerBook Duo 2300c
computer and compares it with other PowerBook Duo models.

■

Chapter 2, “Architecture,” describes the architecture of the computer, with
emphasis on the PowerPC 603 microprocessor and the custom ICs.

■

Chapter 3, “Input and Output Features,” describes the input and output
features and the internal hard disk drive.

■

Chapter 4, “Software Features,” describes the software features that are
specific to the Macintosh PowerBook Duo 2300c computer.

■

Chapter 5, “Power Manager Interface,” describes the application
programming interface for the Power Manager software.

■

Chapter 6, “Large Volume Support,” describes the modifications that
enable the file system to support volumes larger than 4 GB.

■

Chapter 7, “Software for the ATA Hard Disk,” describes the software that
supports the internal IDE hard disk drive.

■

The appendix, “Color Lookup Table,” describes the table that determines
the colors that appear on the built-in color display.

The chapters and appendix are followed by a glossary and an index.

Thi d t t d ith F M k 4 0 4

x

P R E F A C E

Supplementary Documents 0

To supplement the information in this developer note, developers should
have copies of the

PowerPC 601 RISC Microprocessor User’s Manual

 and

PowerPC 603 Microprocessor Implementation Definition Book IV.

These books are
available from Motorola.

For information about the IDE hard disk drive, developers should have a
copy of the ATA/IDE specification, ANSI proposal X3T10/0948D, Revision
2K or later (ATA-2).

For information about the original Macintosh PowerBook Duo computers,
developers should have a copy of

the

 Macintosh PowerBook Duo Developer Note

,
available on Apple’s Developer CD Series as well as through APDA (order

Macintosh Developer Notes, Number 2,

APDA catalog number R0457LL/A).
Information about the PowerBook Duo 280 and 280c computers and the Duo
Dock II is published in

Macintosh Developer Note Number 9

, APDA catalog
number R0567LL/A.

For information about native drivers and the system registry, developers
should have a copy of

Designing PCI Cards and Drivers for Power Macintosh
Copmuters.

Developers should also have copies of the appropriate Apple reference books,
including

 Inside Macintosh: Overview;

Inside Macintosh: Processes; Guide to the
Macintosh Family Hardware,

second edition; and

Designing Cards and Drivers for
the Macintosh Family,

third edition. These Apple books are available in
technical bookstores and through APDA.

APDA is Apple’s worldwide source for over three hundred development
tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Customers receive
the quarterly

APDA Tools Catalog

featuring all current versions of Apple
development tools and the most popular third-party development tools.
Ordering is easy; there are no membership fees, and application forms are not
required for most of our products. APDA offers convenient payment and
shipping options, including site licensing.

xi

P R E F A C E

To order products or to request a complimentary copy of the

APDA Tools
Catalog

, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Conventions and Abbreviations 0

This developer note uses the following typographical conventions and
abbreviations.

Typographical Conventions 0

Computer-language text—any text that is literally the same as it appears in
computer input or output—appears in

Courier

 font.

Hexadecimal numbers are preceded by a dollar sign ($). For example, the
hexadecimal equivalent of decimal 16 is written as $10.

A slash in front of a signal name (/RESET) indicates an active-low signal.

Note

A note like this contains information that is of interest but is not
essential for an understanding of the text.

◆

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

xii

P R E F A C E

IMPORTANT

A note like this contains information that is essential to an
understanding of the text or of the computer.

▲

▲ W A R N I N G

A note like this directs your attention to something that could cause
injury to staff, damage to equipment, or loss of data.

▲

Abbreviations 0

When unusual abbreviations appear in this developer note, the corresponding
terms are spelled out. Standard units of measure and other widely used
abbreviations are not spelled out.

Standard units of measure used in this note include

Other abbreviations used in this note include

GB gigabytes

K 1024

KB kilobytes

MB megabytes

MHz megahertz

nsec nanoseconds

V volts

$

n

 hexadecimal value

n

ADB Apple Desktop Bus

ANSI American National Standards Institute

API application programming interface

CCFL cold cathode fluorescent lamp

CLUT color lookup table

CPU central processing unit (the main microprocessor)

CRT cathode ray tube (video display device)

CSC color support chip (a custom IC)

DLPI data link provider interface

DRAM dynamic RAM

Sidebar

about a related subject or technical details that are not
required reading.

A sidebar is used for information that is not part of the
main discussion. A sidebar may contain information

xiii

P R E F A C E

FSTN film supertwist nematic (a type of LCD)

HBA host bus adapter

HFS hierarchical file system

IC integrated circuit

IDE integrated device electronics

I/O input/output

LCD liquid crystal display

LED light-emitting diode

MMU memory management unit

NiCad nickel cadmium

NiMH nickel metal hydride

PB API parameter-block application program interface

PDS processor-direct slot

POWER performance optimized with enhanced RISC

PRAM parameter RAM (nonvolatile RAM)

RAM random-access memory

RAMDAC random-access memory, digital-to-analog converter

RISC reduced instruction set computing

ROM read-only memory

SCC Serial Communications Controller

SCSI Small Computer System Interface

SRAM static RAM

TFT thin-film transistor (a type of LCD)

TPI transport provider interface

VRAM video RAM

C H A P T E R 1

Introduction 1Figure 1-0
Listing 1-0
Table 1-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 1

Introduction

2

Features

The Macintosh PowerBook Duo 2300c computer is the first of a new generation of
PowerBook Duo computers using the PowerPC

 603 microprocessor. In addition to
all the basic features of earlier PowerBook Duo models, the PowerBook Duo 2300c
computer also has certain new features described in this developer note.

Features 1

The following summary of features constitutes a general description of the Macintosh
PowerBook Duo 2300c computer. This computer has several new features that
distinguish it from the earlier PowerBook Duo computers described in

Macintosh
Developer Notes,Number 2,

 and

Macintosh Developer Note Number 9

. The new features are
described later in this developer note.

■

Processor.

The Macintosh PowerBook Duo 2300c computer has a PowerPC 603e
microprocessor running at a clock frequency of 100 MHz.

■

RAM:

The built-in memory consists of 8 MB of low-power, self-refreshing dynamic
RAM (DRAM).

■

RAM expansion:

The computer accepts a RAM expansion card with up to 48 MB, for
a total of 56 MB of RAM.

■

Display:

The computer has a flat panel display with either 640-by-400 pixels and
thousands of colors or 640-by-480 pixels and 256 colors. The display is an active-
matrix LCD; it is backlit by a cold cathode fluorescent lamp (CCFL).

■

Hard disk:

The computer has one internal 2.5-inch IDE hard disk drive with disk
capacity of either 750 MB or 1 GB. See “Configurations” on page 3.

■

SCSI disk mode:

With an optional HDI-30 SCSI Disk Adapter cable, the computer
allows the user to read and store data on the computer’s internal hard disk from
another Macintosh computer.

■

Modem:

The computer accepts an Express Modem fax/modem card.

■

Networking:

The computer has a built-in LocalTalk network interface.

■

Sound:

The computer has a built-in microphone and speaker. The

sound circuits
provide 16-bit monaural sound input and output.

■

Keyboard:

The computer has an integral full-function keyboard with trackpad.

■

I/O ports:

The computer has one 152-pin connector for expansion devices, one
mini-DIN 8-pin serial port, and one modem port.

■

Battery:

The computer uses a 4.5 ampere-hour removable and rechargeable nickel
metal hydride (NiMH) battery.

■

Weight:

The computer weighs 2.2 kilograms (4.8 pounds) with the battery installed.

■

Size:

When the computer is closed, it measures 203.2 by 274.32 millimeters (8 by
10.8 inches) and is 36.8 millimeters (1.449 inches) deep.

C H A P T E R 1

Introduction

Configurations

3

Configurations 1

The Macintosh PowerBook Duo 2300c computer is available in two

configurations, as
shown in Table 1-1.

Appearance 1

Figure 1-1 shows the Macintosh PowerBook Duo 2300c computer with its clamshell case
in the open position. Figure 1-2 shows the back of the computer.

Figure 1-1

Front view of the computer

Table 1-1

Configurations

Amount of RAM Size of hard disk Modem included

8 MB 750 MB No

8 MB 1 GB Yes

Brightness controlsMicrophone

Power On key

Battery

Trackpad

Speaker

Sleep indicator

Trackpad
button

C H A P T E R 1

Introduction

4

Accessory Devices

Figure 1-2

Back view of the computer

Accessory Devices 1

In addition to the devices that are included with the Macintosh PowerBook Duo 2300c
computer, the following accessory devices are available:

■

The PowerBook Duo 8 MB Memory Expansion Kit expands the RAM in the
computers to 16 MB.

■

The PowerBook Duo Battery Type III is available separately as an additional or
replacement battery.

■

The Power Adapter II,

the AC adapter that comes with the computers, is also
available separately.

Other accessories for the Macintosh PowerBook Duo family will work with the
Macintosh PowerBook Duo 2300c computer, including memory expansion, modems,
and the Duo Dock Plus.

Compatibility Issues 1

The Macintosh PowerBook Duo 2300c computer has several new features that
distinguish it from the earlier models in the PowerBook Duo family. This section
highlights key areas you should investigate to ensure that your hardware and software
work properly with these new computers.

Power adapter port

Printer/External
modem port

Power button

Internal modem port
(if a modem is installed)

Elevation feet Docking connection
(behind door)

C H A P T E R 1

Introduction

Compatibility Issues

5

Size of Case 1

Because the clamshell case of the PowerBook Duo 2300c computer is slightly deeper than
the case of the original PowerBook Duo, you cannot use the original Duo Dock with the
PowerBook Duo 2300c. The slot in the Duo Dock is not deep enough to accommodate the
computer’s case. Users have two solutions: they may upgrade the top shell of an existing
Duo Dock to make the slot deeper, or they may purchase the Duo Dock Plus, which can
accommodate the deeper case without modification.

Microprocessor Differences 1

Differences between the PowerPC 603 and the PowerPC 601 microprocessor affect the
way code is executed. Because of those differences, programs that execute correctly on
the PowerPC 601 may cause problems on the PowerPC 603.

Completion Serialized Instructions 1

Completion serialized instructions cannot be executed until the execution of all prior
instructions has been completed. The completion serialized instructions

include
load-and-store string and load-and-store multiple instructions. Such instructions can
cause performance degradation on the more heavily pipelined implementations.

Representatives of Apple Computer are working with compiler developers to establish
guidelines for the appropriate use of these instructions.

Split Cache 1

Unlike the PowerPC 601, which has a unified cache, the PowerPC 603 has separate
caches for instructions and data. Because the caches are separate, applications that mix
code and data can encounter cache coherency problems.

In the Mac OS, almost all native code is loaded by the Code Fragment Manager, which
ensures that the code is suitable for execution. If all your code is loaded by the Code
Fragment Manager, you don’t have to worry about cache coherency.

Cache-coherency problems can arise in applications that generate code in memory for
execution. Examples include compilers that generate code for immediate execution and
interpreters that translate code in memory for execution. If you have situations such as
these, you can notify the Mac OS that data is subject to execution by using the call

MakeDataExecutable

, which is defined in

OSUtils.h

.

Data Alignment 1

In PowerPC systems, data is normally aligned on 32-bit boundaries, whereas data for the
680x0 is typically aligned on 16-bit boundaries. Even though the PowerPC was designed
to support the 680x0 type of data alignment, misaligned data causes some performance
degradation. Furthermore, performance with misaligned data varies across the different
implementations of the PowerPC.

C H A P T E R 1

Introduction

6

Compatibility Issues

Although it is essential to use 16-bit alignment for data being shared with 680x0 code,
you should use PowerPC alignment for all other kinds of data. In particular, you should
not use global 680x0 alignment when compiling your PowerPC applications; instead, use
alignment pragmas to turn on 680x0 alignment only when necessary.

POWER-Clean Code 1

Several POWER instructions were included in the instruction set of the PowerPC 601 as
part of the transition from POWER to PowerPC. Those instructions are not included in
the instructions set of the PowerPC 603.

Compilers designed for the POWER instruction set have also been used to compile
programs for the PowerPC. Most of those compilers have the option to suppress the
generation of the offending instructions. For example, the IBM xlc C compiler and the
xlC C++ compiler have the option

-qarch=ppc.

 Developers who use those compilers
must verify that the option is in effect for all pieces of code that is intended to run on the
PowerPC 603.

The system software traps POWER instructions and emulates them in software. While
this POWER emulation keeps the system from crashing when it encounters a POWER
instruction, performance suffers because of the emulation. Developers should make sure
their code is free of POWER instructions.

Power Manager Interface 1

Developers have written software that provides expanded Power Manager control for
some older PowerBook models. That software will not work in the Macintosh
PowerBook Duo 2300c computer.

Until now, third-party software for the Power Manager has worked by reading and
writing directly to the Power Manager’s data structures, so it has had to be updated
whenever Apple brings out a new model with changes in its Power Manager software.
Starting with the PowerBook 520 and 540 computers, the system software includes
interface routines for program access to the Power Manager functions, so it is no longer
necessary for applications to deal directly with the Power Manager’s data structures. For
more information, see

Inside Macintosh: Devices

.

Developers should not assume that the Power Manager’s data structures are the same on
all PowerBook models. In particular, developers should take care never to assume

■

that time-out values such as the hard disk spindown time reside at the same locations
in parameter RAM in different PowerBook models

■

that the power cycling process in different models works the same way or uses the
same parameters

■

that direct commands to the Power Manager microcontroller are supported on
all models

C H A P T E R 2

Architecture 2Figure 2-0
Listing 2-0
Table 2-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 2

Architecture

8

The architecture of the Macintosh PowerBook Duo 2300c computer is partitioned into
two subsystems: the processor and memory subsystem and the I/O subsystem. An
Apple custom IC called the PBX IC acts as the bridge between the two subsystems.

The block diagram shown in Figure 2-1 shows the two subsystems along with other
modules that are attached to them.

Figure 2-1

Block diagram

Microphone

Speaker

Serial port A

Flat panel
display

IDE hard
disk drive

Keyboard

Power

ROM

Power
Manager

PBX

Memory
controller

Singer

Sound IC

Combo

SCC and
SCSI IC

SRAM

PowerPC
603

Microprocessor

RAM

RAM
expansion

card

CSC

Video
controller

VRAM

152-pin PDS

Whitney

I/O
controller

Trackpad

Baboon

IDE drive
controller

C H A P T E R 2

Architecture

Processor and Memory Subsystem

9

Processor and Memory Subsystem 2

The processor and memory subsystem includes the PowerPC 603 microprocessor, the
main RAM, the ROM, and the PBX memory controller IC. The processor and memory
subsystem operates at 33 MHz on the PowerPC 603 bus. An optional RAM expansion
card can be plugged into the computer and becomes part of this subsystem.

Main Processor 2

The main processor in the Macintosh PowerBook Duo 2300c computer is a PowerPC 603e
microprocessor, an enhanced version of the PowerPC 603.

Its principal features include

■

full RISC processing architecture

■

parallel processing units: one integer and one floating-point

■

a load-and-store unit that operates in parallel with the processing units

■

a branch manager that can usually implement branches by reloading the incoming
instruction queue without using any processing time

■

two internal memory management units (MMUs), one for instructions and one
for data

■

two separate on-chip caches of 16 KB each for data and instructions

For complete technical details, see

PowerPC 603 Microprocessor Implementation Definition
Book IV.

RAM 2

The built-in RAM consists of 8 MB of dynamic RAM (DRAM). The RAM ICs are low-
power, self-refreshing type with an access time of 70 ns.

An optional RAM expansion card plugs into a 70-pin connector on the main logic board.
With the RAM expansion card installed, the processor and memory subsystem supports
up to 56 MB of RAM.

The RAM expansion card for the Macintosh PowerBook Duo 2300c computer is
compatible with the one used in earlier PowerBook Duo models. The computer accepts
up to 48 MB on a RAM expansion card.

The PBX custom IC contains bank base registers for making RAM banks contiguous,
starting at address $0000 0000. See “PBX Memory Controller IC” on page 10.

C H A P T E R 2

Architecture

10

I/O Subsystem

ROM 2

The ROM in the Macintosh PowerBook Duo 2300c computer is implemented as a new
array (1 M by 32-bit) consisting of two 1 M by 16-bit ROM ICs

with an access time of
120 ns.

These ICs provide 4 MB of storage, which is located in the system memory map
between addresses $3000 0000 and $3FFF FFFF. The ROM data path is 32 bits wide and is
addressable only as longwords. See Chapter 4, “Software Features,” for a description of
the features of this new ROM.

PBX Memory Controller IC 2

The PBX IC is a new Apple custom IC that provides RAM and ROM memory control
and also acts as the bridge between the processor bus and the I/O bus.

Memory Control 2

The PBX IC controls the system RAM and ROM and provides address multiplexing and
refresh signals for the DRAM devices.

The PBX IC has a memory bank decoder in the form of an indexed register file. Each
nibble in the register file represents a 2 MB page in the memory address space (64 MB).
The value in each nibble maps the corresponding page to one of the eight banks of
physical RAM. By writing the appropriate values into the register file at startup time, the
system software makes the memory addresses contiguous.

Bus Bridge 2

The PBX IC acts as a bridge between the processor bus and the I/O bus, converting
signals on one bus to the equivalent signals on the other bus. The bridge functions are
performed by two converters. One accepts requests from the processor bus and presents
them to the I/O bus in a manner consistent with an 68030 microprocessor. The other
accepts requests from the I/O bus and provides access to the RAM and ROM on the
processor bus.

The bus bridge in the PBX IC runs asynchronously so that the processor bus and the I/O
bus can operate at different clock rates.

I/O Subsystem 2

The I/O subsystem in the Macintosh PowerBook Duo 2300c computer operates at a clock
frequency of 22 MHz on the I/O bus, a 68030-compatible bus. The I/O subsystem
includes the components that communicate by way of the I/O bus:

■

the Whitney custom IC

■

the Combo I/O controller IC

■

the Singer sound IC

■

the Power Manager IC

C H A P T E R 2

Architecture

I/O Subsystem

11

■

the display controller IC

■

the Baboon disk drive interface IC

The next sections describe these components.

Whitney Peripheral Support IC 2

The Whitney IC is a custom IC that provides the interface between the system bus and
the I/O bus that supports peripheral device controllers. The Whitney IC incorporates the
following circuitry:

■

VIA1 like that in other Macintosh computers

■

CPU ID register

The Whitney IC also performs the following functions:

■

bus error timing for I/O bus

■

bus arbitration for I/O bus

■

interrupt prioritization

■

VIA2 functions

■

sound data buffering

■

clock generation

■

power control signals

The Whitney IC contains the interface circuitry for the following peripheral ICs:

■

Combo, which is a combination of SCC and SCSI ICs

■

Singer, the sound codec IC

The Whitney IC provides the device select signals for the following ICs:

■

the flat panel display controller

The Whitney IC also provides the power off and reset signals to the peripheral
device ICs.

Combo IC 2

The Combo custom IC combines the functions of the SCC IC (85C30 Serial Communi-
cations Controller) and the SCSI controller IC (53C80). The SCC portion of the Combo IC
supports the serial I/O port. The SCSI controller portion of the Combo IC supports
an internal SCSI hard drive; it is needed only for upgrades to older PowerBook Duo
models.

C H A P T E R 2

Architecture

12

I/O Subsystem

Singer IC 2

The Singer custom IC is a 16-bit digital sound codec. It conforms to the IT&T

ASCO 2300
Audio-Stereo Code Specification.

 Sound samples are transferred in or out through the
Singer IC from sound I/O buffers maintained in main memory by the Whitney IC.

Power Manager IC 2

The Power Manager IC is a 68HC05 microprocessor that operates with its own RAM and
ROM. The Power Manager IC performs the following functions:

■

controlling sleep, shutdown, and on/off modes

■

controlling power to the other ICs

■

controlling clock signals to the other ICs

■

supporting the ADB

■

scanning the keyboard

■

controlling display brightness

■

monitoring battery charge level

■

controlling battery charging

Display Controller IC 2

The CSC (color support chip) IC provides the data and control interface to the LCD
panel. The CSC IC is also used in the Macintosh PowerBook 500 and 280 series
computers. The CSC IC contains a 256-entry CLUT, RAMDAC, display buffer controller,
and flat panel control circuitry. For more information, see “Displays” on page 14.

Baboon Disk Drive IC 2

The Baboon custom IC provides the interface to the IDE hard disk drive. For more
information, see the section “Internal IDE Hard Disk Drive” beginning on page 15.

C H A P T E R 3

Input and Output Features 3Figure 3-0
Listing 3-0
Table 3-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 3

Input and Output Features

14

Displays

This chapter describes I/O features of the Macintosh PowerBook Duo 2300c computer,
with emphasis on the features that have changed from earlier Macintosh PowerBook
Duo computers.

IMPORTANT

The docking features of the Macintosh PowerBook Duo 2300c computer
are the same as those of earlier PowerBook Duo models. For information
about the docking connector, please refer to the

 Macintosh PowerBook
Duo Developer Note

.

▲

Displays 3

The Macintosh PowerBook Duo 2300c computer has a built-in color display. It is a
liquid-crystal flat panel using active-matrix TFT (thin-film transistor) technology and has
a built-in backlight using a CCFL (cold cathode fluorescent) lamp.

The active-matrix technology provides a high contrast ratio (60:1) and a response time of
approximately 60 ms for performance similar to a CRT video display and with no cursor
smearing or cursor submarining. The display normally displays black characters on a
white background, simulating the appearance of a printed page.

Note

The color display in the Macintosh PowerBook Duo 2300c
computer is 3.8 mm thicker than the grayscale display used
in the original PowerBook Duo, requiring the Macintosh
PowerBook Duo 2300c computer’s case to be thicker than
that of the original PowerBook Duo.

◆

The color display can operate in either of two modes. In 8-bit mode the display has a
640-by-480-pixel area and can display up to 256 different colors at a time. In 16-bit mode
the display has a 640-by-400-pixel area and can display thousands of colors.

Smearing and Submarining

When the cursor is moving rapidly, the pixels may
not have time to respond to a newly drawn cursor
before the cursor moves to another position. In that
case, the cursor seems to disappear behind the screen,
an effect known as submarining.

The displays on the PowerBook Duo 280 and 280c
do not have these anomalies.

Older types of flat panel displays have much slower
response times than the active-matrix displays used in
the PowerBook Duo 280 and 280c. On those older
displays, the pixels showing the cursor in one position
do not clear quickly when the cursor moves to another
position; as a result, the cursor appears smeared out in
the direction of motion.

C H A P T E R 3

Input and Output Features

Internal IDE Hard Disk Drive

15

The user can select either color display mode by using the Monitors control panel.
Because the VRAM is a fixed size, 256K by 16 bits, it can handle only a certain amount of
data. When the user selects 16-bit mode, the system software resizes the display area
down to 400 lines instead of 480 and centers the display area on the screen, leaving black
bands of 40 lines each at the top and bottom of the screen.

Note

The number of colors available in 16-bit mode is less than the theoretical
maximum due to the limitations in the color LCD technology. Many
color values exhibit noticeable flicker. The computer’s CLUT omits the
unsatisfactory colors, making about 4000 available. See the appendix,
“Color Lookup Table,” for more information.

◆

Internal IDE Hard Disk Drive 3

The Macintosh PowerBook Duo 2300c computer has an internal hard disk that uses the
standard IDE interface. This interface, used for IDE drives on IBM AT–compatible
computers, is also referred to as the ATA interface. The implementation of the ATA
interface on the Macintosh PowerBook Duo 2300c computer is a subset of the ATA/IDE
specification, ANSI proposal X3T10/0948D, Revision 2K (ATA-2).

For information about the software interface, see Chapter 7, “Software for the ATA
Hard Disk.”

Hard Disk Specifications 3

Figure 3-1 shows the maximum dimensions of the hard disk and the location of the
mounting holes. The minimum clearance between conductive components and the
bottom of the mounting envelope is 0.5 mm.

C H A P T E R 3

Input and Output Features

16

Internal IDE Hard Disk Drive

Figure 3-1

Maximum dimensions of the internal IDE hard disk

Hard Disk Connector 3

The internal hard disk has a 44-pin connector that carries both the IDE signals and the
power for the drive. Figure 3-2 shows the location of the connector on the hard disk.
Figure 3-3 identifies the pins. Pin 20 has been removed to serve as a key.

3.00
[0.118]

4.06
[0.160]

61.72
[2.430]

70.00
[2.755]

M3, 3.5 deep,
minimum full
thread, 8X

Note: Dimensions are in millimeters [inches].

19.25 maximum
[0.757 maximum]

34.93±0.38
[1.375±0.015]

101.60 maximum
[4.00 maximum]

38.10
[1.500]

C H A P T E R 3

Input and Output Features

Internal IDE Hard Disk Drive

17

Figure 3-2

Location of the connector on the hard disk

Figure 3-3

Connector pin arrangement

Pin Assignments 3

Table 3-1 shows the pin assignments on the 44-pin IDE hard disk connector. A slash (/)
at the beginning of a signal name indicates an active-low signal.

Table 3-1

Pin assignments on the IDE hard disk connector

Pin
number Signal name

Pin
number Signal name

1 /RESET 2 GROUND

3 DD7 4 DD8

5 DD6 6 DD9

7 DD5 8 DD10

9 DD4 10 DD11

11 DD3 12 DD12

13 DD2 14 DD13

continued

Note: Dimensions are in millimeters [inches]

19.25 maximum
[0.757 maximum]

3.99
[0.157]

10.14±0.375
[0.399±0.014]

Key vacant
position pin 20

Vacant row in
50-pin connector

Pin 1

Center line of pin 44

43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 45

44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

47

48 46

Note: Gaps are equivalent to missing pins.

C H A P T E R 3

Input and Output Features

18

Internal IDE Hard Disk Drive

Note

The IDE data bus is connected to the I/O bus through bidirectional bus
buffers. To match the big-endian format of the MC68030-compatible I/O
bus, the bytes are swapped. The lower byte of the IDE data bus,
DD(0–7), is connected to the high byte of the upper word of the I/O bus,
IOD(24–31). The higher byte of the IDE data bus, DD(8–15), is connected
to the low byte of the upper word of the I/O bus, IOD(16–23).

◆

15 DD1 16 DD14

17 DD0 18 DD15

19 GROUND 20 KEY

21 Reserved 22 GROUND

23 DIOW 24 GROUND

25 DIOR 26 GROUND

27 IORDY 28 Reserved

29 Reserved 30 GROUND

31 INTRQ 32 /IOCS16

33 DA1 34 Reserved

35 DA0 36 DA2

37 /CS0 38 /CS1

39 Reserved 40 GROUND

41 +5V 42 +5V

43 GROUND 44 Reserved

Table 3-1

Pin assignments on the IDE hard disk connector (continued)

Pin
number Signal name

Pin
number Signal name

C H A P T E R 3

Input and Output Features

Internal IDE Hard Disk Drive

19

IDE Signal Descriptions 3

Table 3-2 describes the signals on the IDE hard disk connector.

Terminator 3

The hard disk has 1000-ohm termination resistors for all I/O signal lines. The lines are
pulled up through the resistors to the terminator power signal.

Table 3-2

Signals on the IDE hard disk connector

Signal name Signal description

DA(0–2) IDE device address; used by the computer to select one of the registers
in the IDE drive. For more information, see the descriptions of the CS0
and CS1 signals.

DD(0–15) IDE data bus; buffered from IOD(16–31) of the computer’s I/O bus.
DD(0–15) are used to transfer 16-bit data to and from the drive buffer.
DD(8–15) are used to transfer data to and from the internal registers
of the drive, with DD(0–7) driven high when writing.

/CS0 IDE register select signal. It is asserted low to select the main task file
registers. The task file registers indicate the command, the sector
address, and the sector count.

/CS1 IDE register select signal. It is asserted low to select the additional
control and status registers on the IDE drive.

IORDY IDE I/O ready; when driven low by the drive, signals the CPU to insert
wait states into the I/O read or write cycles.

/IOCS16 IDE I/O channel select; asserted low for an access to the data port. The
computer uses this signal to indicate a 16-bit data transfer.

/DIOR IDE I/O data read strobe.

/DIOW IDE I/O data write strobe.

INTRQ IDE interrupt request. This active-high signal is used to inform the
computer that a data transfer is requested or that a command has
terminated.

/RESET Hardware reset to the drive; an active-low signal.

Key This pin is the key for the connector.

C H A P T E R 3

Input and Output Features

20

Internal IDE Hard Disk Drive

Power Requirements 3

Power drawn by the hard disk signals in each operating mode must be less than or equal
to the values shown in Table 3-3. All measurements are under nominal environmental
and voltage conditions. The limits include 1000-ohm pull-up resistors on all signal lines.

Table 3-3

Hard disk power requirements

Mode

Current (amperes)

Mean Maximum

Startup* — 1.30

Random operation† 0.50 0.60

Idle 0.30 0.35

* Startup values are peak values during response time of power
on to power ready.

† Random operation values are RMS values with a 40 percent
random seek, 40 percent write/read (1 write in 10 reads), and
20 percent idle mode.

C H A P T E R 4

Software Features 4Figure 4-0
Listing 4-0
Table 4-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 4

Software Features

22

ROM Software

This chapter describes the new features of the software for the Macintosh PowerBook
Duo 2300c computer. The software includes the built-in ROM software and the system
software that resides on the hard disk.

ROM Software 4

The ROM software in the Macintosh PowerBook Duo 2300c computer is based on the
ROM used in previous Macintosh PowerBook computers, with enhancements to support
the new features of this computer. Some of the features this ROM supports include
the following:

■

PowerPC 603 microprocessor

■

machine identification

■

new memory controller IC

■

Power Manager software

■

new display controller

■

new sound features

■

IDE disk mode

■

Ethernet

■

trackpad

The following sections describe each of these features.

PowerPC 603 Microprocessor 4

The PowerPC 603 has power-saving modes similar to power-cycling and sleep modes of
earlier PowerBook models. The ROM has been modified to include the additional traps
needed to control the power modes of the microprocessor.

The Macintosh PowerBook Duo 2300c computer does not provide the Economode
reduced-speed feature found on the PowerBook 160 and 180 models.

Machine Identification 4

The ROM includes new tables and code for identifying the machine.

Applications can find out which computer they are running on by using the Gestalt
Manager. The

gestaltMachineType

 value returned by the Macintosh PowerBook Duo
2300c computer is 118 (hexadecimal $76).

Inside Macintosh: Overview

 describes the Gestalt
Manager and tells how to use the

gestaltMachineType

 value to obtain the machine
name string.

C H A P T E R 4

Software Features

ROM Software

23

Memory Controller Software 4

The memory control routines have been rewritten to operate with the PBX memory
controller IC, which has a control register configuration different from that of the
memory controller used in earlier PowerBook models. The memory initialization and
size code has been rewritten to accommodate

■

larger ROM size

■

a new type of DRAM device

■

new memory configurations

Power Manager Software 4

Changes to the Power Manager software include

■

power cycling and sleep mode for the PowerPC 603 microprocessor

■

support for the new lithium ion batteries

■

support for turning on and off power to the Ethernet interface

The Macintosh PowerBook Duo 2300c computer uses a modified version of the public
API for power management described in

Inside Macintosh: Devices.

See Chapter 5, “Power
Manager Interface.”

Display Controller Software 4

The Macintosh PowerBook 5300 computer has a new custom IC, the ECSC

(enhanced

color support chip), that provides the data and control interface to the flat panel display.
The ROM software includes new video drivers for that IC.

Sound Features 4

The ROM software includes new sound driver software to support the new Sound
Manager, which is part of the system software. The new driver software also supports
the following new features:

■

improved sound performance by way of a new interface to the Singer sound IC

■

support for 16-bit stereo sound input

■

support for automatic gain control in software

■

mixing of sound output from the modem

The new ROM software also includes routines to arbitrate the control of the sound
hardware between the modem and the Sound Manager.

C H A P T E R 4

Software Features

24

ROM Software

IDE Disk Mode 4

The ROM software also includes modifications to support disk mode. In previous
PowerBook models, the internal hard disk was a SCSI drive and the setup for disk access
from another computer was called SCSI disk mode. In the M2 computer, the internal
hard disk is an IDE drive and the disk access mode is called IDE target mode.

IDE target mode interprets SCSI commands from the external computer, translates them
into the equivalent IDE commands, and calls the ATA driver to carry them out. IDE
target mode does not support all SCSI commands; it supports the commands used in the
Apple SCSI device driver and the new Drive Setup utility.

Note

The ATA driver is described in Chapter 7,
“Software for the ATA Hard Disk.”

◆

Ethernet Driver 4

The driver for the Ethernet interface can now put a sleep task for Ethernet into the Power
Manager’s sleep table. This sleep task first makes a control call to the Ethernet driver to
prepare the Ethernet interface IC for sleep mode. The sleep task then makes a Power
Manager call to turn off power to the IC. The sleep task installs a corresponding wake
task that turns the interface power back on and reinitializes the interface IC.

Note

The Ethernet connector is provided on the Duo Dock.

◆

Trackpad Software 4

The trackpad hardware, the Power Manager IC, and the system software work together
to translate the movements of a finger across the surface of the trackpad into cursor
movements.

The control registers for the trackpad hardware are part of the Power Manager IC. The
Power Manager’s software takes the raw data from the trackpad hardware and converts
it to the same format as ADB mouse data before sending it on to the system software.

The ADB software that supports the trackpad includes the Cursor Device Manager,
which provides a standard interface for a variety of devices. The ADB software checks
to see whether a device connected to the ADB port is able to use the Cursor Device
Manager. For more information, see the January 1994 revision of Macintosh Technical
Note HW 01,

ADB—The Untold Story: Space Aliens Ate My Mouse.

C H A P T E R 4

Software Features

System Software

25

System Software 4

The Macintosh PowerBook Duo 2300c computer is shipped with new system software
based on System 7.5 and augmented by several new features.

IMPORTANT

Even though the software for the PowerBook Duo 2300c incorporates
significant changes from System 7.5, it is not a reference release: that is,
it is not an upgrade for earlier Macintosh models.

▲

The system software includes changes in the following areas:

■

control strip support

■

support for the IDE hard disk drive

■

large partition support

■

Drive Setup, a new utility

■

improved file sharing

■

a new Dynamic Recompilation Emulator

■

a Resource Manager completely in native code

■

an improved math library

■

new

BlockMove

 extensions

■

POWER-clean native code

■

POWER emulation

■

QuickDraw acceleration API

■

Display Manager

These changes are described in the sections that follow.

Note

For those changes that affect the software, information about new or
modified APIs is given in later chapters. Please see the cross-references
in the individual sections that follow.

◆

C H A P T E R 4

Software Features

26

System Software

Control Strip 4

The desktop on the Macintosh PowerBook Duo 2300c computer includes the status
and control element called the control strip, which was introduced in the Macintosh
PowerBook 280 and 500 models. It is a strip of graphics with small button controls
and indicators in the form of various icons. For a description of the control strip and
guidelines for adding modules to it, see Macintosh Technical Note OS 6,

Control Strip
Modules,

 on the reference library edition of the developer CD.

Support for IDE Disk Drives 4

Support for IDE (integrated drive electronics) hard disk drives is incorporated in the
ROM software. System software for controlling IDE hard drives is included in a new
ATA device driver and the ATA Manager. The new driver and manager are described in
Chapter 7, “Software for the ATA Hard Disk.”

Large Partition Support 4

The largest disk partition supported by System 7.5 is 4 GB. The new system software
extends that limit to 2 terabytes.

IMPORTANT

The largest possible file is still 2 GB.

▲

The changes necessary to support the larger partition size affect many parts of the
system software. The affected software includes system-level and application-level
components.

64-bit Volume Addresses 4

The current disk driver API has a 32-bit volume address limitation. This limitation
has been circumvented by the addition of a new 64-bit extended volume API
(

PBXGetVolInfo

) and 64-bit data types (

uint64

,

XVolumeParam

, and

XIOParam

).

For the definitions of the new API and data types, please see “The API Modifications” in
Chapter 6, “Large Volume Support.”

System-Level Software 4

Several system components have been modified to use the 64-bit API to correctly
calculate true volume sizes and read and write data to and from large disks. The
modified system components are

■

virtual memory code

■

Disk Init

■

FSM Init

■

Apple disk drivers

■

HFS ROM code

C H A P T E R 4

Software Features

System Software

27

Application-Level Software 4

Current applications do not require modification to gain access to disk space beyond the
traditional 4 GB limit as long as they do not require the true size of the large partition.
Applications that need to obtain the true partition size will have to be modified to use
the new 64-bit API and data structures. Typical applications include utilities for disk
formatting, partitioning, initialization, and backup.

The following application-level components of the system software have been modified
to use the 64-bit API:

■

Finder

■

Finder extensions (AppleScript, AOCE Mailbox, and Catalogs)

■

Drive Setup

■

Disk First Aid

In the past, the sum of the sizes of the files and folders selected in the Finder was limited
to the largest value that could be stored in a 32-bit number—that is, 4 GB. By using the
new 64-bit API and data structures, the Finder can now operate on selections whose total
size exceeds that limit. Even with very large volumes, the Finder can display accurate
information in Folder and Get Info windows and to obtain the true volume size for
calculating available space when copying.

The Finder extensions AppleScript, AOCE Mailbox, and Catalogs have been modified in
the same way as the Finder because their copy-engine code is similar to the Finder’s.

A later section describes the modified Drive Setup application.

Limitations 4

The software modifications that support large partition sizes do not solve all the
problems associated with the use of large volumes. In particular, the modifications do
not address the following:

■

HFS file sizes are still limited to 2 GB or less.

■

Large allocation block sizes cause inefficient storage. On a 2 GB volume, the minimum
file size is 32 KB; on a 2-terabyte volume, the minimum file size is a whopping 32 MB.

■

Drives with the new large volume driver will not mount on older Macintosh models.

Drive Setup 4

The software for the Macintosh PowerBook Duo 2300c computer includes a new disk
setup utility named Drive Setup that replaces the old HDSC Setup utility. In addition
to the ability to support large volumes, the Drive Setup utility has several other
enhancements, including

■

an improved user interface

■

support for multiple partitions

■

support for chainable drivers

C H A P T E R 4

Software Features

28

System Software

■

support for multiple HFS partitions

■

the ability to mount volumes from within the Drive Setup application

■

the ability to start up (boot) from any HFS partition

■

support for removable media drives

Improved File Sharing 4

Version 7.6 of the file sharing software incorporates many of the features of AppleShare,
including an API for servers.

Dynamic Recompilation Emulator 4

The Dynamic Recompilation Emulator (or DR Emulator) is an enhancement of the
current interpretive emulator. It provides on-the-fly translation of 680x0 instructions into
PowerPC instructions with improved performance compared with the current emulator.

The design of the DR Emulator mimics a hardware instruction cache and employs a
variable size translation cache. Each compiled 680x0 instruction requires on average
fewer than four PowerPC instructions. In operation, the DR Emulator depends on
locality of execution to make up for the extra cycles used in translating the code.

Although the DR Emulator provides a high degree compatibility for 680x0 code, it is less
compatible than that of the current emulator for self-modifying code that does not call
the cache flushing routines. Such code also has compatibility problems on Macintosh
Quadra models with the cache enabled and should be avoided. See also “Split Cache” on
page 5.

Resource Manager in Native Code 4

The Resource Manager in the software for the Macintosh PowerBook Duo 2300c
computer is similar to the one in the first Power Macintosh computers except that it
is completely in native PowerPC code. Because the Resource Manager is intensively
used both by system software and by applications, the native version provides an
improvement in system performance.

The Process Manager has been modified to remove patches it formerly made to the
Resource Manager.

Math Library 4

The new math library (MathLib) is an enhanced version of the floating-point library
included in the ROM in the first generation of Power Macintosh computers.

MathLib is bit compatible in both results and floating-point exceptions with the math
library in the first-generation ROM. The only difference is in the speed of computation.

C H A P T E R 4

Software Features

System Software 29

MathLib has been improved to better exploit the floating-point features of the PowerPC
microprocessor. MathLib now includes enhancements that assist the compiler in carrying
out its register allocation, branch prediction, and overlapping of integer and
floating-point operations.

Compared with the previous version, MathLib improves performance without
compromising accuracy or robustness. For often-used functions, it provides performance
gains of up to 15 times.

The application interface and header files for the math library have not been changed.

New BlockMove Extensions 4
The system software for the Macintosh PowerBook Duo 2300c computer includes new
extensions to the BlockMove routine. The extensions provide improved performance for
programs running in native mode.

The new BlockMove extensions provide several benefits for developers.

■ They’re optimized for the PowerPC 603 and 604 processors, rather than for the
PowerPC 601.

■ They’re compatible with the new Dynamic Recompilation Emulator.

■ They provide a way to handle cache-inhibited address spaces.

■ They include new high-speed routines for setting memory to 0.

Note
The new BlockMove extensions do not use string instructions,
which are fast on the PowerPC 601 but slow on other PowerPC
implementations. ◆

Some of the new BlockMove extensions can be called only from native code; see
Table 4-1.

Except for BlockZero and BlockZeroUncached, the new BlockMove extensions use
the same parameters as BlockMove. Calls to BlockZero and BlockZeroUncached
have only two parameters, a pointer and a length; refer to the header file (Memory.h).

Table 4-1 Summary of BlockMove routines

BlockMove version

Can be
called from
680x0 code

OK to use
for moving
680x0 code

OK to use
with buffers

BlockMove Yes Yes No

BlockMoveData Yes No No

BlockMoveDataUncached No No Yes

BlockMoveUncached No Yes Yes

BlockZero No — No

BlockZeroUncached No — Yes

C H A P T E R 4

Software Features

30 System Software

Table 4-1 summarizes the BlockMove routines according to three criteria: whether the
routine can be called from 680x0 code, whether it is OK to use for moving 680x0 code,
and whether it is OK to use with buffers or other uncacheable destination locations.

The fastest way to move data is to use the BlockMoveData routine. It is the
recommended method whenever you are certain that the data is cacheable and does
not contain executable 680x0 code.

The BlockMove routine is slower than the BlockMoveData routine only because it has
to clear out the software cache used by the DR Emulator. If the DR EMulator is not in
use, the BlockMove routine and the BlockMoveData routine are the same.

IMPORTANT

The versions of BlockMove for cacheable data use the dcbz instruction
to avoid unnecessary prefetch of destination cache blocks. For
uncacheable data, you should avoid using those routines because the
dcbz instruction faults and must be emulated on uncacheable or
write-through locations, making execution extremely slow. ▲

IMPORTANT

Driver software cannot call the BlockMove routines directly. Instead,
drivers must use the BlockCopy routine, which is part of the Driver
Services Library. The BlockCopy routine is an abstraction that allows
you to postpone binding the specific type of BlockMove operation until
implementation time. ▲

The Driver Services Library is a collection of useful routines that Apple Computer
provides for developers working with the new Power Macintosh models. For more
information, please refer to Designing PCI Cards and Drivers for Power Macintosh
Computers.

POWER-Clean Native Code 4
Because the PowerPC 603 microprocessor used in the Macintosh PowerBook Duo 2300c
computer does not support the POWER-only instructions, a new POWER-clean version
of the compiler is being used to compile the native code fragments.

Note
The term POWER-clean refers to code that is free of the POWER
instructions that would prevent it from running correctly on a
PowerPC 603 or 604 microprocessor. ◆

Here is a list of the POWER-clean native code fragments in the system software for the
Macintosh PowerBook Duo 2300c computer.

■ interface library

■ private interface library

■ native QuickDraw

■ MathLib

C H A P T E R 4

Software Features

System Software 31

■ Mixed Mode Manager

■ Code Fragment Manager

■ Font Dispatch

■ Memory Manager

■ standard text

■ the FMSwapFont function

■ Standard C Library

POWER Emulation 4
The first Power Macintosh computers included emulation for certain PowerPC 601
instructions that would otherwise cause an exception. The emulation code dealt with
memory reference instructions to handle alignment and data storage exceptions. It also
handled illegal instruction exceptions caused by some PowerPC instructions that were
not implemented in the PowerPC 601. In the Macintosh PowerBook Duo 2300c
computer, the emulation code has been expanded to include the POWER instructions
that are implemented on the PowerPC 601 but not on the PowerPC 603.

Note
Although the term POWER emulation is often used, a more appropriate
name for this feature is PowerPC 601 compatibility. Rather than
supporting the entire POWER architecture, the goal is to support those
features of the POWER architecture that are available to programs
running in user mode on the Power Macintosh computers that use the
PowerPC 601. ◆

POWER-Clean Code 4

Because the emulation of the POWER-only instructions degrades performance, Apple
Computer recommends that developers revise any applications that use those
instructions to conform with the PowerPC architecture. POWER emulation works, but
at a significant cost in performance; POWER-clean code is preferable.

Emulation and Exception Handling 4

When an exception occurs, the emulation code first checks to see whether the instruction
encoding is supported by emulation. If it is not, the code passes the original cause of
the exception (illegal instruction or privileged instruction) to the application as a native
exception.

If the instruction is supported by emulation, the code then checks a flag bit to see
whether emulation has been enabled. If emulation is not enabled at the time, the
emulator generates an illegal instruction exception.

C H A P T E R 4

Software Features

32 System Software

Code Fragments and Cache Coherency 4

Whereas the PowerPC 601 microprocessor has a single cache for both instructions and
data, the PowerPC 603 has separate instruction and data caches. As long as applications
deal with executable code by using the Code Fragment Manager, cache coherency is
maintained. Applications that bypass the Code Fragment Manager and generate
executable code in memory, and that do not use the proper cache synchronization
instructions or Code Fragment Manager calls, are likely to encounter problems when
running on the PowerPC 603.

IMPORTANT

The emulation software in the Macintosh PowerBook Duo 2300c
computer cannot make the separate caches in the PowerPC 603 behave
like the combined cache in the PowerPC 601. Applications that generate
executable code in memory must be modified to use the Code Fragment
Manager or maintain proper cache synchronization by other means. ▲

Limitations of PowerPC 601 Compatibility 4

The emulation code in the Macintosh PowerBook Duo 2300c computer allows programs
compiled for the PowerPC 601 to execute without halting on an exception whenever
they use a POWER-only feature. For most of those features, the emulation matches the
results that are obtained on a Power Macintosh computer with a PowerPC 601. However,
there are a few cases where the emulation is not an exact match; those cases are
summarized here.

■ MQ register. Emulation does not match the undefined state of this register after
multiply and divide instructions.

■ div and divo instructions. Emulation does not match undefined results after
an overflow.

■ Real-time clock registers. Emulation matches the 0.27 percent speed discrepancy of
the Power Macintosh models that use the PowerPC 601 microprocessor, but the values
of the low-order 7 bits are not 0.

■ POWER version of dec register. Emulation includes the POWER version, but
decrementing at a rate determined by the time base clock, not by the real-time clock.

■ Cache line compute size (clcs) instruction. Emulation returns values appropriate
for the type of PowerPC microprocessor.

■ Undefined SPR encodings. Emulation does not ignore SPR encodings higher than 32.

■ Invalid forms. Invalid combinations of register operands with certain instructions
may produce results that do not match those of the PowerPC 601.

■ Floating-Point Status And Control Register (FPSCR). The FPSCR in the
PowerPC 601 does not fully conform to the PowerPC architecture, but the newer
PowerPC processors do.

C H A P T E R 4

Software Features

System Software 33

QuickDraw Acceleration API 4
The QuickDraw acceleration API is the current accelerator interface for the Power PC
version of native QuickDraw. It allows a patch chaining mechanism for decisions on
categories of block-transfer operations, and also specifies the format and transport of the
data to the accelerator.

Display Manager 4
Until now, system software has used the NuBus -specific Slot Manager to get and set
information about display cards and drivers. New system software removes this explicit
software dependency on the architecture of the expansion bus. The Display Manager
provides a uniform API for display devices regardless of the implementation details of
the devices.

C H A P T E R 5

Power Manager Interface 5Figure 5-0
Listing 5-0
Table 5-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 5

Power Manager Interface

36

About the Power Manager Interface

This chapter describes the new application programming interface (API) to the Power
Manager control software in the Macintosh PowerBook Duo 2300c computer.

About the Power Manager Interface 5

Developers have written control panel software for previous Macintosh PowerBook
models to give the user more control over the power management settings than is
provided in the PowerBook control panel. Because that software reads and writes
directly to the Power Manager’s private data structures and parameter RAM, the
software needs to be updated any time Apple Computer makes a change to the internal
operation of the Power Manager.

System software for the Macintosh PowerBook Duo 2300c computer and for future
Macintosh PowerBook models includes an interface for program access to the Power
Manager’s functions, so it is no longer necessary for applications to deal directly with
the Power Manager’s data structures. The functions provide access to most of the Power
Manager’s parameters. Some functions will be reserved because of their overall effect on
the system. The interface is extensible; it will probably grow over time to acccommodate
new kinds of functions.

Things That May Change 5

By using the Power Manager interface, developers can isolate themselves from future
changes to the internal operation of the Power Manager software.

IMPORTANT

Apple Computer reserves the right to change the internal operation
of the Power Manager software. Developers should not make their
applications depend on the Power Manager’s internal data structures
or parameter RAM.

▲

As new PowerBook models appear, developers should not depend on the Power
Manager’s internal data structures staying the same. In particular, developers should
beware of the following assumptions regarding different PowerBook models:

■

assuming that timeout values such as the hard disk spindown time reside at the same
locations in parameter RAM

■

assuming that the power-cycling process works the same way or uses the same
parameters

■

assuming that direct commands to the Power Manager microcontroller are supported
on all models

C H A P T E R 5

Power Manager Interface

About the Power Manager Interface

37

Checking for Routines 5

Before calling any of the Power Manager’s interface functions, it’s always a good idea to
call the Gestalt Manager to see if the the routines are present on the computer. The
Gestalt Manager is described in

Inside Macintosh: Overview.

A new bit has been added to the

gestaltPowerMgrAttr

 selector:

#define gestaltPMgrDispatchExists 4

If that bit is set to 1, then the routines are present.

Because more functions may be added in the future, one of the new functions simply
returns the number of functions that are implemented. The following code fragment
determines both that the routines in general exist and that at least the hard disk
spindown function exists:

long pmgrAttributes;

Boolean routinesExist;

routinesExist = false;

if (! Gestalt(gestaltPowerMgrAttr, &pmgrAttributes))

if (pmgrAttributes & (1<<gestaltPMgrDispatchExists))

if (PMSelectorCount() >= 7)

routinesExist = true;

▲ W A R N I N G

If you call a function that is not implemented, the call to the public
Power Manager trap (if the trap exists) will return an error code, which
your program could misinterpret as data.

▲

Power Manager Interface Functions 5

This section tells you how to call the interface functions for the Power Manager software.

The interface functions are listed here in the order of their selector values, as shown
in Table 5-1

.

Assembly-language note

All the functions share a single trap,

_PowerMgrDispatch

 ($A09E).
The trap is register based; parameters are passed in register D0 and
sometimes also in A0. A selector value passed in the low word of
register D0 determines which function is executed.

◆

C H A P T E R 5

Power Manager Interface

38

About the Power Manager Interface

Table 5-1

Interface functions and their selector values

Function name

Selector value

Decimal Hexadecimal

PMSelectorCount

0 $00

PMFeatures

1 $01

GetSleepTimeout

2 $02

SetSleepTimeout

3 $03

GetHardDiskTimeout

4 $04

SetHardDiskTimeout

5 $05

HardDiskPowered

6 $06

SpinDownHardDisk

7 $07

IsSpindownDisabled

8 $08

SetSpindownDisable

9 $09

HardDiskQInstall

10 $0A

HardDiskQRemove

11 $0B

GetScaledBatteryInfo

12 $0C

AutoSleepControl

13 $0D

GetIntModemInfo

14 $0E

SetIntModemState

15 $0F

MaximumProcessorSpeed

16 $10

CurrentProcessorSpeed

17 $11

FullProcessorSpeed

18 $12

SetProcessorSpeed

19 $13

GetSCSIDiskModeAddress

20 $14

SetSCSIDiskModeAddress

21 $15

GetWakeupTimer

22 $16

SetWakeupTimer

23 $17

IsProcessorCyclingEnabled

24 $18

EnableProcessorCycling

25 $19

BatteryCount

26 $1A

GetBatteryVoltage

27 $1B

GetBatteryTimes

28 $1C

C H A P T E R 5

Power Manager Interface

About the Power Manager Interface

39

PMSelectorCount 5

You can use the

PMSelectorCount

 function to determine which functions are
implemented.

short PMSelectorCount();

DESCRIPTION

The

PMSelectorCount

 function returns the number of function selectors present. Any
function whose selector value is greater than the returned value is not implemented.

ASSEMBLY-LANGUAGE INFORMATION

The trap is

_PowerMgrDispatch

 ($A09E). The selector value for

PMSelectorCount

 is
0 ($00) in the low word of register D0. The number of selectors is returned in the low
word of register D0.

PMFeatures 5

You can use the

PMFeatures

 function to find out which features of the Power Manager
are implemented.

unsigned long PMFeatures();

DESCRIPTION

The

PMFeatures

 function returns a 32-bit field describing hardware and software
features associated with the Power Manager on a particular machine. If a bit value is 1,
that feature is supported or available; if the bit value is 0, that feature is not available.
Unused bits are reserved by Apple for future expansion.

Field descriptions

Bit name
Bit
number Description

hasWakeupTimer

0 The wake-up timer is supported.

hasSharedModemPort

1 The hardware forces exclusive access to either
SCC port A or the internal modem. (If this bit
is not set, then typically port A and the
internal modem may be used simultaneously
by means of the Communications Toolbox.)

hasProcessorCycling

2 Processor cycling is supported; that is, when
the computer is idle, the processor power is
cycled to reduce the power usage.

continued

C H A P T E R 5

Power Manager Interface

40

About the Power Manager Interface

ASSEMBLY-LANGUAGE INFORMATION

The trap is

_PowerMgrDispatch

 ($A09E). The selector value for

PMFeatures

 is 1
($01) in the low word of register D0. The 32-bit field of supported features is returned in
register D0.

GetSleepTimeout 5

You can use the GetSleepTimeout function to find out how long the computer will
wait before going to sleep.

unsigned char GetSleepTimeout();

DESCRIPTION

The GetSleepTimeout function returns the amount of time that the computer will wait
after the last user activity before going to sleep. The value of GetSleepTimeout is
expressed as the number of 15-second intervals that the computer will wait before going
to sleep.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetSleepTimeout is
2 ($02) in the low word of register D0. The sleep time-out value is returned in the low
word of register D0.

mustProcessorCycle 3 The processor cycling feature must be left on
(turn it off at your own risk).

hasReducedSpeed 4 Processor can be started up at a reduced
speed in order to extend battery life.

dynamicSpeedChange 5 Processor speed can be switched dynamically
between its full and reduced speed at any
time, rather than only at startup time.

hasSCSIDiskMode 6 The SCSI disk mode is supported.

canGetBatteryTime 7 The computer can provide an estimate of the
battery time remaining.

canWakeupOnRing 8 The computer supports waking up from the
sleep state when an internal modem is
installed and the modem detects a ring.

Bit name
Bit
number Description

C H A P T E R 5

Power Manager Interface

About the Power Manager Interface 41

SetSleepTimeout 5

You can use the SetSleepTimeout function to set how long the computer will wait
before going to sleep.

void SetSleepTimeout(unsigned char timeout);

DESCRIPTION

The SetSleepTimeout function sets the amount of time the computer will wait after
the last user activity before going to sleep. The value of timeout is expressed as the
number of 15-second intervals that make up the desired time. If a value of 0 is passed
in, the function sets the time-out value to the default value (currently equivalent to
8 minutes).

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetSleepTimeout is
3 ($03) in the low word of register D0. The time-out value to set is passed in the high
word of register D0.

GetHardDiskTimeout 5

You can use the GetHardDiskTimeout function to find out how long the computer will
wait before turning off power to the internal hard disk.

unsigned char GetHardDiskTimeout();

DESCRIPTION

The GetHardDiskTimeout function returns the amount of time the computer will wait
after the last use of a SCSI device before turning off power to the internal hard disk. The
value of GetHardDiskTimeout is expressed as the number of 15-second intervals the
computer will wait before turning off power to the internal hard disk.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetHardDiskTimeout
is 4 ($04) in the low word of register D0. The hard disk time-out value is returned in the
low word of register D0.

C H A P T E R 5

Power Manager Interface

42 About the Power Manager Interface

SetHardDiskTimeout 5

You can use the SetHardDiskTimeout function to set how long the computer will wait
before turning off power to the internal hard disk.

void SetHardDiskTimeout(unsigned char timeout);

DESCRIPTION

The SetHardDiskTimeout function sets how long the computer will wait after the last
use of a SCSI device before turning off power to the internal hard disk. The value of
SetHardDiskTimeout is expressed as the number of 15-second intervals the computer
will wait before turning off power to the internal hard disk. If a value of 0 is passed in,
the function sets the timeout value to the default value (currently equivalent to
4 minutes).

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetHardDiskTimeout
is 5 ($05) in the low word of register D0. The hard disk timeout value to set is passed in
the high word of register D0.

HardDiskPowered 5

You can use the HardDiskPowered function to find out whether the internal hard
disk is on.

Boolean HardDiskPowered();

DESCRIPTION

The HardDiskPowered function returns a Boolean value indicating whether the
internal hard disk is powered up. A value of true means that the hard disk is on, and
a value of false means that the hard disk is off.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for HardDiskPowered is
6 ($06) in the low word of register D0. The Boolean result is returned in the low word of
register D0.

C H A P T E R 5

Power Manager Interface

About the Power Manager Interface 43

SpinDownHardDisk 5

You can use the SpinDownHardDisk function to force the hard disk to spin down.

void SpinDownHardDisk();

DESCRIPTION

The SpinDownHardDisk function immediately forces the hard disk to spin down and
power off if it was previously spinning. Calling SpinDownHardDisk will not spin
down the hard disk if spindown is disabled by calling SetSpindownDisable (defined
later in this section).

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SpinDownHardDisk
is 7 ($07) in the low word of register D0.

IsSpindownDisabled 5

You can use the IsSpindownDisabled function to find out whether hard disk
spindown is enabled.

Boolean IsSpindownDisabled();

DESCRIPTION

The IsSpindownDisabled function returns the Boolean value true if hard disk
spindown is disabled, or false if spindown is enabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for IsSpindownDisabled
is 8 ($08) in the low word of register D0. The Boolean result is passed in the low byte of
register D0.

C H A P T E R 5

Power Manager Interface

44 About the Power Manager Interface

SetSpindownDisable 5

You can use the SetSpindownDisable function to disable hard disk spindown.

void SetSpindownDisable(Boolean setDisable);

DESCRIPTION

The SetSpindownDisable function enables or disables hard disk spindown,
depending on the value of setDisable. If the value of setDisable is true, hard
disk spindown will be disabled; if the value is false, spindown will be enabled.

Disabling hard disk spindown affects the SpinDownHardDisk function, defined earlier,
as well as the normal spindown that occurs after a period of hard disk inactivity.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetSpindownDisable
is 9 ($09) in the low word of register D0. The Boolean value to set is passed in the high
word of register D0.

HardDiskQInstall 5

You can use the HardDiskQInstall function to notify your software when power to
the internal hard disk is about to be turned off.

OSErr HardDiskQInstall(HDQueueElement *theElement);

DESCRIPTION

The HardDiskQInstall function installs an element into the hard disk power-down
queue to provide notification to your software when the internal hard disk is about to be
powered off. For example, this feature might be used by the driver for an external
battery-powered hard disk. When power to the internal hard disk is turned off, the
external hard disk could be turned off as well.

The structure of HDQueueElement is as follows.

typedef pascal void (*HDSpindownProc)(HDQueueElement *theElement);

struct HDQueueElement {

Ptr hdQLink; /* pointer to next queue element */

short hdQType; /* queue element type (must be HDQType) */

short hdFlags; /* miscellaneous flags (reserved) */

HDSpindownProc hdProc; /* pointer to routine to call */

long hdUser; /* user-defined (variable storage, etc.) */

} HDQueueElement;

C H A P T E R 5

Power Manager Interface

About the Power Manager Interface 45

When power to the internal hard disk is about to be turned off, the software calls the
function pointed to by the hdProc field so that it can do any special processing. The
software passes the function a pointer to its queue element so that, for example, the
function can reference its variables.

Before calling HardDiskQInstall, the calling program must set the hdQType field to

#define HDPwrQType 'HD' /* queue element type */

or the queue element won’t be added to the queue and HardDiskQInstall will return
an error.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for HardDiskQInstall
is 10 ($0A) in the low word of register D0. The pointer to the HDQueue element is passed
in register A0. The result code is returned in the low word of register D0.

HardDiskQRemove 5

You can use the HardDiskQRemove function to discontinue notifying your software
when power to the internal hard disk is about to be turned off.

OSErr HardDiskQRemove(HDQueueElement *theElement);

DESCRIPTION

The HardDiskQRemove function removes a queue element installed by
HardDiskQInstall. If the hdQType field of the queue element is not set to
HDPwrQType, HardDiskQRemove simply returns an error.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for HardDiskQRemove is
11 ($0B) in the low word of register D0. The pointer to the HDQueue element is passed in
register A0. The result code is returned in the low word of register D0.

C H A P T E R 5

Power Manager Interface

46 About the Power Manager Interface

GetScaledBatteryInfo 5

You can use the GetScaledBatteryInfo function to find out the condition of the
battery or batteries.

void GetScaledBatteryInfo(short whichBattery, BatteryInfo *theInfo);

DESCRIPTION

The GetScaledBatteryInfo function provides a generic means of returning
information about the battery or batteries in the system. Instead of returning a voltage
value, the function returns the battery level as a fraction of the total possible voltage.

Note
New battery technologies such as NiCad (nickel cadmium) and nickel
metal hydride (NiMH) have replaced the sealed lead acid batteries of
the original Macintosh Portable. The algorithm for determining battery
voltage that is documented in the Power Manager chapter of Inside
Macintosh, Volume VI, is no longer correct for all PowerBook models. ◆

The value of whichBattery determines whether GetScaledBatteryInfo returns
information about a particular battery or about the total battery level. The value of
GetScaledBatteryInfo should be in the range of 0 to BatteryCount(). If the value
of whichBattery is 0, GetScaledBatteryInfo returns a summation of all the
batteries, that is, the effective battery level of the whole system. If the value of
whichBattery is out of range, or the selected battery is not installed,
GetScaledBatteryInfo returns a result of 0 in all fields. Here is a summary of the
effects of the whichBattery parameter:

The GetScaledBatteryInfo function returns information about the battery in the
following data structure:

typedef struct BatteryInfo {

unsigned char flags; /* misc flags (see below) */

unsigned char warningLevel; /* scaled warning level (0-255) */

char reserved; /* reserved for internal use */

unsigned char batteryLevel; /* scaled battery level (0-255) */

} BatteryInfo;

Value of whichBattery Information returned

0 Total battery level for all batteries

From 1 to BatteryCount() Battery level for the selected battery

Less than 0 or greater
than BatteryCount 0 in all fields of theInfo

C H A P T E R 5

Power Manager Interface

About the Power Manager Interface 47

The flags character contains several bits that describe the battery and charger state. If a
bit value is 1, that feature is available or is operating; if the bit value is 0, that feature is
not operating. Unused bits are reserved by Apple for future expansion.

Field descriptions

The value of warningLevel is the battery level at which the first low battery warning
message will appear. The function returns a value of 0 in some cases when it’s not
appropriate to return the warning level.

The value of batteryLevel is the current level of the battery. A value of 0 represents
the voltage at which the Power Manager will force the computer into sleep mode; a
value of 255 represents the highest possible voltage.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
GetScaledBatteryInfo is 12 ($0C) in the low word of register D0. The
BatteryInfo data are returned in the low word of register D0 as follows:

AutoSleepControl 5

You can use the AutoSleepControl function to turn the automatic sleep feature on
and off.

void AutoSleepControl(Boolean enableSleep);

DESCRIPTION

The AutoSleepControl function enables or disables the automatic sleep feature that
causes the computer to go into sleep mode after a preset period of time. When
enableSleep is set to true, the automatic sleep feature is enabled (this is the normal
state). When enableSleep is set to false, the computer will not go into the sleep
mode unless it is forced to either by some user action—for example, by the user’s
selecting Sleep from the Special menu of the Finder—or in a low battery situation.

Bit name
Bit
number Description

batteryInstalled 7 A battery is installed.

batteryCharging 6 The battery is charging.

chargerConnected 5 The charger is connected.

Bits 31–24 Flags

Bits 23–16 Warning level

Bits 15–8 Reserved

Bits 7–0 Battery level

C H A P T E R 5

Power Manager Interface

48 About the Power Manager Interface

IMPORTANT

Calling AutoSleepControl multiple times with enableSleep set to
false increments the auto sleep disable level so that it requires the
same number of calls to AutoSleepControl with enableSleep set to
true to reenable the auto sleep feature. If more than one piece of
software makes this call, auto sleep may not be reenabled when you
think it should be. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for AutoSleepControl
is 13 ($0D) in the low word of register D0. The Boolean value is passed in the high word
of register D0.

GetIntModemInfo 5

You can use the GetIntModemInfo function to find out information about the internal
modem.

unsigned long GetIntModemInfo();

DESCRIPTION

The GetIntModemInfo function returns a 32-bit field containing information that
describes the features and state of the internal modem. It can be called whether or
not a modem is installed and will return the correct information.

If a bit is set, that feature or state is supported or selected; if the bit is cleared, that feature
is not supported or selected. Undefined bits are reserved by Apple for future expansion.

Bit name
Bit
number Description

hasInternalModem 0 An internal modem is installed.

intModemRingDetect 1 The modem has detected a ring on the
telephone line.

intModemOffHook 2 The internal modem has taken the telephone
line off hook (that is, you can hear the dial
tone or modem carrier).

intModemRingWakeEnb 3 The computer will come out of sleep mode if
the modem detects a ring on the telephone
line and the computer supports this feature
(see the canWakeupOnRing bit in
PMFeatures).

continued

C H A P T E R 5

Power Manager Interface

About the Power Manager Interface 49

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetIntModemInfo is
14 ($0E) in the low word of register D0. The bit field to set is passed in the high word of
register D0.

SetIntModemState 5

You can use the SetIntModemState function to set some parts of the state of the
internal modem.

void SetIntModemState(short theState);

DESCRIPTION

The SetIntModemState function configures some of the internal modem’s state
information. Currently the only items that can be changed are the internal/external
modem selection and the wakeup-on-ring feature.

To change an item of state information, the calling program sets the corresponding bit in
theState. In other words, to change the internal/external modem setting, set bit 4 of
theState to 1. To select the internal modem, bit 15 should be set to 0; to select the
external modem, bit 15 should be set to 1. Using this method, the bits may be set or
cleared independently, but they may not be set to different states at the same time.

extModemSelected 4 The external modem is selected (if this bit is
set, then the modem port will be connected
to port A of the SCC; if the modem port is
not shared by the internal modem and the
SCC, then this bit can be ignored).

Bits 15–31 contain the modem type, which will take on
one of the following values:

–1 Modem is installed but type not recognized.

0 No modem is installed.

1 Modem is a serial modem.

2 Modem is a PowerBook Duo–style
Express Modem.

3 Modem is a PowerBook 160/180–style
Express Modem.

Bit name
Bit
number Description

C H A P T E R 5

Power Manager Interface

50 About the Power Manager Interface

Note
In some PowerBook computers, there is a hardware switch to connect
either port A of the SCC or the internal modem to the modem port. The
two are physically separated, but software emulates the serial port
interface for those applications that don’t use the Communications
Toolbox. You can check the hasSharedModemPort bit returned by
PMFeatures to determine which way the computer is set up. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetIntModemState
is 15 ($0F) in the low word of register D0. The bit field is returned in register D0.

MaximumProcessorSpeed 5

You can use the MaximumProcessorSpeed function to find out the maximum speed of
the computer’s microprocessor.

short MaximumProcessorSpeed();

DESCRIPTION

The MaximumProcessorSpeed function returns the maximum clock speed of the
computer’s microprocessor, in MHz.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
MaximumProcessorSpeed is 16 ($10) in the low word of register D0. The
processor speed value is returned in the low word of register D0.

CurrentProcessorSpeed 5

You can use the CurrentProcessorSpeed function to find out the current clock speed
of the microprocessor.

short CurrentProcessorSpeed();

DESCRIPTION

The CurrentProcessorSpeed function returns the current clock speed of the
computer’s microprocessor, in MHz. The value returned is different from the maximum
processor speed if the computer has been configured to run with a reduced processor
speed to conserve power.

C H A P T E R 5

Power Manager Interface

About the Power Manager Interface 51

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
CurrentProcessorSpeed is 17 ($11) in the low word of register D0. The processor
speed value is returned in the low word of register D0.

FullProcessorSpeed 5

You can use the FullProcessorSpeed function to find out whether the computer will
run at full speed the next time it restarts.

Boolean FullProcessorSpeed();

DESCRIPTION

The FullProcessorSpeed function returns a Boolean value of true if, on the next
restart, the computer will start up at its maximum processor speed; it returns false if
the computer will start up at its reduced processor speed.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for FullProcessorSpeed
is 18 ($12) in the low word of register D0. The Boolean result is returned in the low byte
of register D0.

SetProcessorSpeed 5

You can use the SetProcessorSpeed function to set the clock speed the
microprocessor will use the next time the computer is restarted.

Boolean SetProcessorSpeed(Boolean fullSpeed);

DESCRIPTION

The SetProcessorSpeed function sets the processor speed that the computer will use
the next time it is restarted. If the value of fullSpeed is set to true, the processor will
start up at its full speed (the speed returned by MaximumProcessorSpeed, described
on page 50). If the value of fullSpeed is set to false, the processor will start up at its
reduced speed.

For PowerBook models that support changing the processor speed dynamically, the
processor speed will also be changed. If the speed is actually changed,
SetProcessorSpeed will return true; if the speed isn’t changed, it will return false.

C H A P T E R 5

Power Manager Interface

52 About the Power Manager Interface

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetProcessorSpeed
is 19 ($13) in the low word of register D0. The Boolean value to set is passed in the high
word of register D0. The Boolean result is returned in register D0.

GetSCSIDiskModeAddress 5

You can use the GetSCSIDiskModeAddress function to find out the SCSI ID the
computer uses in SCSI disk mode.

short GetSCSIDiskModeAddress();

DESCRIPTION

The GetSCSIDiskModeAddress function returns the SCSI ID that the computer uses
when it is started up in SCSI disk mode. The returned value is in the range 1 to 6.

When the computer is in SCSI disk mode, the computer appears as a hard disk to
another computer.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
GetSCSIDiskModeAddress is 20 ($14) in the low word of register D0.
The SCSI ID is returned in the low word of register D0.

SetSCSIDiskModeAddress 5

You can use the SetSCSIDiskModeAddress function to set the SCSI ID for the
computer to use in SCSI disk mode.

void SetSCSIDiskModeAddress(short scsiAddress);

DESCRIPTION

The SetSCSIDiskModeAddress function sets the SCSI ID that the computer will use if
it is started up in SCSI disk mode.

The value of scsiAddress must be in the range of 1 to 6. If any other value is given, the
software sets the SCSI ID for SCSI disk mode to 2.

C H A P T E R 5

Power Manager Interface

About the Power Manager Interface 53

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
SetSCSIDiskModeAddress is 21 ($15) in the low word of register D0. The
SCSI ID to set is passed in the high word of register D0.

GetWakeupTimer 5

You can use the GetWakeupTimer function to find out when the computer will wake up
from sleep mode.

void GetWakeupTimer(WakeupTime *theTime);

DESCRIPTION

The GetWakeupTimer function returns the time when the computer will wake up from
sleep mode.

If the PowerBook model doesn’t support the wake-up timer, GetWakeupTimer returns
a value of 0. The time and the enable flag are returned in the following structure:

typedef struct WakeupTime {

unsigned long wakeTime; /* wake-up time (same format as the time) */

char wakeEnabled; /* 1 = enable timer, 0 = disable timer */

} WakeupTime;

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetWakeupTimer
is 22 ($16) in the low word of register D0. The pointer to WakeupTime is passed in
register A0.

SetWakeupTimer 5

You can use the SetWakeupTimer function to set the time when the computer will
wake up from sleep mode.

void SetWakeupTimer(WakeupTime *theTime);

DESCRIPTION

The SetWakeupTimer function sets the time when the computer will wake up from
sleep mode and enables or disables the timer. On a PowerBook model that doesn’t
support the wakeup timer, SetWakeupTimer does nothing.

C H A P T E R 5

Power Manager Interface

54 About the Power Manager Interface

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetWakeupTimer
is 23 ($17) in the low word of register D0. The pointer to WakeupTime is passed in
register A0.

IsProcessorCyclingEnabled 5

You can use the IsProcessorCyclingEnabled function to find out whether
processor cycling is enabled.

Boolean IsProcessorCyclingEnabled();

DESCRIPTION

The IsProcessorCyclingEnabled function returns a Boolean value of true if
processor cycling is currently enabled, or false if it is disabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
IsProcessorCyclingEnabled is 24 ($18) in the low word of register D0.
The Boolean result is returned in register D0.

EnableProcessorCycling 5

You can use the EnableProcessorCycling function to turn the processor cycling
feature on and off.

void EnableProcessorCycling(Boolean enable);

DESCRIPTION

The EnableProcessorCycling function enables processor cycling if a value of true
is passed in, and disables it if false is passed.

▲ W A R N I N G

You should follow the advice of the mustProcessorCycle bit in the
feature flags when turning processor cycling off. Turning processor
cycling off when it’s not recommended can result in hardware failures
due to overheating. ▲

C H A P T E R 5

Power Manager Interface

About the Power Manager Interface 55

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for
EnableProcessorCycling is 25 ($19) in the low word of register D0. The Boolean
value to set is passed in the high word of register D0.

BatteryCount 5

You can use the BatteryCount function to find out how many batteries the
computer supports.

short BatteryCount();

DESCRIPTION

The BatteryCount function returns the number of batteries supported internally by
the computer. The return value of BatteryCount may not be the same as the number of
batteries currently installed.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for BatteryCount is 26
($1A) in the low word of register D0. The number of batteries supported is returned in
the low word of register D0.

GetBatteryVoltage 5

You can use the GetBatteryVoltage function to find out the battery voltage.

Fixed GetBatteryVoltage(short whichBattery);

DESCRIPTION

The GetBatteryVoltage function returns the battery voltage as a fixed-point number.

The value of whichBattery should be in the range 0 to BatteryCount()–1. If the
value of whichBattery is out of range, or the selected battery is not installed,
GetBatteryVoltage will return a result of 0.0 volts.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetBatteryVoltage
is 27 ($1B) in the low word of register D0. The battery number is passed in the high word
of register D0. The 32-bit value of the battery voltage is returned in register D0.

C H A P T E R 5

Power Manager Interface

56 About the Power Manager Interface

GetBatteryTimes 5

You can use the GetBatteryTimes function to find out about how much battery
time remains.

void GetBatteryTimes (short whichBattery, BatteryTimeRec *theTimes);

DESCRIPTION

The GetBatteryTimes function returns information about the time remaining on the
computer’s battery or batteries. The information returned has the following data
structure:

typedef struct BatteryTimeRec {

unsigned long expectedBatteryTime; /* estimated time remaining */

unsigned long minimumBatteryTime; /* minimum time remaining */

unsigned long maximumBatteryTime; /* maximum time remaining */

unsigned long timeUntilCharged; /* time until full charge */

} BatteryTimeRec;

The time values are in seconds. The value of expectedBatteryTime is the estimated
time remaining based on current usage patterns. The values of minimumBatteryTime
and maximumBatteryTime are worst-case and best-case estimates, respectively. The
value of timeUntilCharged is the time that remains until the battery or batteries are
fully charged.

The value of whichBattery determines whether GetBatteryTimes returns the time
information about a particular battery or the total time for all batteries. The value of
GetScaledBatteryInfo should be in the range of 0 to BatteryCount(). If the value
of whichBattery is 0, GetBatteryTimes returns a total time for all the batteries, that
is, the effective battery time for the whole system. If the value of whichBattery is out
of range, or the selected battery is not installed, GetBatteryTimes returns a result of 0
in all fields. Here is a summary of the effects of the whichBattery parameter:

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetBatteryTimes is
28 ($1C) in the low word of register D0. The pointer to BatteryTimeRec is passed in
register A0.

Value of whichBattery Information returned

0 Total battery time for all batteries

From 1 to BatteryCount() Battery time for the selected battery

Less than 0 or greater than
BatteryCount 0 in all fields of theTimes

C H A P T E R 5

Power Manager Interface

About the Power Manager Interface 57

Header File for Power Manager Dispatch 5
Here is a sample header file for access to the Power Manager.

/**

file: PowerMgrDispatch.h

contains: header file for access to the Power Manager

Copyright 1992-1993 by Apple Computer, Inc. All rights reserved.

**/

#ifndef __PowerMgrDispatch__

#define __PowerMgrDispatch__

#ifndef __TYPES__

#include <Types.h>

#endif

#ifndef gestaltPMgrDispatchExists

#define gestaltPMgrDispatchExists 4 /* gestaltPowerMgrAttr bit:

 1=PowerMgrDispatch exists */

#endif

/* bits in bitfield returned by PMFeatures */

#define hasWakeupTimer 0 /* 1=wakeup timer is supported */

#define hasSharedModemPort 1 /* 1=modem port shared by SCC and internal modem */

#define hasProcessorCycling 2 /* 1=processor cycling is supported */

#define mustProcessorCycle 3 /* 1=processor cycling should not be turned off */

#define hasReducedSpeed 4 /* 1=processor can be started up at reduced speed */

#define dynamicSpeedChange 5 /* 1=processor speed can be switched dynamically */

#define hasSCSIDiskMode 6 /* 1=SCSI disk mode is supported */

#define canGetBatteryTime 7 /* 1=battery time can be calculated */

#define canWakeupOnRing 8 /* 1=can wake up when the modem detects a ring */

C H A P T E R 5

Power Manager Interface

58 About the Power Manager Interface

/* bits in bitfield returned by GetIntModemInfo and set by SetIntModemState */

#define hasInternalModem 0 /* 1=internal modem installed */

#define intModemRingDetect 1 /* 1=internal modem has detected a ring */

#define intModemOffHook 2 /* 1=internal modem is off hook */

#define intModemRingWakeEnb3 /* 1=wake up on ring is enabled */

#define extModemSelected 4 /* 1=external modem selected */

#define modemSetBit 15 /* 1=set bit, 0=clear bit (SetIntModemState) */

/* information returned by GetScaledBatteryInfo */

struct BatteryInfo {

unsigned charflags; /* misc flags (see below) */

unsigned charwarningLevel; /* scaled warning level (0-255) */

char reserved; /* reserved for internal use */

unsigned charbatteryLevel; /* scaled battery level (0-255) */

};

typedef struct BatteryInfo BatteryInfo;

/* bits in BatteryInfo.flags */

#define batteryInstalled 7 /* 1=battery is currently connected */

#define batteryCharging 6 /* 1=battery is being charged */

#define chargerConnected 5 /* 1=charger is connected to the PowerBook */

/* (this doesn't mean the charger is plugged in) */

/* hard disk spindown notification queue element */

typedef struct HDQueueElement HDQueueElement;

C H A P T E R 5

Power Manager Interface

About the Power Manager Interface 59

typedef pascal void (*HDSpindownProc)(HDQueueElement *theElement);

struct HDQueueElement {

Ptr hdQLink; /* pointer to next queue element */

short hdQType; /* queue element type (must be HDQType) */

short hdFlags; /* miscellaneous flags */

HDSpindownProc hdProc; /* pointer to routine to call */

long hdUser; /* user defined (variable storage, etc.) */

};

#define HDPwrQType'HD' /* queue element type */

/* wakeup time record */

typedef struct WakeupTime {

unsigned long wakeTime; /* wakeup time (same format as current time) */

char wakeEnabled; /* 1=enable wakeup timer, 0=disable wakeup timer */

} WakeupTime;

/* battery time information (in seconds) */

typedef struct BatteryTimeRec {

unsigned long expectedBatteryTime; /* estimated battery time remaining */

unsigned long minimumBatteryTime; /* minimum battery time remaining */

unsigned long maximumBatteryTime; /* maximum battery time remaining */

unsigned long timeUntilCharged; /* time until battery is fully charged */

} BatteryTimeRec;

#ifdef __cplusplus

extern "C" {

#endif

C H A P T E R 5

Power Manager Interface

60 About the Power Manager Interface

#pragma parameter __D0 PMSelectorCount(__D0)

short PMSelectorCount()

= {0x7000, 0xA09E};

#pragma parameter __D0 PMFeatures

unsigned long PMFeatures()

= {0x7001, 0xA09E};

#pragma parameter __D0 GetSleepTimeout

unsigned char GetSleepTimeout()

= {0x7002, 0xA09E};

#pragma parameter __D0 SetSleepTimeout(__D0)

void SetSleepTimeout(unsigned char timeout)

= {0x4840, 0x303C, 0x0003, 0xA09E};

#pragma parameter __D0 GetHardDiskTimeout

unsigned char GetHardDiskTimeout()

= {0x7004, 0xA09E};

#pragma parameter __D0 SetHardDiskTimeout(__D0)

void SetHardDiskTimeout(unsigned char timeout)

= {0x4840, 0x303C, 0x0005, 0xA09E};

#pragma parameter __D0 HardDiskPowered

Boolean HardDiskPowered()

= {0x7006, 0xA09E};

C H A P T E R 5

Power Manager Interface

About the Power Manager Interface 61

#pragma parameter __D0 SpinDownHardDisk

void SpinDownHardDisk()

= {0x7007, 0xA09E};

#pragma parameter __D0 IsSpindownDisabled

Boolean IsSpindownDisabled()

= {0x7008, 0xA09E};

#pragma parameter __D0 SetSpindownDisable(__D0)

void SetSpindownDisable(Boolean setDisable)

= {0x4840, 0x303C, 0x0009, 0xA09E};

#pragma parameter __D0 HardDiskQInstall(__A0)

OSErr HardDiskQInstall(HDQueueElement *theElement)

= {0x700A, 0xA09E};

#pragma parameter __D0 HardDiskQRemove(__A0)

OSErr HardDiskQRemove(HDQueueElement *theElement)

= {0x700B, 0xA09E};

#pragma parameter __D0 GetScaledBatteryInfo(__D0,__A0)

void GetScaledBatteryInfo(short whichBattery, BatteryInfo *theInfo)

= {0x4840, 0x303C, 0x000C, 0xA09E, 0x2080};

#pragma parameter __D0 AutoSleepControl(__D0)

void AutoSleepControl(Boolean enableSleep)

= {0x4840, 0x303C, 0x000D, 0xA09E};

C H A P T E R 5

Power Manager Interface

62 About the Power Manager Interface

#pragma parameter __D0 GetIntModemInfo(__D0)

unsigned long GetIntModemInfo()

= {0x700E, 0xA09E};

#pragma parameter __D0 SetIntModemState(__D0)

void SetIntModemState(short theState)

= {0x4840, 0x303C, 0x000F, 0xA09E};

#pragma parameter __D0 MaximumProcessorSpeed

short MaximumProcessorSpeed()

= {0x7010, 0xA09E};

#pragma parameter __D0 CurrentProcessorSpeed

short CurrentProcessorSpeed()

= {0x7011, 0xA09E};

#pragma parameter __D0 FullProcessorSpeed

Boolean FullProcessorSpeed()

= {0x7012, 0xA09E};

#pragma parameter __D0 SetProcessorSpeed(__D0)

Boolean SetProcessorSpeed(Boolean fullSpeed)

= {0x4840, 0x303C, 0x0013, 0xA09E};

#pragma parameter __D0 GetSCSIDiskModeAddress

short GetSCSIDiskModeAddress()

= {0x7014, 0xA09E};

C H A P T E R 5

Power Manager Interface

About the Power Manager Interface 63

#pragma parameter __D0 SetSCSIDiskModeAddress(__D0)

void SetSCSIDiskModeAddress(short scsiAddress)

= {0x4840, 0x303C, 0x0015, 0xA09E};

#pragma parameter __D0 GetWakeupTimer(__A0)

void GetWakeupTimer(WakeupTime *theTime)

= {0x7016, 0xA09E};

#pragma parameter __D0 SetWakeupTimer(__A0)

void SetWakeupTimer(WakeupTime *theTime)

= {0x7017, 0xA09E};

#pragma parameter __D0 IsProcessorCyclingEnabled

Boolean IsProcessorCyclingEnabled()

= {0x7018, 0xA09E};

#pragma parameter __D0 EnableProcessorCycling(__D0)

void EnableProcessorCycling(Boolean enable)

= {0x4840, 0x303C, 0x0019, 0xA09E};

#pragma parameter __D0 BatteryCount

short BatteryCount()

= {0x701A, 0xA09E};

#pragma parameter __D0 GetBatteryVoltage(__D0)

Fixed GetBatteryVoltage(short whichBattery)

= {0x4840, 0x303C, 0x001B, 0xA09E};

C H A P T E R 5

Power Manager Interface

64 About the Power Manager Interface

#pragma parameter __D0 GetBatteryTimes(__D0,__A0)

void GetBatteryTimes(BatteryTimeRec *theTimes)

= {0x4840, 0x303C, 0x001C, 0xA09E};

#ifdef __cplusplus

}

#endif

#endif

C H A P T E R 6

Large Volume Support 6Figure 6-0
Listing 6-0
Table 6-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 6

Large Volume Support

66

Overview of the Large Volume File System

This chapter describes the large volume file system for the Macintosh PowerBook Duo
2300c computer. The large volume file system is a version of the hierarchical file system
(HFS) that has been modified to support volume sizes larger than the current 4 GB limit.
It incorporates only the changes required to achieve that goal.

Overview of the Large Volume File System 6

The large volume file system includes

■

modifications to the HFS ROM code, Disk First Aid, and Disk Init

■

a new extended API that allows reporting of volume size information beyond
the current 4 GB limit

■

new device drivers and changes to the Device Manager API to support devices
that are greater than 4 GB

■

a new version of HDSC Setup that supports large volumes and chainable
drivers (chainable drivers are needed to support booting large volumes on
earlier Macintosh models).

API Changes 6

The system software on the Macintosh PowerBook Duo 2300c computer allows all
current applications to work without modifications. Unmodified applications that call
the file system still receive incorrect values for large volume sizes. The Finder and other
utility programs that need to know the actual size of a volume have been modified to use
the new extended

PBXGetVolInfo

 function to obtain the correct value.

The existing low-level driver interface does not support I/O to a device with a range of
addresses greater than 4 GB because the positioning offset (in bytes) for a read or write
operation is a 32-bit value. To correct this problem, a new extended I/O parameter block
record has been defined. This extended parameter block has a 64-bit positioning offset.
The new parameter block and extended

PBXGetVolInfo

 function are described in “The
API Modifications” beginning on page 67.

Allocation Block Size 6

The format of HFS volumes has not changed. What has changed is the way the HFS
software handles the allocation block size. Existing HFS code treats the allocation block
as a 16-bit integer. The large volume file system uses the full 32 bits of the allocation
block size parameter. In addition, any software that deals directly with the allocation
block size from the volume control block must now treat it as a true 32-bit value.

Even for the larger volume sizes, the number of allocation blocks is still defined by a
16-bit integer. As the volume size increases, the size of the allocation block also increases.
For a 2 GB volume, the allocation block size is 32 KB and therefore the smallest file on
that disk will occupy at least 32 KB of disk space. This inefficient use of disk space is not
addressed by the large volume file system.

C H A P T E R 6

Large Volume Support

The API Modifications

67

The maximum number of files will continue to be less than 65,000. This limit is directly
related to the fixed number of allocation blocks.

File Size Limits 6

The HFS has a maximum file size of 2 GB. The large volume file system does not remove
that limit, because doing so would require a more extensive change to the current API
and would incur more compatibility problems.

Compatibility Requirements 6

The large volume file system requires at least a 68020 microprocessor or a Power
Macintosh model that emulates it. In addition, the file system requires a Macintosh IIci
or more recent model. On a computer that does not meet both those requirements, the
large volume file system driver will not load.

The large volume file system requires System 7.5 or higher and a new Finder that
supports volumes larger than 4 GB (using the new extended

PBXGetVolInfo

 function).

The API Modifications 6

The HFS API has been modified to support volume sizes larger than 4 GB. The
modifications consist of two extended data structures and a new extended

PBXGetVolInfo

 function.

Data Structures 6

This section describes the two modified data structures used by the large volume
file system:

■

the extended volume parameter block

■

the extended I/O parameter block

Extended Volume Parameter Block 6

In the current

HVolumeParam

 record, volume size information is clipped at 2 GB.
Because HFS volumes can now exceed 4 GB, a new extended volume parameter block is
needed in order to report the larger size information. The

XVolumeParam

 record
contains 64-bit integers for reporting the total bytes on the volume and the number of
free bytes available (parameter names

ioVTotalBytes

 and

ioVFreeBytes

). In
addition, several of the fields that previously were signed are now unsigned (parameter
names

ioVAtrb

,

ioVBitMap

,

ioAllocPtr

,

ioVAlBlkSiz

,

ioVClpSiz

,

ioAlBlSt

,

ioVNxtCNID

,

ioVWrCnt

,

ioVFilCnt

, and

ioVDirCnt

).

C H A P T E R 6

Large Volume Support

68

The API Modifications

struct XVolumeParam {

ParamBlockHeader

unsigned long ioXVersion; // XVolumeParam version == 0

short ioVolIndex; // volume index

unsigned long ioVCrDate; // date and time of creation

unsigned long ioVLsMod; // date and time of last modification

unsigned short ioVAtrb; // volume attributes

unsigned short ioVNmFls; // number of files in root directory

unsigned short ioVBitMap; // first block of volume bitmap

unsigned short ioAllocPtr; // first block of next new file

unsigned short ioVNmAlBlks; // number of allocation blocks

unsigned long ioVAlBlkSiz; // size of allocation blocks

unsigned long ioVClpSiz; // default clump size

unsigned short ioAlBlSt; // first block in volume map

unsigned long ioVNxtCNID; // next unused node ID

unsigned short ioVFrBlk; // number of free allocation blocks

unsigned short ioVSigWord; // volume signature

short ioVDrvInfo; // drive number

short ioVDRefNum; // driver reference number

short ioVFSID; // file-system identifier

unsigned long ioVBkUp; // date and time of last backup

unsigned short ioVSeqNum; // used internally

unsigned long ioVWrCnt; // volume write count

unsigned long ioVFilCnt; // number of files on volume

unsigned long ioVDirCnt; // number of directories on volume

long ioVFndrInfo[8]; // information used by the Finder

uint64 ioVTotalBytes; // total number of bytes on volume

uint64 ioVFreeBytes; // number of free bytes on volume

};

Field descriptions

ioVolIndex

An index for use with the PBHGetVInfo function.

ioVCrDate

The date and time of volume initialization.

ioVLsMod

The date and time the volume information was last modified. (This
field is not changed when information is written to a file and does
not necessarily indicate when the volume was flushed.)

ioVAtrb

The volume attributes.

ioVNmFls

The number of files in the root directory.

ioVBitMap

The first block of the volume bitmap.

ioAllocPtr

The block at which the next new file starts. Used internally.

ioVNmAlBlks

The number of allocation blocks.

ioVAlBlkSiz

The size of allocation blocks.

ioVClpSiz

The clump size.

C H A P T E R 6

Large Volume Support

The API Modifications

69

ioAlBlSt

The first block in the volume map.

ioVNxtCNID

The next unused catalog node ID.

ioVFrBlk

The number of unused allocation blocks.

ioVSigWord

A signature word identifying the type of volume; it’s $D2D7 for
MFS volumes and $4244 for volumes that support HFS calls.

ioVDrvInfo

The drive number of the drive containing the volume.

ioVDRefNum

For online volumes, the reference number of the I/O driver for the
drive identified by ioVDrvInfo.

ioVFSID

The file-system identifier. It indicates which file system is servicing
the volume; it’s zero for File Manager volumes and nonzero for
volumes handled by an external file system.

ioVBkUp

The date and time the volume was last backed up (it’s 0 if never
backed up).

ioVSeqNum

Used internally.

ioVWrCnt

The volume write count.

ioVFilCnt

The total number of files on the volume.

ioVDirCnt

The total number of directories (not including the root directory) on
the volume.

ioVFndrInfo

Information used by the Finder.

Extended I/O Parameter Block 6

The extended I/O parameter block is needed for low-level access to disk addresses
beyond 4 GB. It is used exclusively by

PBRead

 and

PBWrite

 calls when performing I/O
operations at offsets greater than 4 GB. To indicate that you are using an

XIOParam

record, you should set the

kUseWidePositioning

 bit in the

ioPosMode

 field.

Because file sizes are limited to 2 GB, the regular

IOParam

 record should always be used
when performing file level I/O operations. The extended parameter block is intended
only for Device Manager I/O operations to large block devices at offsets greater than
4 GB.

The only change in the parameter block is the parameter

ioWPosOffset

, which is of
type

int64

.

struct XIOParam {
QElemPtr qLink; // next queue entry
short qType; // queue type
short ioTrap; // routine trap
Ptr ioCmdAddr; // routine address
ProcPtr ioCompletion;// pointer to completion routine
OSErr ioResult; // result code
StringPtr ioNamePtr; // pointer to pathname
short ioVRefNum; // volume specification
short ioRefNum; // file reference number
char ioVersNum; // not used

C H A P T E R 6

Large Volume Support

70

The API Modifications

char ioPermssn; // read/write permission
Ptr ioMisc; // miscellaneous
Ptr ioBuffer; // data buffer
unsigned long ioReqCount; // requested number of bytes
unsigned long ioActCount; // actual number of bytes
short ioPosMode; // positioning mode (wide mode set)
int64 ioWPosOffset;// wide positioning offset

};

Field descriptions

ioRefNum The file reference number of an open file.
ioVersNum A version number. This field is no longer used and you should

always set it to 0.
ioPermssn The access mode.
ioMisc Depends on the routine called. This field contains either a new

logical end-of-file, a new version number, a pointer to an access
path buffer, or a pointer to a new pathname. Because ioMisc is of
type Ptr, you’ll need to perform type coercion to interpret the value
of ioMisc correctly when it contains an end-of-file (a LongInt
value) or version number (a SignedByte value).

ioBuffer A pointer to a data buffer into which data is written by read calls
and from which data is read by write calls.

ioReqCount The requested number of bytes to be read, written, or allocated.
ioActCount The number of bytes actually read, written, or allocated.
ioPosMode The positioning mode for setting the mark. Bits 0 and 1 of this field

indicate how to position the mark; you can use the following
predefined constants to set or test their value:

CONST
fsAtMark = 0; {at current mark}
fsFromStart = 1; {from beginning of file}
fsFromLEOF = 2; {from logical end-of-file}
fsFromMark = 3; {relative to current mark}

You can set bit 4 of the ioPosMode field to request that the data be
cached, and you can set bit 5 to request that the data not be cached.
You can set bit 6 to request that any data written be immediately
read; this ensures that the data written to a volume exactly matches
the data in memory. To request a read-verify operation, add the
following constant to the positioning mode:

CONST
rdVerify = 64;{use read-verify mode}

You can set bit 7 to read a continuous stream of bytes, and place the
ASCII code of a newline character in the high-order byte to
terminate a read operation at the end of a line.

ioWPosOffset The offset to be used in conjunction with the positioning mode.

C H A P T E R 6

Large Volume Support

The API Modifications 71

New Extended Function 6
This section describes the extended PBXGetVolInfo function that provides volume size
information for volumes greater than 4 GB.

Before using the new extended call, you should check for availability by calling the
Gestalt function. Make your call to Gestalt with the gestaltFSAttr selector to
check for new File Manager features. The response parameter has the
gestaltFSSupports2TBVolumes bit set if the File Manager supports large volumes
and the new extended function is available.

PBXGetVolInfo 6

You can use the PBXGetVolInfo function to get detailed information about a volume. It
can report volume size information for volumes up to 2 terabytes.

pascal OSErr PBXGetVolInfo (XVolumeParam paramBlock, Boolean async);

paramBlock A pointer to an extended volume parameter block.
async A Boolean value that specifies asynchronous (true) or synchronous

(false) execution.

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both:

Parameter block

Arrow Meaning

→ Input

← Output

↔ Both

→ ioCompletion ProcPtr Pointer to a completion routine.

← ioResult OSErr Result code of the function.

↔ ioNamePtr StringPtr Pointer to the volume’s name.

↔ ioVRefNum short On input, a volume
specification; on output, the
volume reference number.

→ ioXVersion unsigned long Version of XVolumeParam
(value = 0)

→ ioVolIndex short Index used for indexing
through all mounted volumes.

← ioVCrDate unsigned long Date and time of initialization.

← ioVLsMod unsigned long Date and time of last
modification.

continued

C H A P T E R 6

Large Volume Support

72 The API Modifications

DESCRIPTION

The PBXGetVolInfo function returns information about the specified volume. It is
similar to PBHGetVInfo function described in Inside Macintosh: Files except that it
returns additional volume space information in 64-bit integers.

← ioVAtrb unsigned short Volume attributes.

← ioVNmFls unsigned short Number of files in the
root directory.

← ioVBitMap unsigned short First block of the
volume bitmap.

← ioVAllocPtr unsigned short Block where the next
new file starts.

← ioVNmAlBlks unsigned short Number of allocation blocks.

← ioVAlBlkSiz unsigned long Size of allocation blocks.

← ioVClpSiz unsigned long Default clump size.

← ioAlBlSt unsigned short First block in the volume
block map.

← ioVNxtCNID unsigned long Next unused catalog node ID.

← ioVFrBlk unsigned short Number of unused
allocation blocks.

← ioVSigWord unsigned short Volume signature.

← ioVDrvInfo short Drive number.

← ioVDRefNum short Driver reference number.

← ioVFSID short File system handling
this volume.

← ioVBkUp unsigned long Date and time of last backup.

← ioVSeqNum unsigned short Used internally.

← ioVWrCnt unsigned long Volume write count.

← ioVFilCnt unsigned long Number of files on the volume.

← ioVDirCnt unsigned long Number of directories
on the volume.

← ioVFndrInfo[8] long Used by the Finder.

← ioVTotalBytes uint64 Total number of bytes
on the volume.

← ioVFreeBytes uint64 Number of free bytes
on the volume.

C H A P T E R 6

Large Volume Support

The API Modifications 73

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBXGetVolInfo are

RESULT CODES

Trap macro Selector

_HFSDispatch $0012

noErr 0 Successful completion; no error occurred
nsvErr –35 No such volume
paramErr –50 No default volume

C H A P T E R 7

Software for the

ATA Hard Disk 7

Figure 7-0
Listing 7-0
Table 7-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 7

Software for the ATA Hard Disk

76

Introduction to the ATA Software

This chapter describes the system software that controls ATA (IDE) hard disk drive in the
Macintosh PowerBook Duo 2300c computer. To use the information in this chapter, you
should already be familiar with writing programs for the Macintosh computer that call
device drivers to manipulate devices directly. You should also be familiar with the ATA/
IDE specification, ANSI proposal X3T10/0948D, Revision 2K or later (ATA-2).

Introduction to the ATA Software 7

The ATA software in the Macintosh PowerBook Duo 2300c computer conforms to the
Macintosh driver model. File systems communicate with the driver by way of the Device
Manager, as shown in Figure 7-1. The ATA software consists of the ATA Manager and the
ATA disk driver.

Figure 7-1

ATA software model

At the system level, the ATA disk driver and the ATA Manager work in the same way
that the SCSI Manager and associated SCSI device drivers work. The ATA disk driver
provides drive partition, data management, and error-handling services for the
operating system as well as support for determining device capacity and controlling
device-specific features. The ATA Manager provides data transport services between the
ATA hard disk drive and the system. The ATA Manager handles interrupts from the
drives and manages the interface timing.

ATA hard disk drives appear on the desktop the same way SCSI hard disk drives
currently do. Except for applications that perform low-level services such as formatting
and partitioning of disk drives, applications interact with the ATA hard disk drives in a
device-independent manner through the File Manager or by calling the Device Manager.

HFS
PC

Exchange

Device Manager

ATA disk driver

ATA Manager

ATA controller

Other file
system

C H A P T E R 7

Software for the ATA Hard Disk

Introduction to the ATA Software

77

ATA Disk Driver 7

The ATA disk driver for the Macintosh PowerBook Duo 2300c computer has the
following features:

■

supports all ATA drives that comply with the ANSI ATA/IDE specification X3T10

■

uses the ATA Manager for system and bus independence

■

supports multiple drives and multiple partitions (volumes)

■

recognizes both HFS hard disk and floppy disk formats

■

supports Macintosh PC Exchange for DOS file compatibility.

■

adheres to the driver rules described in

Designing PCI Cards and Drivers for Power
Macintosh computers

■

supports both synchronous and asynchronous requests from the file system.

The ATA disk driver resides in ROM and supports all ATA drives that adhere to the
ANSI ATA/IDE specification X3T10.

The ATA disk driver relies on the services of the ATA Manager, which provides the ATA
protocol engine and relieves the driver of system and bus dependencies. The main
functions of the driver are managing the media and monitoring the status of the drive.

The ATA disk driver is responsible for providing block-oriented access to the storage
media. The file systems treat the media as one or more logical partitions or volumes in
which data at any address can be read or written indefinitely.

The ATA disk driver provides status and control functions. In addition, the driver’s
functionality has been augmented to support PC Exchange and the new Drive Setup
application. The functions are described in “ATA Disk Driver Reference” beginning on
page 78.

The ATA disk driver supports both synchronous and asynchronous requests from the file
system. The driver executes synchronous requests without relinquishing control back to
the caller until completion. The driver queues asynchronous calls and returns control to
the caller; it then executes the requested task in the background during interrupt time.

ATA Manager 7

The ATA Manager manages the ATA controller and its protocol. It provides data
transport services between ATA devices and the system, directing commands to the
appropriate device and handling interrupts from the devices.

The ATA Manager schedules I/O requests from the ATA hard disk driver, the operating
system, and applications. The ATA Manager can handle both synchronous and asynchro-
nous requests. When making asynchronous requests, the calling program must provide a
completion routine.

C H A P T E R 7

Software for the ATA Hard Disk

78

ATA Disk Driver Reference

The ATA Manager’s internal processing of requests can be either by polling or by
interrupts. When it is polling, the ATA Manager continually monitors for the next state
of the protocol by looping. When it is interrupt-driven, the ATA Manager is notified of
the next protocol state by an interrupt. The ATA Manager determines which way to
process each request as it is received; if interrupts are disabled, it processes the request
by polling.

The functions and data structures of the ATA Manager are described in “ATA Manager
Reference” beginning on page 93.

ATA Disk Driver Reference 7

This section describes the routines provided by the ATA disk driver. The information in
this section assumes that you are already familiar with how to use device driver routines
on the Macintosh computer. If you are not familiar with Macintosh device drivers, refer
to the chapter “Device Manager” in

Inside Macintosh: Devices

 for additional information.

Standard Device Routines 7

The ATA disk driver provides the standard control and status routines described in the
chapter “Device Manager” of

Inside Macintosh: Devices

. Those routines are described in
this section. The specific control and status functions supported in the ATA disk driver
are defined in “Control Functions” beginning on page 80 and “Status Functions”
beginning on page 88.

Note

The ATA disk driver resides in ROM and is not
opened or closed by applications.

◆

The Control Routine 7

The control routine sends control information to the ATA disk driver. The type of control
function to be performed is specified in

csCode

.

The ATA disk driver implements many of the control functions supported by the SCSI
hard disk device driver and defined in

Inside Macintosh: Devices

 plus several new ones
that are defined in

Designing PCI Cards and Drivers for Power Macintosh computers.

 The
control functions are listed in Table 7-1 and described in “Control Functions” beginning
on page 80.

C H A P T E R 7

Software for the ATA Hard Disk

ATA Disk Driver Reference

79

RESULT CODES

The Status Routine 7

The status routine returns status information about the ATA disk driver. The type of
information returned is specified in the

csCode

 field and the information itself is
pointed to by the

csParamPtr

 field.

The ATA disk driver implements many of the status functions supported by the SCSI
hard disk device driver and defined in

Inside Macintosh: Devices,

 plus several new ones
that are defined in

Designing PCI Cards and Drivers for Power Macintosh computers

. The
status functions are listed in Table 7-2 on page 80 and described in “Status Functions”
beginning on page 88.

Table 7-1

Control functions

Value of

csCode

Definition

5 Verify media

6 Format media

7 Eject drive

17 Enable or disable physical I/O access

21 Get drive icon

22 Get media icon

23 Drive information

44 Set startup partition

45 Set partition mounting

46 Set partition write protect

48 Clear partition mounting

49 Clear partition write protection

50 Register partition

51 Add a new drive to the drive queue

60 Mount volume

65 Driver-specific need-time code (system task time)

70 Power-mode status management control

noErr

Successful completion; no error occurred

controlErr

Unimplemented control call; could not complete
requested operation

nsDrvErr

No such drive installed

C H A P T E R 7

Software for the ATA Hard Disk

80

ATA Disk Driver Reference

RESULT CODES

Control Functions 7

The Control routine in the ATA disk driver supports a standard set of control functions.
The functions are used for control, status, and power management.

In the definitions that follow, an arrow preceding a parameter indicates whether the
parameter is an input parameter, an output parameter, or both.

verify 7

The

verify

 function requests a read verification of the data on the ATA hard drive
media. This function performs no operation and returns noErr if the logical drive
number is valid.

Parameter block

Table 7-2

Status functions

Value of

csCode

Definition

8 Return drive status information

43 Return driver Gestalt information

44 Return partition boot status

45 Return partition mount status

46 Return partition write protect status

51 Return partition information

70 Power mode status information

noErr

Successful completion; no error occurred

statusErr

Unimplemented status call; could not complete
requested operation

nsDrvErr

No such drive installed

Arrow Meaning

→

Input

←

Output

↔

Both

→

csCode

A value of 5.

→

ioVRefNum

The logical drive number.

→

csParam[]

None defined.

←

ioResult

See result codes.

C H A P T E R 7

Software for the ATA Hard Disk

ATA Disk Driver Reference

81

RESULT CODES

format 7

Because ATA hard drives are low-level formatted at the factory, this function does not
perform any operation. The driver returns

noErr

 if the logical drive number is valid.

Parameter block

RESULT CODES

eject 7

The

eject

 function notifies the driver when a volume is no longer required by the file
system. The driver performs no action unless the drive itself is ejectable (for example, a
PC card drive). If the drive is ejectable and there is no other mounted volume for the
drive, then the driver initiates the eject operation. When the driver is notified that the
drive has been removed from the bus, the driver removes all associated logical drives
from the drive queue and updates its internal records.

Parameter block

RESULT CODES

noErr

Successful completion; no error occurred.

nsDrvErr

The specified logical drive number does not exist.

→

csCode

A value of 6.

→

ioVRefNum

The logical drive number.

→

csParam[]

None defined.

←

ioResult

See result codes.

noErr

Successful completion; no error occurred.

nsDrvErr

The specified logical drive number does not exist.

→

csCode

A value of 7.

→

ioVRefNum

The logical drive number.

→

csParam[]

None defined.

←

ioResult

See result codes.

noErr

Successful completion; no error occurred.

nsDrvErr The specified logical drive number does not exist.
offLinErr The specified drive is not on the bus.

C H A P T E R 7

Software for the ATA Hard Disk

82 ATA Disk Driver Reference

get drive icon 7

The get drive icon function returns a pointer to the device icon and the device name
string to be displayed on the desktop when the media is initialized. If no physical icon is
available the function returns the media icon. The icon is an 'ICN#' resource and varies
with the system. The device name string is in Pascal format.

Parameter block

RESULT CODES

get media icon 7

The get media icon function returns a pointer to the media icon and the device name
string to be displayed on the desktop for an HFS volume and in the Get Info command
of the Finder. The icon is an 'ICN#' resource and varies with the type of drive or media.
The device name string is in Pascal format.

Parameter block

RESULT CODES

→ csCode A value of 21.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[0–1] Pointer to the drive icon and name string.
← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 22.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[0–1] Address of drive icon and name string

(information is in ICN# format).
← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

C H A P T E R 7

Software for the ATA Hard Disk

ATA Disk Driver Reference 83

get drive information 7

The get drive information function returns information about the specified drive
as defined on page 470 of Inside Macintosh, Volume V.

Note
This information is not in Inside Macintosh: Devices. ◆

Because ATA devices are not designated, all drives are designated as unspecified. Also,
all drives are specified as SCSI because the only other option is IWM, which applies only
to certain floppy disk drives. The internal ATA drive is specified as primary and all
others as secondary. Drives on PC cards and in the expansion bay are specified as
removable (meaning the drive itself, not the media).

Parameter block

RESULT CODES

set startup partition 7

The set startup partition function sets the specified partition to be the startup
partition. The partition is specified either by its logical drive or by its block address on
the media. The current startup partition is cleared. A result code of controlErr is
returned if the partition does not have a partition map entry on the media or if the
partition could not be set to be the startup partition.

Parameter block

→ csCode A value of 23.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[0–1] Drive information value (long).

$0601 = primary, fixed, SCSI, internal.
$0201 = primary, removable, SCSI, internal.

← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 44.
→ ioVRefNum The logical drive number, or

0 if using the partition’s block address.
→ csParam[0–1] The partition’s block address (long) if ioVRefNum is 0.
← ioResult See result codes.

C H A P T E R 7

Software for the ATA Hard Disk

84 ATA Disk Driver Reference

RESULT CODES

set partition mounting 7

The set partition mounting function enables the specified partition to be
mounted. The partition is specified either by its logical drive or by its block address on
the media. A result code of controlErr is returned if the partition does not have a
partition map entry on the media or if the partition could not be enabled to be mounted.

Parameter block

RESULT CODES

set partition write protect 7

The set partition write protect function sets the specified partition to be
(software) write protected. The partition is specified either by its logical drive or by its
block address on the media. A result code of controlErr is returned if the partition
does not have a partition map entry on the media or if the partition could not be set to be
write protected.

Parameter block

noErr Successful completion; no error occurred.
controlErr Unimplemented control call; could not complete

requested operation
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 45.
→ ioVRefNum The logical drive number, or

0 if using the partition’s block address.
→ csParam[0–1] The partition’s block address (long) if ioVRefNum is 0.
← ioResult See result codes.

noErr Successful completion; no error occurred.
controlErr Unimplemented control call; could not complete

requested operation
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 46.
→ ioVRefNum The logical drive number, or

0 if using the partition’s block address.
→ csParam[0–1] The partition’s block address (long) if ioVRefNum is 0.
← ioResult See result codes.

C H A P T E R 7

Software for the ATA Hard Disk

ATA Disk Driver Reference 85

RESULT CODES

clear partition mounting 7

The clear partition mounting function prevents the specified partition from
being mounted. The partition is specified either by its logical drive or by its block
address on the media. A result code of controlErr is returned if the partition does
not have a partition map entry on the media or if the partition could not be set so as
not to be mounted.

Parameter block

RESULT CODES

clear partition write protect 7

The clear partition write protect function disables the (software) write
protection on the specified partition. The partition is specified either by its logical drive
or by its block address on the media. A result code of controlErr is returned if the
partition does not have a partition map entry on the media or if write protection could
not be disabled.

Parameter block

noErr Successful completion; no error occurred.
controlErr Unimplemented control call; could not complete

requested operation
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 48.
→ ioVRefNum The logical drive number, or

0 if using the partition’s block address.
→ csParam[0–1] The partition’s block address (long) if ioVRefNum is 0.
← ioResult See result codes.

noErr Successful completion; no error occurred.
controlErr Unimplemented control call; could not complete

requested operation
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 49.
→ ioVRefNum The logical drive number, or

0 if using the partition’s block address.
→ csParam[0–1] The partition’s block address (long) if ioVRefNum is 0.
← ioResult See result codes.

C H A P T E R 7

Software for the ATA Hard Disk

86 ATA Disk Driver Reference

RESULT CODES

register partition 7

The register partition function supports Macintosh PC Exchange. It requests the
driver to redefine the starting block offset and capacity of an existing partition.

A pointer to the drive queue element is passed in along with the new physical offset and
capacity. The pointer has the following form:

struct {

DrvQElPte theDrive; // Partition to be registered

long phyStart; // New start offset

long phySize; // New capacity (blocks)

}

Parameter block

RESULT CODES

get a drive 7

The get a drive function supports Macintosh PC Exchange. It requests the driver to
create a new logical drive (partition) in the System Drive Queue. A pointer to the
DrvQElPtr variable is passed in; this variable contains the pointer to a valid partition
on the physical drive to which the new partition is to be added. Upon completion, the
function returns the new DrvQElPtr in the variable. The DrvQElPtr variable is
defined as follows:

DrvQElPtr *theDrive; //Pointer to existing partition

noErr Successful completion; no error occurred.
controlErr Unimplemented control call; could not

complete requested operation
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 50.
→ ioVRefNum The logical drive number.
→ csParam[0-1] Pointer to new driver information.
← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

C H A P T E R 7

Software for the ATA Hard Disk

ATA Disk Driver Reference 87

Parameter block

RESULT CODES

mount volume 7

The mount volume function instructs the driver to post a disk inserted event for the
specified partition. The partition is specified either by its logical drive or by its block
address on the media.

Parameter block

RESULT CODES

set power mode 7

The set power mode function changes the drive’s power mode to one of four modes:
active, standby, idle, and sleep. It can be used to reduce drive power consumption and
decrease system noise levels.

IMPORTANT

Although the power modes have the same names as the ones in the
ATA/IDE specification, they do not have the same meanings. ▲

■ Active: The fully operational state with typical power consumption.

■ Standby: The state with minimal power savings. The device can return to the active
state in less than 5 seconds.

→ csCode A value of 51.
→ ioVRefNum The logical drive number.
→ csParam[] Pointer to existing partition
← csParam[] Pointer to new partition
← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 48.
→ ioVRefNum The logical drive number, or

0 if using the partition’s block address.
→ csParam[0–1] The partition’s block address (long) if ioVRefNum is 0.
← ioResult See result codes.

noErr Successful completion; no error occurred.
controlErr Unimplemented control call; could

not complete requested operation
nsDrvErr The specified logical drive number does not exist.

C H A P T E R 7

Software for the ATA Hard Disk

88 ATA Disk Driver Reference

■ Idle: The state with moderate power savings. The device can return to the active state
within 15 seconds.

■ Sleep: The state with minimum power consumption. The device can return to the
active state within 30 seconds.

Parameter block

RESULT CODES

Status Functions 7
The Status routine in the ATA disk driver supports a standard set of status functions.
These functions are used to obtain information about a partition (volume) in an ATA
hard disk drive.

drive status 7

The drive status function returns the same type of information that disk drivers are
required to return for the Status routine, as described on page 215 of Inside Macintosh,
Volume II.

Note
This information is not in Inside Macintosh: Devices. ◆

Parameter block

→ csCode A value of 70.
→ ioVRefNum The logical drive number.
→ csParam[0] The most significant byte contains one of the

following codes:
0 = enable the active mode
1 = enable the standby mode
2 = enable the idle mode
3 = enable the sleep mode
(least significant byte = don’t care)

← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 8.
→ ioVRefNum The logical drive number.
→ csParam[] Not used.
← ioResult See result codes.

C H A P T E R 7

Software for the ATA Hard Disk

ATA Disk Driver Reference 89

RESULT CODES

driver gestalt 7

The driver gestalt function provides the application with information about the
ATA hard disk driver and the attached device. Several calls are supported under this
function. A Gestalt selector is used to specify a particular call.

The DriverGestaltParam data type defines the ATA Gestalt parameter block:

struct DriverGestaltParam

{

ataPBHdr // See definition on page 93

SInt16 ioVRefNum; // refNum of device

SInt16 csCode; // Driver Gestalt code

OSType driverGestaltSelector; // Gestalt selector

driverGestaltInfo driverGestaltResponse; // Returned result

};

typedef struct DriverGestaltParam DriverGestaltParam;

The fields driverGestaltSelector and driverGestaltResponse are 32-bit fields.

Parameter block

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 43.
→ ioVRefNum The logical drive number.
→ driverGestaltSelector Gestalt function selector. This is a 32-bit

ASCII field containing one of the following
selectors:
'sync' Indicates synchronous or

asynchronous driver.
'devt' Specifies type of device the

driver is controlling.
'intf' Specifies the device interface.
'boot' Specifies PRAM value to

designate this driver or device.
'vers' Specifies the version number of

the driver.
'lpwr' Indicates support for

low-power mode.
'dAPI' Indicates support for Macintosh

PC Exchange calls.
'purg' Indicates driver can be closed or

purged.
'wide' Indicates large volume support.
'ejec' Eject-call requirements.

C H A P T E R 7

Software for the ATA Hard Disk

90 ATA Disk Driver Reference

RESULT CODES

get boot partition 7

The get boot partition function returns 1 if the specified partition is the boot
partition, 0 if it is not. The partition is specified either by its associated logical drive or
the partition’s block address on the media.

Parameter block

RESULT CODES

← driverGestaltResponse Returned result based on the driver gestalt
selector. The possible return values are
'sync' TRUE (1), indicating that the

driver is synchronous.
'devt' 'disk' indicating a hard disk

driver.
'intf' 'ide' for an IDE (ATA) drive, or

'pcmc' for a PC card drive.
'boot' PRAM value (long).
'vers' Current version number of the

driver.
'lpwr' TRUE (1)
'dAPI' TRUE (1)
'purg' Indicates driver can be closed or

purged.
'wide' TRUE (1)
'ejec' Eject call requirements (long):

bit 0: if set, don’t issue eject call
on Restart.
bit 1: if set, don’t issue eject call
on Shutdown.

← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.
statusErr Unknown selector was specified.

→ csCode A value of 44.
→ ioVRefNum The logical drive number or

0 if using the partition’s block address.
→ csParam[] The partition’s block address (long) if

ioVRefNum = 0.
← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

C H A P T E R 7

Software for the ATA Hard Disk

ATA Disk Driver Reference 91

get partition mount status 7

The get partition mount status function returns 1 if the specified partition has
mounting enabled and 0 if not enabled or if the partition does not have a partition map
entry on the media. The partition is specified either by its associate logical drive or the
partition’s block address on the media.

Parameter block

RESULT CODES

get partition write protect status 7

The get partition write protect status function returns 1 if the specified
partition is write protected (software) and 0 if it is not. The partition is specified either
by its associate logical drive or by the partition’s block address on the media.

Parameter block

RESULT CODES

→ csCode A value of 45.
→ ioVRefNum The logical drive number or

0 if using the partition’s block address.
→ csParam[] The partition’s block address (long) if

ioVRefNum = 0.
← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 46.
→ ioVRefNum The logical drive number or

0 if using the partition’s block address.
→ csParam[] The partition’s block address (long) if

ioVRefNum = 0.
← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

C H A P T E R 7

Software for the ATA Hard Disk

92 ATA Disk Driver Reference

get partition information 7

The get partition information function supports Macintosh PC Exchange. It
requests the driver to return information about the partition specified by ioVRefNum.

The csParam field contains a pointer to the device information element for the return
information. The pointer has the following form:

struct {

DeviceIdent SCSIID; // Device ID

// Physical start of partition

unsigned long physPartitionLoc;

// Partition identifier

unsigned long partitionNumber;

} partInfoRec, *partInfoRecPtr;

Parameter block

RESULT CODES

get power mode 7

The get power mode function returns the current power mode state of the internal
hard disk. The power modes are defined on page 87.

Parameter block

→ csCode A value of 51.
→ ioVRefNum The logical drive number.
→ csParam[] The information data structure.
← ioResult See result codes.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.

→ csCode A value of 70.
→ ioVRefNum The logical drive number.
→ csParam[] None defined.
← csParam[] The most significant byte contains one of the

following codes:
0 = active mode
1 = standby mode
2 = idle mode
3 = sleep mode
(least significant byte = don’t care)

← ioResult See result codes.

C H A P T E R 7

Software for the ATA Hard Disk

ATA Manager Reference 93

RESULT CODES

ATA Manager Reference 7

This section defines the data structures and functions that are specific to the
ATA Manager.

The ATA Manager has a single entry point through the trap $AAF1. Functions are
dispatched within the Manager based on the manager function code defined in the
parameter block header.

When making calls to the ATA Manager you have to pass and retrieve parameter
information through a parameter block. The size and content of the parameter block
depends on the function being called. However, all calls to the ATA Manager have a
common parameter block header structure. The structure of the ataPBHdr parameter
block is common to all ATA parameter block data types. Several additional ATA
parameter block data types have been defined for the various functions of the
ATA Manager.

The ATA Parameter Block 7
This section defines the fields that are common to all ATA Manager functions that use the
ATA parameter block. The fields used for specific functions are defined in the description
of the functions to which they apply. You use the ATA parameter block for all calls to the
ATA Manager. The ataPBHdr data type defines the ATA parameter block.

The parameter block includes a field, MgrFCode, in which you specify the function
selector for the particular function to be executed; you must specify a value for this field.
Each ATA function may use different fields of the ATA parameter block for parameters
specific to that function.

An arrow preceding the comment indicates whether the parameter is an input parameter,
an output parameter, or both.

noErr Successful completion; no error occurred.
nsDrvErr The specified logical drive number does not exist.
statusErr The power management information couldn’t be

returned, due to a manager error.

Arrow Meaning
→ Input
← Output
↔ Both

C H A P T E R 7

Software for the ATA Hard Disk

94 ATA Manager Reference

The ATA parameter block header structure is defined as follows:

struct ataPBHdr // ATA Manager parameter block

 header structure

{

Ptr ataLink; // reserved

SInt16 ataQType; // type byte

UInt8 ataPBVers; // → parameter block version number

UInt8 hdrReserved; // reserved

Ptr hdrReserved2; // reserved

ProcPtr ataCompletion; // completion routine

OSErr ataResult; // ← returned result

UInt8 MgrFCode; // → manager function code

UInt8 ataIOSpeed; // → I/O timing class

UInt16 ataFlags; // → control options

SInt16 hdrReserved3; // reserved

UInt32 deviceID; // → device ID

UInt32 TimeOut; // → transaction timeout value

Ptr ataPtr1; // client storage pointer 1

Ptr ataPtr2; // client storage pointer 2

UInt16 ataState; // reserved, initialize to 0

SInt16 intSemaphores; // internal semaphores

Sint32 hdrReserved4; // reserved

};

typedef struct ataPBHdr ataPBHdr;

Field descriptions

ataLink This field is reserved for use by the ATA Manager. It is used
internally for queuing I/O requests. It must be initialized to 0
before calling the ATA Manager.

ataQType This field is the queue type byte. It should be initialized to 0 before
calling the ATA Manager.

ataPBVers This field contains the parameter block version number. Values of 1
and 2 are the only values currently supported. Any other value
results in a paramErr. For individual differences between versions
1 and 2, refer to the individual functions.

hdrReserved Field reserved for future use. To ensure future compatibility, all
reserved fields should be set to 0.

hdrReserved2 Field reserved for future use. To ensure future compatibility, all
reserved fields should be set to 0.

ataCompletion This field contains the completion routine pointer to be called upon
completion of the request. When this field is set to 0, it indicates a
synchronous I/O request; a nonzero value indicates an
asynchronous I/O request. The routine this field points to is called
when the request has finished without error or when the request

C H A P T E R 7

Software for the ATA Hard Disk

ATA Manager Reference 95

has terminated due to an error. This field is valid for any manager
request. The completion routine is called as follows:

pascal void (*RoutinePtr) (ataIOPB *)

The completion routine is called with the associated manager
parameter block in the stack.

ataResult Completion status. This field is returned by the ATA Manager after
the request has been completed. Refer to Table 7-13 on page 134 for
a list of the possible error codes returned in this field.

MgrFCode This field is the function selector for the ATA Manager. The
functions are defined in Table 7-4 on page 99. An invalid code in
this field results in an ATAFuncNotSupported error.

ataIOSpeed This field specifies the I/O cycle timing requirement of the specified
ATA drive. This field should contain word 51 of the drive
identification data. Currently values 0 through 3 are supported, as
defined in the ATA/IDE specification. See the ATA/IDE
specification for the definitions of the timing values. If a timing
value higher than one supported is specified, the manager operates
in the fastest timing mode supported by the manager. Until the
timing value is determined by examining the drive identification
data returned by the ATA_Identify function, the client should
request operations using the slowest mode (mode 0).

ataFlags This 16-bit field contains control settings that indicate special
handling of the requested function. The control bits are defined in
Table 7-3 on page 96.

hdrReserved3 Field reserved for future use. To ensure future compatibility, all
reserved fields should be set to 0.

deviceID A short word that uniquely identifies an ATA device. The field
consists of the following structure:

struct deviceIdentification
{
UInt16 Reserved; // the upper word is reserved
UInt16 deviceNum; // consists of device ID and bus ID
};
typedef struct deviceIdentification

deviceIdentification;

Bit 15 of the deviceNum field indicates master (=0) /slave (=1)
selection. Bits 14 through 0 contain the bus ID (for example,
$0 = master unit of bus 0, $80 = slave unit of bus 0). The present
implementation allows only one device in the master configuration.
This value is always 0.

TimeOut This field specifies the transaction timeout value in milliseconds. A
value of zero disables the transaction timeout detection.

ataPtr1 This pointer field is available for application use. It is not modified
by the ATA Manager.

ataPtr2 This pointer field is available for application use. It is not modified
by the ATA Manager.

C H A P T E R 7

Software for the ATA Hard Disk

96 ATA Manager Reference

ataState This field is used by the ATA Manager to keep track of the current
bus state. This field must contain 0 when calling the manager.

intSemaphores This field is used internally by the ATA Manager. It should be set to
0 before calling the ATA Manager.

hdrReserved4 Field reserved for future use. To ensure future compatibility, all
reserved fields should be set to 0.

Table 7-3 describes the functions of the control bits in the ataFlags field.

Table 7-3 Control bits in the ataFlags field

Name Bit Definition

LED Enable 0 Some systems are equipped with an activity LED
controlled by software. Setting this bit to 1 indicates
that the LED should be turned on for this transaction.
The LED is automatically turned off at the end of the
transaction. Setting the bit to 0 indicates that the LED
should not be turned on for this transaction. This bit
has no effect in systems with no activity LED.

— 1–2 Reserved.

RegUpdate 3 When set to 1, this bit indicates that a set of device
registers should be reported back upon completion of
the request. This bit is valid for the ATA_ExecI/O
function only. Refer to the description on page 107 for
details. The following device registers are reported
back:

Sector count register

Sector number register

Cylinder register(s)

SDH register

ProtocolType 4–5 These 2 bits specify the type of command. The
following command types are defined:

$0 = standard ATA

$1 = reserved

$2 = ATAPI

These bits are used to indicate special protocol
handling.

For ATA command values of $A0 or $A1, this field
must contain the ATAPI setting. For all other ATA
commands, this field must contain the standard ATA
setting.

— 6–7 Reserved.

continued

C H A P T E R 7

Software for the ATA Hard Disk

ATA Manager Reference 97

SGType 8, 9 This 2-bit field specifies the type of scatter gather list
passed in. This field is only valid for read/write
operations.

The following types are defined:

00 = scatter gather disabled

01 = scatter gather type I enabled

10 = reserved

11 = reserved

When set to 0, this field indicates that the ioBuffer
field contains the host buffer address for this transfer,
and the ioReqCount field contains the byte transfer
count.

When set to 1, this field indicates that the ioBuffer
and the ioReqCount fields of the parameter block for
this request point to a host scatter gather list and the
number of scatter gather entries in the list, respectively.

The format of the scatter gather list is a series of the
following structure definition:

struct IOBlock // SG entry structure
{

UInt8* ioBuffer; // → data buffer pointer
UInt32 ioReqCount;// → byte count

};
typedef struct IOBlock IOBlock;

QLockOnError 10 When set to 0, this bit indicates that an error during
the transaction should not freeze the I/O queue for
the device. When an error occurs on an I/O request
with this bit set to 0, the next queued request is
processed without interruption. If an error occurs
when this bit is set, however, any subsequent request
without the Immediate bit set is held off until an I/O
Queue Release command is received. This allows the
ATA Manager to preserve the error state so that a
client can examine it.

When this bit is set, only those requests with the
Immediate bit set are processed. Use this bit with
caution; it can cause the system to hang if not handled
correctly.

continued

Table 7-3 Control bits in the ataFlags field (continued)

Name Bit Definition

C H A P T E R 7

Software for the ATA Hard Disk

98 ATA Manager Reference

Functions 7
This section describes the ATA Manager functions that are used to manage and perform
data transfers. Each function is requested through a parameter block specific to that
service. A request for an ATA function is specified by a function code within the
parameter block. The entry point for all the functions is the same.

Immediate 11 When this bit is set to 1, it indicates that the request
must be executed as soon as possible and that the
status of the request must be returned. It forces the
request to the head of the I/O queue for immediate
execution. When this bit is set to 0, the request is
queued in the order it is received and is executed
according to that order.

ATAioDirection 12, 13 This bit field specifies the direction of data transfer. Bit
values are binary and are defined as follows:

00 = no data transfer

10 = data direction in (read)

01 = data direction out (write)

11 = reserved

Note: These bits do not need to be set to reflect the
direction of the command packet bytes.

— 14 Reserved.

ByteSwap 15 When set to 1, this bit indicates that every byte of data
prior to transmission on write operations and upon
reception on read operations is to be swapped. When
this bit is set to 0, it forces bytes to go out in the
LSB-MSB format that is compatible with IBM clones.
Typically, this bit should be set to 0. Setting this bit has
performance implications because the byte swap is
performed by the software. Use this bit with caution.

Caution: Setting this bit to 1 causes the bytes in ATAPI
command packets to be swapped.

Table 7-3 Control bits in the ataFlags field (continued)

Name Bit Definition

C H A P T E R 7

Software for the ATA Hard Disk

ATA Manager Reference 99

The function names and ATA Manager function codes are shown in Table 7-4.

ATA_Abort 7

You can use the ATA_Abort function to terminate a queued I/O request. This function
applies to asynchronous I/O requests only. The ATA_Abort function searches through
the I/O queue associated with the selected device and aborts the matching I/O request.
The current implementation does not abort if the found request is in progress. If the
specified I/O request is not found or has started processing, an ATAUnableToAbort
status is returned. If aborted, the ATAReqAborted status is returned.

It is up to the application that called the ATA_Abort function to clean up the aborted
request. Cleaning up includes deallocation of the parameter block.

The manager function code for the ATA_Abort function is $10.

Table 7-4 ATA Manager functions

Function name Code Description

ATA_Abort $10 Terminate the command.

ATA_BusInquiry $03 Get bus information.

ATA_DrvrRegister $85 Register the driver reference number.

ATA_DrvrDeregister $87 Deregister the driver reference number.

ATA_EjectDrive $89 Auto-eject the drive.

ATA_ExecIO $01 Execute ATA I/O.

ATA_FindRefNum $86 Look up the driver reference number.

ATA_GetDevConfig $8A Get the device configuration.

ATA_GetDevLocationIcon $8C Get the device location icon and string.

ATA_Identify $13 Get the drive identification data.

ATA_MgrInquiry $90 Get information about the ATA Manager
and the system configuration.

ATA_ModifyDrvrEventMask $88 Modify the driver event mask.

ATA_NOP $00 Perform no operation.

ATA_QRelease $04 Release the I/O queue.

ATA_RegAccess $12 Obtain access to an ATA device register.

ATA_ResetBus $11 Reset the ATA bus.

ATA_SetDevConfig $8B Set the device configuration.

C H A P T E R 7

Software for the ATA Hard Disk

100 ATA Manager Reference

The parameter block associated with this function is defined as follows:

struct ATA_Abort // ATA abort structure

{

ataPBHdr // see definition on page 94

ATA_PB* AbortPB // address of the parameter

// block to be aborted

UInt16 Reserved // reserved

};

typedef struct ATA_Abort ATA_Abort;

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 94.
AbortPB This field contains the address of the I/O parameter block

to be aborted.
Reserved This field is reserved. To ensure future compatibility, all reserved

fields should be set to 0.

RESULT CODES

ATA_BusInquiry 7

You can use the ATA_BusInquiry function to gets information about a specific ATA
bus. This function is provided for possible future expansion of the Macintosh ATA
architecture.

The manager function code for the ATA_BusInquiry function is $03.

The parameter block associated with this function is defined below:

struct ATA_BusInquiry // ATA bus inquiry structure

{

ataPBHdr // see definition on page 94

UInt16 ataEngineCount; // ← TBD; 0 for now

UInt16 ataReserved; // reserved

UInt32 ataDataTypes; // ← TBD; 0 for now

UInt16 ataIOpbSize; // ← size of ATA I/O PB

UInt16 ataMaxIOpbSize; // ← TBD; 0 for now

UInt32 ataFeatureFlags; // ← TBD

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present
ATAMgrNotInitialized ATA Manager not initialized
ATAReqAborted The request was aborted
ATAUnableToAbort Request to abort couldn’t be honored

C H A P T E R 7

Software for the ATA Hard Disk

ATA Manager Reference 101

UInt8 ataVersionNum; // ← HBA Version number

UInt8 ataHBAInquiry; // ← TBD; 0 for now

UInt16 ataReserved2; // reserved

UInt32 ataHBAPrivPtr; // ← pointer to HBA private data

UInt32 ataHBAPrivSize; // ← size of HBA private data

UInt32 ataAsyncFlags; // ← capability for callback

UInt32 ataReserved3[4]; // reserved

UInt32 ataReserved4; // reserved

SInt8 ataReserved5[16]; // TBD

SInt8 ataHBAVendor[16]; // ← HBA Vendor ID

SInt8 ataContrlFamily[16]; // ← family of ATA controller

SInt8 ataContrlType[16]; // ← controller model number

SInt8 ataXPTversion[4]; // ← version number of XPT

SInt8 ataReserved6[4]; // reserved

SInt8 ataHBAversion[4]; // ← version number of HBA

UInt8 ataHBAslotType; // ← type of slot

UInt8 ataHBAslotNum; // ← slot number of the HBA

UInt16 ataReserved7; // reserved

UInt32 ataReserved8; // reserved

};

typedef struct ATA_BusInquiry ATA_BusInquiry;

Field descriptions

ataPBHdr See the definition of the ataPBHdr on page 94.
ataEngineCount Currently set to 0.
ataReserved Reserved. All reserved fields are set to 0.
ataDataTypes Returns a bit map of data types supported by this host bus adapter

(HBA). The data types are numbered from 0 to 30; 0 through 15 are
reserved for Apple definition and 16 through 30 are available for
vendor use. This field is currently not supported; it returns a value
of 0.

ataIOpbSize This field contains the size of the I/O parameter block supported.
ataMaxIOpbSize This field specifies the maximum I/O size for the HBA. This field is

currently not supported and returns 0.
ataFeatureFlags

This field specifies supported features. This field is not supported; it
returns a value of 0.

ataVersionNum The version number of the HBA is returned. The current version
returns a value of 1.

ataHBAInquiry Reserved.
ataHBAPrivPtr This field contains a pointer to the HBA’s private data area. This

field is not currently supported; it contains a value of 0.
ataHBAPrivSize This field contains the byte size of the HBA’s private data area. This

field is currently not supported; it contains a value of 0.

C H A P T E R 7

Software for the ATA Hard Disk

102 ATA Manager Reference

ataAsyncFlags These flags indicate which types of asynchronous events the HBA is
capable of generating. This field is currently not supported; it
contains a value of 0.

ataHBAVendor This field contains the vendor ID of the HBA. This is an ASCII text
field.

ataContrlFamily
Reserved.

ataContrlType This field identifies the specific type of ATA controller.
ataXPTversion Reserved.
ataHBAversion This field specifies the version of the HBA. This field is currently

not supported; it contains a value of 0.
ataHBAslotType This field specifies the type of slot. This field is currently not

supported; it contains a value of 0.
ataHBAslotNum This field specifies the slot number of the HBA. This field is

currently not supported; it contains a value of 0.

RESULT CODES

ATA_DrvrRegister 7

You can use the ATA_DrvrRegister function to register the driver and an event
handler for the drive whose reference number is passed in. Any active driver that
controls one or more devices through the ATA Manager must register with the manager
to insure proper operation and notification of events. The ATA_DrvrRegister function
should be called only at noninterrupt time.

The first driver to register for the device gets the device. All subsequent registrations for
the device are rejected. The registration mechanism is used for manager to notify the
appropriate driver when events occur. Refer to Table 7-5 on page 104 for possible events.

The manager function code for the ATA_DrvrRegister function is $85.

There are two versions of the data structure for registration. The version is identified by
the ataPBVers field in the parameter block.

Version two allows a driver to register as a Notify-all driver. Registration of a Notify-all
driver is signaled by a value of –1 in the deviceID field of the header and the bit 0 of
drvrFlags set to 0. Notify-all driver registration is used if notification of all device
insertions is desired. Registered default drivers will be called if no media driver is found
on the media. Typically, an INIT driver registers as a Notify-all driver. The single driver
may register as a Notify-all driver, then later register for one or more devices on the bus.

noErr Successful completion; no error occurred
ATAMgrNotInitialized ATA Manager not initialized

C H A P T E R 7

Software for the ATA Hard Disk

ATA Manager Reference 103

Note
To ensure proper operation, all PCMCIA/ATA and Notify
all device drivers must register using version two, which
provides event handling capability. ◆

Two versions of the parameter block associated with this function are defined below:

// Version 1 (ataPBVers = 1)

struct ataDrvrRegister // parameter block structure

// for ataPBVers = 1

{

ataPBHdr // header information

SInt16 drvrRefNum; // → driver reference number

UInt16 FlagReserved; // reserved -> should be 0

UInt16 deviceNextID; // not used

SInt16 Reserved[21]; // reserved for future expansion

};

typedef struct ataDrvrRegister ataDrvrRegister;

// Version 2(ataPBVers = 2)

struct ataDrvrRegister // parameter block structure

// for ataPBVers = 2

{

ataPBHdr // header information

SInt16 drvrRefNum; // → driver reference number

UInt16 drvrFlags; // → driver flags; set to 0

UInt16 deviceNextID; // not used

SInt16 Reserved; // reserved; set to 0

ProcPtr ataEHandlerPtr // → event handler routine pointer

SInt32 drvrContext; // → value to pass in along with

// the event handler

UInt32 ataEventMask; // → masks of various events for

// the event handler

SInt16 Reserved[14]; // reserved for future expansion

};

typedef struct ataDrvrRegister ataDrvrRegister;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 94.
drvrRefNum This field specifies the driver reference number to be registered.

This value must be less than 0 to be valid. This field is a don’t-care
field for registration of a Notify-all driver.

FlagReserved Reserved.
deviceNextID Not used by this function.

C H A P T E R 7

Software for the ATA Hard Disk

104 ATA Manager Reference

Reserved[21] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

ataEHandlerPtr A pointer to driver’s event handler routine. This routine will be
called whenever an event happens, and the mask bit for the
particular event is set in the ataEventMask field is set. The calling
convention for the event handler is

pascal SInt16 (ataEHandlerPtr) (ATAEventRec*);

where the ATAEventRec is defined as follows:

typedef struct

{

UInt16 eventCode; // → ATA event code

UInt16 phyDrvRef; // → ID associated with

// the event

SInt32 drvrContext; // → context passed in

// by the driver

} ATAEventRec;

See “Notification of Device Events” beginning on page 127 for a list
of the ATA event codes.

drvrContext A value to be passed in when the event handler is called. This value
will be loaded into ATAEventRec before calling the event handler.

ataEventMask The mask defined in this field is used to indicate whether the event
handler should be called or not, based on the event. The event
handler will be called only if the mask for the event has been set (1).
If the mask is not set (0) for an event, the ATA Manager will take no
action. Table 7-5 lists the masks have been defined.

Table 7-5 Event masks

Bits Event Mask

$00 Null event

$01 Online event: a device has come online

$02 Offline event: a device has gone offline

$03 Device removed event: a device has been removed (taken out)

$04 Reset event: a device has been reset

$05 Offline request event: a request to take the drive offline

$06 Eject request event: a request to eject the drive

$07 Configuration update event: the system configuration has changed

$08–$1F Reserved for future expansion

C H A P T E R 7

Software for the ATA Hard Disk

ATA Manager Reference 105

RESULT CODES

ATA_DrvrDeregister 7

You can use the ATA_DrvrDeRegister function to deregister the selected drive. After
successful completion of this function, the driver reference number for the drive is set to
0, indicating that there is no driver in control of this device.

This function should be called when the controlling device is no longer available to the
registered driver (device ejection) or the device driver is being closed down. Typically,
this call is embedded in the Close() function of the driver.

The manager function code for the ATA_DrvrDeRegister function is $87.

There are two versions of the data structure for registration. The version is identified by
the ataPBVers field in the parameter block.

Two versions of the parameter block associated with this function are defined below:

// Version 1 (ataPBVers = 1)

structataDrvrRegister // parameter block structure

// for ataPBVers = 1

{

ataPBHdr // header information

SInt16 drvrRefNum; // not used

UInt16 FlagReserved; // reserved

UInt16 deviceNextID; // not used

SInt16 Reserved[21]; // reserved for future expansion

};

typedef struct ataDrvrRegister ataDrvrRegister;

// Version 2(ataPBVers = 2)

structataDrvrRegister // parameter block structure

// for ataPBVers = 2

{

ataPBHdr // header information

SInt16 drvrRefNum; // → driver reference number

UInt16 drvrFlags; // → driver flags; set to 0

UInt16 deviceNextID; // not used

SInt16 Reserved; // reserved -> should be zero

ProcPtr ataEHandlerPtr // → event handler routine ptr

SInt32 drvrContext; // → value to pass in along

// with the event handler

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present
paramErr Parameter error detected

C H A P T E R 7

Software for the ATA Hard Disk

106 ATA Manager Reference

UInt32 ataEventMask; // → masks of various events

// for event handler

SInt16 Reserved[14]; // reserved for future expansion

};

typedef struct ataDrvrRegister ataDrvrRegister;

In deregistration of a Notify-all driver, the ataEHandlerPtr field is used to match the
entry (because the deviceID field is invalid for registration and deregistration of the
Notify-all driver). If the driver is registered as both Notify-all and for a specific device,
the driver must deregister for each separately.

IMPORTANT

Notify-all device drivers must deregister
using the parameter version 2. ▲

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 94.
drvrRefNum This field is not used with the deregister function.
drvrFlags No bit definition has been defined for the field. This field shall be

set to 0 to ensure compatibility in the future.
deviceNextID Not used for this function.
Reserved Reserved. Should be set to 0
ataEHandlerPtr A pointer to driver’s event handler routine. This field is only used

for Notify-all driver deregistration. This field is not used for all
other deregistration. Because this field is used to identify the correct
Notify-all driver entry, this field must be valid for Notify-all driver
deregistration.

drvrContext Not used for this function.
ataEventMask Not used for this function.

RESULT CODES

ATA_EjectDrive 7

You can use the ATA_EjectDrive function to eject a device from a selected socket. You
must make sure that all partitions associated with the device have been dismounted
from the desktop.

The manager function code for the ATA_EjectDrive function is $89.

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present

C H A P T E R 7

Software for the ATA Hard Disk

ATA Manager Reference 107

The data structure of the function is as follows:

struct ataEject // configuration parameter block

{

ataPBHdr // header information

UInt16 Reserved[24]; // reserved

};

typedef struct ataEject ataEject;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 94.
Reserved[24] Field reserved for future use. To ensure future compatibility, all

reserved fields should be set to 0.

RESULT CODES

ATA_ExecIO 7

You can use the ATA_ExecIO function to perform data I/O transfers to or from an ATA
device. Your application must provide all the parameters needed to complete the
transaction prior to calling the ATA Manager. Upon return, the parameter block contains
the result of the request.

The manager function code for the ATA_ExecIO function is $01.

The parameter block associated with the ATA_ExecIO function is defined below:

struct ATA_ExecIO // ATA_ExecIO structure

{

ataPBHdr // see definition on page 94

SInt8 ataStatusReg; // ← last device status register image

SInt8 ataErrorReg; // ← last device error register

// (valid if bit 0 of Status field set)

SInt16 ataReserved; // reserved

UInt32 BlindTxSize; // → data transfer size

UInt8* ioBuffer; // ↔ data buffer ptr

UInt32 ataActualTxCnt;// ← actual number of bytes

// transferred

UInt32 ataReserved2; // reserved

devicePB RegBlock; // → device register images

UInt8* packetCDBPtr; // ATAPI packet command block pointer

UInt16 ataReserved3[6];// Reserved

};

typedef struct ATA_ExecIO ATA_ExecIO;

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present

C H A P T E R 7

Software for the ATA Hard Disk

108

ATA Manager Reference

Field descriptions

ataPBHdr

See the parameter block definition on page 94.

ataStatusReg

This field contains the last device status register image. See the
ATA/IDE specification for status register bit definitions.

ataErrorReg

This field contains the last device error register image. This field is
valid only if the error bit (bit 0) of the

Status

 register is set. See the
ATA/IDE specification for error register bit definitions.

ataReserved

Reserved. All reserved fields are set to 0 for future compatibility.

BlindTxSize

This field specifies the maximum number of bytes that can be
transferred for each interrupt or detection of a data request. Bytes
are transferred in blind mode (no byte-level handshake). Once an
interrupt or a data request condition is detected, the ATA Manager
transfers up to the number of bytes specified in the field from or to
the selected device. The typical number is 512 bytes.

ioBuffer

This field contains the host buffer address for the number of bytes
specified in the

ioReqCount

 field. Upon returning, this field is
updated to reflect data transfers. When the

SGType

 bits of the

ataFlags

 field are set, this field points to a scatter gather list. The
scatter gather list consists of series of

IOBlk

 entries defined as
follows:

struct IOBlk

{

UInt8* ioBuffer; //

↔

 data buffer ptr

UInt32 ioReqCount; //

↔

 transfer length

};

typedef struct IOBlk IOBlk;

ioReqCount

This field contains the number of bytes to transfer either from or to
the buffer specified in

ioBuffer

. Upon returning, the

ioReqCount

 field is updated to reflect data transfers (0 if
successful; otherwise, the number of bytes that remained to be
transferred prior to the error condition). When the

SGType

 bits of
the

ataFlags

 field are set, the

ioReqCount

 field contains the
number of scatter gather entries in the list pointed to by the

ioBuffer

 field.

ataActualTxCnt

This field contains the total number of bytes transferred for
this request.

ataReserved2

This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

RegBlock

This field contains the ATA device register image structure. Values
contained in this structure are written out to the device during the
command delivery state. The caller must provide the image before

C H A P T E R 7

Software for the ATA Hard Disk

ATA Manager Reference 109

calling the ATA Manager. The ATA device register image structure
is defined as follows:

struct Device_PB // device register images

{

UInt8 Features; // → features register image

UInt8 Count; // ↔ sector count

UInt8 Sector; // ↔ sector start/finish

UInt8 Reserved; // reserved

UInt16 Cylinder; // ↔ cylinder 68000 format

UInt8 SDH; // ↔ SDH register image

UInt8 Command; // → Command register image

};

typedef struct Device_PB Device_PB;

For ATAPI commands, the cylinder image must contain the
preferred PIO DRQ packet size to be writtern out to the Cylinder
High/Low registers during the command phase.

packetCDBPtr This field contains the packet pointer for ATAPI. The ATAPI bit of
the ProtocolType field must be set for this field to be valid.
Setting the ATAPI protocol bit also signals the manager to initiate
the transaction without the DRDY bit set in the status register of the
device. For ATA commands, this field should contain 0 to ensure
future compatibility. The packet structure for the ATAPI command
is defined as follows:

struct ATAPICmdPacket // ATAPI Command packet structure

{

SInt16 packetSize;// Size of command packet

// in bytes (exclude size)

SInt16 command[8];// The ATAPI command packet

};

typedef struct ATAPICmdPacket ATAPICmdPacket;

ataReserved3[6]
These fields are reserved. To ensure future compatibility, all
reserved fields should be set to 0.

RESULT CODES

noErr Successful completion; no error occurred
nsDrvErr Specified logical drive number does not exist
AT_AbortErr Command aborted bit set in error register
AT_RecalErr Track 0 not found bit set in error register
AT_WrFltErr Write fault bit set in status register
AT_SeekErr Seek complete bit not set upon completion

C H A P T E R 7

Software for the ATA Hard Disk

110 ATA Manager Reference

ATA_FindRefNum 7

You can use the ATA_FindRefNum function to determine whether a driver has been
installed for a given device. You pass in a device ID, and the function returns the current
driver reference number registered for the given device. A value of 0 indicates that no
driver has been registered. The deviceNextID field contains a device ID of the next
device in the list. The end of the list is indicated with a value of $FF.

To create a list of all drivers for the attached devices, pass in $FF for deviceID. This
causes deviceNextID to be filled with the first device in the list. Each successive driver
can be found by moving the value returned in deviceNextID into deviceID until the
function returns $FF in deviceNextID, which indicates the end of the list.

The manager function code for the ATA_FindRefNum function is $86.

Two versions of the parameter block associated with this function are defined below:

// Version 1 (ataPBVers = 1)

structataDrvrRegister // parameter block structure

// for ataPBVers = 1

{

ataPBHdr // header information

SInt16 drvrRefNum; // ← driver reference number

UInt16 FlagReserved; // reserved; set to 0

UInt16 deviceNextID; // ← used to specify the

// next drive ID

SInt16 Reserved[21]; // reserved for future expansion

};

typedef struct ataDrvrRegister ataDrvrRegister;

AT_UncDataErr Uncorrected data bit set in error register
AT_CorDataErr Data corrected bit set in status register
AT_BadBlkErr Bad block bit set in error register
AT_DMarkErr Data mark not found bit set in error register
AT_IDNFErr ID-not-found bit set in error register
ATABusy Selected device busy (BUSY bit set)
ATAMgrNotInitialized ATA Manager not initialized
ATAPBInvalid Invalid device base address detected (= 0)
ATAQLocked I/O queue locked—cannot proceed
ATAReqInProg I/O channel in use—cannot proceed
ATATransTimeOut Timeout: transaction time-out detected
ATAUnknownState Device in unknown state

C H A P T E R 7

Software for the ATA Hard Disk

ATA Manager Reference 111

// Version 2(ataPBVers = 2)

structataDrvrRegister // parameter block structure

// for ataPBVers = 2

{

ataPBHdr // header information

SInt16 drvrRefNum; // ← driver reference number

UInt16 drvrFlags; // → reserved; set to 0

UInt16 deviceNextID; // ← used to specify the

// next drive ID

SInt16 Reserved; // reserved -> should be 0

ProcPtr ataEHandlerPtr // ← event handler routine pointer

SInt32 drvrContext; // ← value to pass in along with

// the event handler

UInt32 ataEventMask; // ← current setting of the mask

// of events for the event handler

SInt16 Reserved[14]; // reserved for future expansion

};

typedef struct ataDrvrRegister ataDrvrRegister;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 94.
drvrRefNum Upon return, this field contains the reference number for the device

specified in the deviceID field of the ataPBHdr data.
FlagReserved This field is reserved. To ensure future compatibility, all reserved

fields should be set to 0.
deviceNextID Upon return, this field contains the deviceID of the next device on

the list.
Reserved[21] This field is reserved. To ensure future compatibility, all reserved

fields should be set to 0.

RESULT CODES

ATA_GetDevConfig 7

You can use the ATA_GetDevConfig function to get the current configuration of a
device. The configuration includes current voltage settings and access characteristics.
This function can be issued to any bus that the ATA Manager supports. However, some
fields returned may not be valid for the particular device type (for example, the voltage
settings for the internal device are invalid).

The manager function code for the ATA_GetDevConfig function is $8A.

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present

C H A P T E R 7

Software for the ATA Hard Disk

112 ATA Manager Reference

The data structure for the function is as follows:

struct ataGetDevConfiguration// Parameter block

{

ataPBHdr // header information

SInt32 ConfigSetting // ↔ socket configuration setting

UInt8 ataIOSpeedMode // reserved for future expansion

UInt8 Reserved3; // reserved for word alignment

UInt16 pcValid; // ↔ mask indicating which

// PCMCIA-unique fields

// are valid, when set

UInt16 RWMultipleCount; // reserved for future expansion

UInt16 SectorsPerCylinder;// reserved for future expansion

UInt16 Heads; // reserved for future expansion

UInt16 SectorsPerTrack; // reserved for future expansion

UInt16 socketNum; // ← socket number used by

// CardServices

UInt8 socketType; // ← specifies the socket type

UInt8 deviceType; // ← specifies the active

// device type

// Fields below are valid according to the bit mask

// in pcValid (PCMCIA unique fields)

UInt8 pcAccessMode; // ↔ access mode of the socket:

// memory or I/O

UInt8 pcVcc; // ↔ Vcc voltage in tenths

UInt8 pcVpp1; // ↔ Vpp 1 voltage in tenths

UInt8 pcVpp2; // ↔ Vpp 2 voltage in tenths

UInt8 pcStatus; // ↔ Card Status register setting

UInt8 pcPin; // ↔ Card Pin register setting

UInt8 pcCopy; // ↔ Card Socket/Copy register

// setting

UInt8 pcConfigIndex; // ↔ Card Option register setting

UInt16 Reserved[10]; // reserved

};

typedef struct ataGetDevConfiguration ataGetDevConfiguration;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 94.
ConfigSetting This field indicates various configuration settings. The following

bits have been defined:
Bits 5–0: Reserved for future expansion (set to 0)
Bit 6: ATAPI packet DRQ handling setting (only applies to ATAPI)
1: The function waits for an interrupt to happen before sending the
ATAPI command packet.

C H A P T E R 7

Software for the ATA Hard Disk

ATA Manager Reference 113

0: The function waits for the assertion of DRQ bit in the status
register before sending the ATAPI command packet. This is the
default setting.
Bits 7–31: Reserved (set to 0)

ataIOSpeedMode This field is reserved for future expansion.
pcValid This field indicates which of the PCMCIA unique fields contain

valid values. Table 7-6 on page 114 lists the fields corresponding to
each bit.

RWMultipleCount This field is reserved for future expansion.
SectorsPerCylinder

This field is reserved for future expansion.
Heads This field is reserved for future expansion.
SectorsPerTrack

This field is reserved for future expansion.
socketNum This field contains the socket number used by Card Services for the

device. This value will be needed to request services directly from
Card Services (such as GetTuple). A value of $FF indicates that the
selected device is not a Card Services client.

socketType This field specifies the type of the socket. Possible values are
$00 = unknown socket type
$01 = internal ATA bus
$02 = Media Bay socket
$03 = PCMCIA socket

deviceType This field specifies the type of the device. Possible values are
$00 = unknown type or no device present
$01 = standard ATA device
$02 = ATAPI device
$03 = PCMCIA ATA device

pcAccessMode This field specifies the current access mode of the device; it
is valid only if bit 0 of the pcValid field is set, and
only for ATA_GetDeviceConfiguration, not for
ATA_SetDeviceConfiguration. Possible values are:
0 = I/O mode
1 = memory mode

pcVcc This field indicates the current voltage setting of Vcc in tenths of a
volt. It is valid only if bit 1 of the pcValid field is set.

pcVpp1 This field indicates the current voltage setting of Vpp1 in tenths of a
volt. It is valid only if bit 2 of the pcValid field is set.

pcVpp2 This field indicates the current voltage setting of Vpp2 in tenths of a
volt. It is valid only if bit 3 of the pcValid field is set.

pcStatus This field indicates the current Card register setting of the PCMCIA
device. It is valid only if bit 4 of the pcValid field is set.

pcPin This field indicates the current Card Pin Register setting of the
PCMCIA device. It is valid only if bit 5 of the pcValid field is set.

C H A P T E R 7

Software for the ATA Hard Disk

114 ATA Manager Reference

pcCopy This field indicates the current Card Socket/Copy register setting
of the PCMCIA device. It is valid only if bit 6 of the pcValid field
is set.

pcConfigIndex This field indicates the current Card Option register setting of the
PCMCIA device. It is valid only if bit 7 of the pcValid field is set.

RESULT CODES

ATA_GetDevLocationIcon 7

You can use the ATA_GetDevLocationIcon function to get the location icon data and
the icon string for the selected device. The length of the icon data returned is fixed at 256
bytes; the string is delimited by the null character. Both the icon data and location string
are copied to buffers pointed to by the structure. Data is not copied if the corresponding
pointer is set to 0.

The locationString field is in C string format. You may have to call c2pstr()
function to convert to a Pascal string before returning the string to the operating system.

The manager function code for the ATA_GetDevLocationIcon function is $8C.

Table 7-6 Bits in pcValid field

Bits Field validity indicated

0 pcAccessMode field is valid, when set

1 pcVcc field is valid, when set

2 pcVpp1 field is valid, when set

3 pcVpp2 field is valid, when set

4 pcStatus field is valid, when set

5 pcPin field is valid, when set

6 pcCopy field is valid, when set

7 pcConfigIndex field is valid, when set

8–14 Reserved (set to 0)

15 Reserved

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present

C H A P T E R 7

Software for the ATA Hard Disk

ATA Manager Reference 115

The data structure for the DrvLocationIcon function is as follows:

struct DrvLocationIcon

{

ataPBHdr // see above definition

SInt16 ataIconType; // → icon type specifier

SInt16 ataIconReserved; // reserved; set to zero

SInt8 *ataLocationIconPtr;

// → pointer to icon data buffer

SInt8 *ataLocationStringPtr;

// → pointer to location string

// data buffer

SInt16 Reserved[18]; // reserved

};

typedef struct DrvLocationIcon DrvLocationIcon;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 94.
ataIconType This field defines the type of icon desired as follows:

$01 - large black-and-white icon with mask
$81 - same as 1, but ProDOS icon

ataIconReserved
Reserved to be longword aligned. This field should be set to 0 for
future compatibility.

ataLocationIconPtr
A pointer to the location icon buffer. When the pointer is nonzero,
the function copies the icon data to the buffer.

ataLocationStringPtr
A pointer to the location string buffer. When the pointer is nonzero,
the function copies the string data to the buffer.

RESULT CODES

ATA_Identify 7

You can use the ATA_Identify function to obtain device identification data from the
selected device. The identification data contains information necessary to perform I/O
to the device. Refer to the ATA/IDE specification for the format and the information
description provided by the data.

The manager function code for the ATA_Identify function is $13.

noErr Successful completion; no error occurred
ATAInternalErr The icon data and string could not be found

C H A P T E R 7

Software for the ATA Hard Disk

116

ATA Manager Reference

If the

ATAPI

 bit is set in the protocol type field of the header, the ATA Manager performs
the ATAPI Identify command ($A1).

The parameter block associated with this function is defined below:

struct ataIdentify // parameter block structure

{

ataPBHdr // see definition on page 94

SInt8 ataStatusReg; //

←

 last ATA status image

SInt8 ataErrorReg; //

←

 last ATA error image;

// valid if error bit set

SInt16 ataReserved; // reserved

UInt32 BlindTxSize; //

←

 this field is set to 512

// upon returning

UInt8 *DataBuf; // buffer for the identify data

// (512 bytes)

UInt32 ataRequestCount; //

←

 indicates remaining

// byte count

UInt32 ataActualTxCnt; //

←

 actual transfer count

UInt32 ataReserved2; // reserved

devicePB RegBlock; //

←

 task file image sent for

// the command

UInt16 Reserved3[8]; // used internally by ATA Manager

};

typedef struct ataIdentify ataIdentify;

Field descriptions

ataPBHdr

See the definition of the

ataPBHdr

 parameter block on page 94.

ataStatusReg

Status register image for the last ATA task file.

ataErrorReg

Error register image last ATA task file . This field is only valid if the
LSB (error bit) of the

ataStatusReg

 field is set.

BlindTxSize

Byte size of the Identify data.

DataBuf

Pointer to the data buffer for the device identify data. The length of
the buffer must be at least 512 bytes.

ataReserved, ataReserved2,

Reserved3[8]

These fields are reserved. To ensure future compatibility, all
reserved fields should be set to 0.

RESULT CODES

noErr

Successful completion; no error occurred

nsDrvErr

Specified device is not present

C H A P T E R 7

Software for the ATA Hard Disk

ATA Manager Reference 117

ATA_MgrInquiry 7

You can use the ATA_MgrInquiry function to get information, such as the version
number, about the ATA Manager. This function may be called before initialization of
the manager; however, the system configuration information may be invalid.

The manager function code for the ATA_MgrInquiry function is $90.

The parameter block associated with this function is defined below:

struct ATA_MgrInquiry // ATA inquiry structure

{

ataPBHdr // see definition on page 94

NumVersion MgrVersion // ← manager version number

UInt8 MGRPBVers; // ← manager PB version number

// supported

UInt8 Reserved1; // reserved

UInt16 ataBusCnt; // ← number of ATA buses in system

UInt16 ataDevCnt; // ← number of ATA devices detected

UInt8 ataMaxMode; // ← maximum I/O speed mode

UInt8 Reserved2; // reserved

UInt16 IOClkResolution; // ← I/O clock resolution in nsec

UInt16 Reserved[17]; // reserved

};

typedef struct ATA_MgrInquiry ATA_MgrInquiry;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 94.
MgrVersion Upon return, this field contains the version number of the

ATA Manager.
MGRPBVers This field contains the number corresponding to the latest version

of the parameter block supported. A client may use any parameter
block definition up to this version.

Reserved Reserved. All reserved fields are set to 0 for future compatibility.
ataBusCnt Upon return, this field contains the total number of ATA buses in

the system. This field contains 0 if the ATA Manager has not been
initialized.

ataDevCnt Upon return, this field contains the total number of ATA devices
detected on all ATA buses. The current architecture allows only one
device per bus. This field will contain 0 if the ATA Manager has not
been initialized.

ataMaxMode This field specifies the maximum I/O speed mode that the ATA
Manager supports. Refer to the ATA/IDE specification for
information on mode timing.

C H A P T E R 7

Software for the ATA Hard Disk

118 ATA Manager Reference

IOClkResolution
This field contains the I/O clock resolution in nanoseconds. The
current implementation doesn’t support the field (returns 0).

Reserved[17] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

RESULT CODES

ATA_ModifyDrvrEventMask 7

You can use the ATA_ModifyDrvrEventMask function for modifying an existing driver
event mask that has been specified by the ATA_DrvrRegister function. Modifying the
mask for a nonregistered bus has no effect.

This function is only available with ataPBVers of two (2).

The manager function code for the ATA_ModifyDrvrEventMask function is $88.

The data structure of the function is as follows:

struct ataModifyEventMask

{

ataPBHdr // header information

UInt32 modifiedEventMask;// → new event mask value

SInt16 Reserved[22]; // reserved for future expansion

};

typedef struct ataModifyEventMask ataModifyEventMask;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 94.
modifiedEventMask

New event mask setting. The definitions of the subfields are given
in Table 7-5 on page 104.

Reserved[24] Field reserved for future use. To ensure future compatibility, all
reserved fields should be set to 0.

RESULT CODES

noErr 0 Successful completion; no error occurred

noErr Successful completion; no error occurred
ATAInternalErr The icon data and string could not be found

C H A P T E R 7

Software for the ATA Hard Disk

ATA Manager Reference

119

ATA_NOP 7

The

ATA_NOP

 function performs no operation across the interface and does not
change the state of either the manager or the device. It returns

noErr

 if the drive
number is valid.

The manager function code for the

ATA_NOP

 function is $00.

The parameter block associated with this function is defined below:

lstruct ataNOP // parameter block structure

{

ataPBHdr // see definition on page 94

UInt16 Reserved[24]; // reserved

};

typedef struct ataNOP ataNOP;

Field descriptions

ataPBHdr

See the definition of the

ataPBHdr

 on page 94.

There are no additional function-specific variations on

ataPBHdr

 for this function.

RESULT CODES

ATA_QRelease 7

You can use the

ATA_QRelease

 function to release a frozen I/O queue.

When the ATA Manager detects an I/O error and the

QLockOnError

 bit of the
parameter block is set for the request, the ATA Manager freezes the queue for the
selected device. No pending or new requests are processed or receive status until the
queue is released through the

ATA_QRelease

 command. Only those requests with
the

Immediate

 bit set in the

ATAFlags

 field of the

ataPBHdr

 parameter block are
processed. Consequently, for the ATA I/O queue release command to be processed, it
must be issued with the

Immediate

 bit set in the parameter block. An ATA I/O queue
release command issued while the queue isn’t frozen returns the

noErr

 status.

The manager function code for the

ATA_QRelease

 function is $04.

noErr

Successful completion; no error occurred

nsDrvErr

Specified device is not present

C H A P T E R 7

Software for the ATA Hard Disk

120 ATA Manager Reference

The parameter block associated with this function is defined as follows:

struct ataQRelease // Parameter block structure

{

ataPBHdr // See definition on page 94

UInt16 Reserved[24]; // Reserved

};

typedef struct ataQRelease ataQRelease;

Field descriptions

ataPBHdr See the definition of ataPBHdr on page 94.

There are no additional function-specific variations on ataPBHdr for this function.

RESULT CODES

ATA_RegAccess 7

You can use the ATA_RegAccess function to gain access to a particular device register
of a selected device. This function is used for diagnostic and error recovery processes.

The manager function code for the ATA_RegAccess function is $12.

Two versions of the parameter block associated with this function are defined below:

// Version 1 (ataPBVers = 1)

struct ataRegAccess // parameter block structure

// for ataPBVers of 1

{

ataPBHdr // see definition on page 94

UInt16 RegSelect; // → Device Register selector

union {

UInt8 byteRegValue; // ↔ byte register value read

// or to be written

UInt16 wordRegValue; // ↔ word register value read

// or to be written

} registerValue;

UInt16 Reserved[22]; // reserved

};

typedef struct ataRegAccess ataRegAccess;

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present
ATAMgrNotInitialized ATA Manager not initialized

C H A P T E R 7

Software for the ATA Hard Disk

ATA Manager Reference 121

// Version 2 (ataPBVers = 2)

struct ataRegAccess // parameter block structure

// for ataPBVers of 2

{

ataPBHdr // see definition on page 94

UInt16 RegSelect; // → Device Register selector

union {

UInt8 byteRegValue; // ↔ register value read or

// to be written

UInt16 wordRegValue; // ↔ word register value read

// or to be written

} registerValue;

// The following fields are valid only if RegSelect = $FFFF

UInt16 regMask; // → mask indicating which

// combination of registers

// to access.

devicePB ri; // ↔ register images

// (Feature - Command)

UInt8 altStatDevCntrReg; // ↔ Alternate Status (R) or

// Device Control (W) register

UInt8 Reserved3; // reserved (set to 0)

UInt16 Reserved[16]; // reserved

};

typedef struct ataRegAccess ataRegAccess;

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 94.
RegSelect This field specifies which of the device registers to access. The

selectors for the registers supported by the ATA_RegAccess
function are listed in Table 7-7.

RegValue This field represents the value to be written (ATAioDirection =
01 binary) or the value read from the selected register
(ATAioDirection = 10 binary). For the Data register, this field is a
16-bit field; for other registers, an 8-bit field. In the case where the
RegSelect field is set to $FFFF (ataPBVers = 2 or higher), this field
is sued to store the upper byte of the Data Register image.

Reserved[2] This field is unused except in the cases where RegSelect is set to
either 0 (Data register) or $FFFF (more than one register selected).
In those two cases, this field contains the lower byte of the Data
register image.

regMask This field is only valid for ataPBVers field of 2 or higher. This field
indicates what combination of the taskfile registers should be
accessed. A bit set to one indicates either a read or a write to the
register. A bit set to zero performs no operation to the register. Bit
assignments are as shown in Table 7-8.

C H A P T E R 7

Software for the ATA Hard Disk

122 ATA Manager Reference

ri This field is only valid for ataPBVers field of 2 or higher. This field
contains register images for Error/Features, Sector Count, Sector
Number, Cylinder Low, Cylinder High, SDH, and Status/Command.
Only those register images indicated in the regMask field are
valid. Refer to the section “ATA_ExecIO” on page 107 for the
structure definition.

altStatDevCntrReg
This field is only valid for ataPBVers value of 2 or higher. This
field contains the register image for Alternate Status (R) or Device
Control (W) register. This field is valid if the Alternate Status/
Device Control Register bit in the regMask field is set to 1.

Table 7-7 ATA register selectors

Selector name Selector Register description

DataReg 0 Data register (16-bit access only)

ErrorReg 1 Error register (R) or features register (W)

SecCntReg 2 Sector count register

SecNumReg 3 Sector number register

CylLoReg 4 Cylinder low register

CylHiReg 5 Cylinder high register

SDHReg 6 SDH register

StatusReg
CmdReg

7 Status register (R) or command register (W)

AltStatus
DevCntr

$0E Alternate status (R) or device control (W)

$FFFF More than one register access (valid only for
ataPBVers = 2 or higher)

Table 7-8 Register mask bits

Bit number Definition

0 Data register

1 Error register (R) or Feature register (W)

2 Sector Count register

3 Sector Number register

4 Cylinder Low register

5 Cylinder High register

6 SHD register

continued

C H A P T E R 7

Software for the ATA Hard Disk

ATA Manager Reference 123

When reading or writing ATA registers, use the following order:

1. Data register

2. Alternate Status register (R) or Device Control register (W)

3. Error register (R) or Feature register (W)

4. Sector Count register

5. Sector Number register

6. Cylinder Low register

7. Cylinder High register

8. Status register (R) or Command register (W)

RESULT CODES

ATA_ResetBus 7

You can use the ATA_ResetBus function to reset the specified ATA bus. This function
performs a soft reset operation to the selected ATA bus. The ATA interface doesn’t
provide a way to reset individual units on the bus. Consequently, all devices on the bus
will be reset.

The manager function code for the ATA_ResetBus function is $11.

IMPORTANT

You should avoid calling this function under interrupt because it may
take up to several seconds to complete. ▲

▲ W A R N I N G

Use this function with caution; it may terminate any active requests to
devices on the bus. ▲

If the ATAPI bit is set in the protocol type field of the header, the Manager will perform
the ATAPI reset command ($08).

7 Status register (R) or Command register (W)

8–13 Reserved (set to 0)

14 Alternate Status register (R) or Device Control register (W)

15 Reserved (set to 0)

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present

Table 7-8 Register mask bits (continued)

Bit number Definition

C H A P T E R 7

Software for the ATA Hard Disk

124 ATA Manager Reference

Upon completion, this function flushes all I/O requests for the bus in the queue. Pending
requests are returned to the client with the ATAAbortedDueToRst status.

The parameter block associated with this function is defined below:

struct ATA_ResetBus // ATA reset structure

{

ataPBHdr // see definition on page 94

SInt8 Status; // ← last ATA status register image

SInt8 Reserved; // reserved

UInt16 Reserved[23]; // reserved

};

typedef struct ATA_ResetBus ATA_ResetBus;

Field descriptions

ataPBHdr See the definition of the ataPBHdr parameter block on page 94.
Status This field contains the last device status register image following

the bus reset. See the ATA/IDE specification for definitions of the
status register bits.

Reserved[23] This field is reserved. To ensure future compatibility, all reserved
fields should be set to 0.

RESULT CODES

ATA_SetDevConfiguration 7

You can use the ATA_SetDevConfig function to set the configuration of a device. It
contains the current voltage setting and access characteristics. This function can be
issued to any bus that the ATA Manager controls. However, some field settings may be
inappropriate for the particular device type (for example, setting the voltage for the
internal device).

The manager function code for the ATA_SetDevConfig function is $8B.

The data structure of the ataSetDevConfiguration function is as follows:

struct ataSetDevConfiguration // configuration parameter block

{

ataPBHdr // header information

SInt32 ConfigSetting // ↔ socket configuration setting

UInt8 ataIOSpeedMode // reserved for future expansion

UInt8 Reserved3; // reserved for word alignment

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present

C H A P T E R 7

Software for the ATA Hard Disk

ATA Manager Reference 125

UInt16 pcValid; // ↔ mask indicating which

// PCMCIA-unique fields are valid

UInt16 RWMultipleCount; // reserved for future expansion

UInt16 SectorsPerCylinder;// reserved for future expansion

UInt16 Heads; // reserved for future expansion

UInt16 SectorsPerTrack; // reserved for future expansion

UInt16 Reserved4[2]; // reserved

// fields below are valid according to the bit mask

// in pcValid (PCMCIA unique fields)

UInt8 pcAccessMode; // ↔ access mode of the socket:

// memory or I/O

UInt8 pcVcc; // ↔ Vcc voltage

UInt8 pcVpp1; // ↔ Vpp 1 voltage

UInt8 pcVpp2; // ↔ Vpp 2 voltage

UInt8 pcStatus; // ↔ Card Status register setting

UInt8 pcPin; // ↔ Card Pin register setting

UInt8 pcCopy; // ↔ Card Socket/Copy register

// setting

UInt8 pcConfigIndex; // ↔ Card Option register setting

UInt16 Reserved[10]; // reserved

};

typedef struct ataSetDevConfiguration ataSetDevConfiguration;

Field descriptions

ataPBHdr See the ataPBHdr parameter block definition on page 94.
ConfigSetting This field controls various configuration settings. The following bits

have been defined:
Bits 0–5: Reserved for future expansion (set to 0)
Bit 6: ATAPI packet DRQ handling setting (applies only to ATAPI)
1 = The function waits for an interrupt to happen before sending the
ATAPI command packet.
0 = The function waits for the assertion of DRQ bit in the status
register before sending the ATAPI command packet. This is the
default setting.
Bits 7–31: Reserved (set to 0)

ataIOSpeedMode This field is reserved for future expansion.
pcValid This field indicates which of the PCMCIA unique fields contain

valid values. Table 7-6 on page 114 lists the fields corresponding to
each bit.

RWMultipleCount
This field is reserved for future expansion.

SectorsPerCylinder
This field is reserved for future expansion.

Heads This field is reserved for future expansion.

C H A P T E R 7

Software for the ATA Hard Disk

126 Using the ATA Manager With Drivers

SectorsPerTrack
This field is reserved for future expansion.

pcAccessMode This field is valid only if the bit 0 of the pcValid field is set. The
value is written to the access mode control. Possible values are:
0 = I/O mode
1 = memory mode

pcVcc This field indicates the new voltage setting of Vcc in tenths of a volt.
It is valid only if the bit 1 of the pcValid field is set.

pcVpp1 This field indicates the new voltage setting of Vpp1 in tenths of a
volt. It is valid only if the bit 2 of the pcValid field is set.

pcVpp2 This field indicates the new voltage setting of Vpp2 in tenths of a
volt. It is valid only if the bit 3 of the pcValid field is set.

pcStatus This field indicates the new Card Register setting of the PCMCIA
device. It is valid only if the bit 4 of the pcValid field is set.

pcPin This field indicates the new Card Pin Register setting of the
PCMCIA device. It is valid only if the bit 5 of the pcValid field is
set.

pcCopy This field indicates the new Card Socket/Copy Register setting of
the PCMCIA device. It is valid only if the bit 6 of the pcValid field
is set.

pcConfigIndex This field indicates the new Card Option Register setting of the
PCMCIA device. It is valid only if the bit 7 of the pcValid field
is set.

RESULT CODES

Using the ATA Manager With Drivers 7

This section describes several operations dealing with drivers:

■ notification of device events

■ loading a device driver

■ old and new driver entry points

■ loading a driver from the media

■ notification of Notify-all drivers

■ notification of the ROM driver

noErr Successful completion; no error occurred
nsDrvErr Specified device is not present

C H A P T E R 7

Software for the ATA Hard Disk

Using the ATA Manager With Drivers 127

Notification of Device Events 7
Due to the asynchronous event-reporting mechanism of the Card Services Manager,
the ATA Manager notifies its clients by a callback mechanism using the client’s event
handler. Each client that is to be notified of device events must register its event handler
at the time of driver registration. Refer to the section “ATA_DrvrRegister” beginning on
page 102 for the calling convention of the event handler.

The event codes that have been defined are listed in Table 7-9.

Table 7-9 Event codes send by the ATA Manager

Event
code Event description

$00 Null event; signifies no real event. The client should simply return with
no error code.

$01 Online event; signifies that a device has come online. This event may
happen as a result of several actions:
■ A device has been inserted into the socket.
■ A device has been repowered from sleep/low power.

The client should let the operating system know about the presence of the
device (if it has not done so already), verify the device type, and upload
any device characteristics.

$02 Offline event; signifies that the device has gone offline. This event may
happen as a result of a device being manually removed from the socket.

The client should let the operating system know that the device has gone
offline by setting the offline bit, if appropriate.

$03 Device removed event; signifies that the device has been ejected
gracefully. The client should clean up the internal variables to reflect the
latest state of the socket. The client may notify the operating system of the
event.

$04 Reset event; signifies that the device has been reset. This indicates that any
pending request or the settings may have been aborted.

$05 Offline request event; requests permission for the device to go offline.

$06 Eject request event; requests permission to eject the drive.

$07 Configuration update event; signifies that the system configuration
related to I/O subsystems may have changed. This event may imply that
the number of ATA buses and devices has changed. Consequently, if the
client is a driver capable of handling more than one device, it may want to
query the manager for the current configuration.

C H A P T E R 7

Software for the ATA Hard Disk

128 Using the ATA Manager With Drivers

Device Driver Loading 7
This section describes the sequence and method of driver installation, and the
recommended driver initialization sequence.

The operating system attempts to install a device driver for a given ATA device in the
following instances:

■ during system startup or restart

■ during accRun, following the drive insertion

■ each time it is called to register a Notify-all driver

Three classes of drivers are identified and discussed below. The driver loading and
initialization sequence is as follows:

1. Media driver. The driver on the media is given the highest priority.

2. Notify-all drivers. Any INIT drivers are given the next priority.

3. ROM driver. The built-in ROM driver is loaded if no other driver is found.

The initialization sequences for the three driver classes are described in “Loading a
Driver From the Media” on page 130.

Once the driver loading and intitialization sequence has been performed for a particular
device, the process is not repeated until one of the following situations occurs:

■ system restart

■ device ejection followed by an insertion

■ shutdown and re-initialization of the manager; but only if the existingGlobalPtr
field of the parameter block is invalid.

■ a Notify-all driver registration occurs. In this case, only the registering driver is
notified of the drive online.

New API Entry Point for Device Drivers 7

Two entry points into each ATA driver are currently defined, for the old API and the
new API. Use of the new API is strongly recommended. The differences between the two
APIs are as follows:

■ Entry point: in the old API, the entry point is offset 0 bytes from the start of the
driver; in the new API, it is offset 8 bytes from the start of the driver (the same as
with SCSI drivers).

■ D5 register: In the old API, the input parameter in the D5 register contains just the
bus ID; in the new API, the D5 register contains the devIdent parameters.

Table 7-10 shows the contents of the D5 register, high-order bits first, for the old API
(calls offset 0 bytes into the driver).

C H A P T E R 7

Software for the ATA Hard Disk

Using the ATA Manager With Drivers 129

Table 7-11 shows the contents of the D5 register, high-order bits first, for the new API.
(calls offset 8 bytes into the driver)

IMPORTANT

ATA Manager version 1.0 uses the old API; the ATA Manager
version 2.0 uses the new API. ▲

Table 7-10 Input parameter bits for the old API

Bits Value Definition

31–24 0 Reserved; set to 0

23–16 0 Reserved; set to 0

15–8 0 Reserved; set to 0

7–0 ATA bus ID The bus ID where the device resides. This is the ID
used to communicate with the ATA Manager.

Table 7-11 Input parameter bits for the new API

Bits Value Definition

31–24 Reserved In this byte, bits 29–31 are currently defined. All other bits
should be set to 0.

Bit 31 1 = load at run time (RAM based)
 0 = load at startup time (ROM based)

Bit 30 1 = mount volumes associated with this drive
0 = don’t mount any volume associated with
this drive

Bit 29 1 = new API entry (use 8-byte offset)
 0 = old API entry (use 0-byte offset)

This bit is set internally by each driver.

23–16 ATA bus ID The bus ID where the device resides. This is the ID used to
communicate with the ATA Manager.

15–8 Device ID The device ID within the given bus. This field is used to
identify the device on a particular bus. The current and
previous ATA Manager implementations assume that the
device ID field is always zero.

7–0 Reserved Reserved; set to 0

C H A P T E R 7

Software for the ATA Hard Disk

130 Using the ATA Manager With Drivers

Loading a Driver From the Media 7

Upon detection of a device insertion, the driver loader, an extension of the ATA Manager,
initiates a driver load operation during accRun time. The driver loader searches the
DDM and partition maps of the media. If an appropriate driver is found, the driver
loader allocates memory in the system heap and loads the driver.

For the old API, the driver is opened by jumping to the first byte of the driver code with
the D5 register containing the bus ID of the device. For the new API, the driver is opened
by jumping to the eighth byte of the driver code with the D5 register containing the new
API definition.

The appropriate driver is identified by following fields:

■ ddType = $701 for Mac OS

■ partition name = Apple_Driver_ATA

The media driver should be capable of handling both old and new APIs. The Quadra 630
uses the old API; other Macintosh models use the new API.

The typical sequence of the media driver during the Open() call is as follows:

1. Allocate driver globals

2. Initialize the globals

3. Install any system tasks, such as VBL, time manager, shutdown procedure, and the
like. Initialize the device and its parameters

4. Register the device with the ATA Manager. The driver is expected to fail the Open()
operation if an error is returned from the driver registration call for a given device.

The installed driver is expected to return the following information in D0:

■ The upper 16-bit word contains the driver reference number corresponding to the
Unit Table entry. This field is only valid when the lower 16-bits of D0 is 0. The
reference number returned must be less than 0 to be valid.

■ The lower 16-bit word contains the status of the driver Open() operation. A value of 0
indicates no error.

Notify-All Driver Notification 7

When an error is returned from the media driver loading, the driver load function then
calls the Notify-all drivers, one by one. This driver type is determined from the driver
registration (–1 in the deviceID field of the driver registration parameter block). Unlike
the media driver, this driver is notified of a device insertion by means of the callback
mechanism at accRun time, when the manager calls the driver with an online event.
Consequently, each Notify-all driver must provide a callback routine pointer in the

C H A P T E R 7

Software for the ATA Hard Disk

Using the ATA Manager With Drivers 131

driver registration. The driver may get a series of online event notifications during the
Notify-all registration. The driver is assumed to be installed in system (for example, the
INIT driver). Refer to “Notification of Device Events” on page 127 for the event opcode
and the definition of the structure passed in.

Upon returning from the call, each Notify-all driver must provide a status indicating
whether the driver controls the specified device or not. A status of 0 indicates that the
driver controls the device; a nonzero status indicates that the driver doesn’t control
the device.

The calling of the Notify-all drivers continues until a 0 status is received from one of the
registered drivers or until the end of the list is reached.

The typical sequence of the notify-all driver during the online event handling is
as follows:

1. Check for the presence and the device type.

2. If the driver controls this device, allocate and initialize global variables.

3. Initialize the device and its parameters.

4. Perform driver registration for the device with the manager. The driver should release
its ownership of the device and return a nonzero status if the driver registration fails.

ROM Driver Notification 7

If no driver indicates that it controls the device, the ATA Manager calls the ATA hard
disk driver in the system ROM. The ROM driver is called only for a hard disk device. For
the Macintosh 630 models, as in the case of the media driver, the called address is the
first byte of the driver. For all other Macintosh models, the called address is offset by
8 bytes. The input and the output of the driver and the Open() sequence are the same for
both the media driver and the ROM driver.

Device Driver Purging 7
When a device removal event is detected, an attempt is made to close the device, to
remove it from the unit table, and to dispose of the corresponding driver in memory. A
key function in supporting this feature is a new driver Gestalt call. Driver support for
this call is strongly recommended.

The driver Gestalt selector for the function is 'purg'. The call provides following
information to the driver loader:

■ the starting location of the driver

■ the purge permissions: close(), DrvrRemove(), and DisposePtr()

C H A P T E R 7

Software for the ATA Hard Disk

132 Using the ATA Manager With Drivers

The following structure describes the response associated with the purge call. The
description of this and other driver gestalt calls can be found in the Driver Gestalt
documentation in Designing PCI Cards and Drivers for Power Macintosh computers.

struct DriverGestaltPurgeResponse

// driver purge permission structure

{

SInt16 purgePermission; // <--: purge response

// 0 = do not change the

// state of the driver

// 3 = do Close() and

// DrvrRemove() this driver

// refnum, but don't

// deallocate driver code

// 7 = do Close(),

// DrvrRemove(), and

// DisposePtr()

SInt16 purgeReserved;

UniversalProcPtr purgeDrvrPointer;// <--: starting address

// of the driver

// (valid only if disposePtr

// permission is given)

};

The driver must either return a status error indicating that the call is not supported, or
return one of the three values defined in the purgePermission field of the response
structure described above. If an error or an illegal value is returned in response to the
call, then the manager treats as if the response of 0 is received. The three possible purge
permissions are listed in Table 7-12. All other response values are reserved and should
not be used.

Table 7-12 Purge permissions and responses

Purge permissions

Response Close() DrvrRemove() DisposePtr()

7 √ √ √

3 √ √

0

C H A P T E R 7

Software for the ATA Hard Disk

Using the ATA Manager With Drivers 133

Upon receiving of a response, the manager purge sequence is as follows:

if a response of 3 or 7

if ((err = PBClose()) == noErr)

/* close the driver down*/

{

if (a response of 7)

DisposePtr (); /* dispose the driver memory*/

DrvrRemove (); /* remove it from the UTable*/

}

The driver Close() permission applies only to the corresponding Unit Table entry. In
other words, if the driver is used to control multiple devices (such as multiple Unit Table
entries), then the Close() should apply only to the particular device with the matching
driver reference number. The other devices must remain operational.

The registered driver must make the decision as to what value to return in response to
the call. Some examples are listed below:

■ If the driver is in control of any other device, it should return a response of 3;
the driver closes the particular device down, but the driver stays resident for
other devices.

■ If the driver must remain available for other potential device insertion, it should
return a response of 3.

■ If the driver is a media driver controlling the particular device, it should return a
response of 7. Another media driver will become active when a device is inserted.

Setting the I/O Speed 7
The ATA controllers used in Macintosh systems have their I/O cycle time adjustable to
optimize data transfers. There are two mechanisms for setting the I/O cycle time: the
ataIOSpeed field of the parameter block header (this field is only valid when a data
transfer is involved) and the ataIOSpeedMode field of the ATA_SetDevConfig
function. The speed setting via the ATA_SetDevConfig function is considered the
default setting. In other words, if the Current Speed bit of the ataFlags field in the
parameter block header is set, then the default speed setting previously set through the
ATA_SetDevConfig function is used as the I/O speed mode of the particular
transaction.

If the Current Speed bit is cleared, then the speed setting specified in the ataIOSpeed
field of the transaction parameter block is used. The initial speed setting prior to the first
call to ATA_SetDevConfig is mode 0.

Because the current PC Card specification defines the ATA I/O timing of 0 for all
PCMCIA/ATA devices, the speed setting field has no effect on the I/O speed for those
devices. Currently the field is hard-coded to mode 0.

C H A P T E R 7

Software for the ATA Hard Disk

134 Error Code Summary

Error Code Summary 7

Table 7-13 lists two sets of error codes for ATA drivers: old error codes, used with the
Macintosh PowerBook 150 and the Macintosh 630 series computers; and new error
codes, to be used with all future Macintosh models. The choice of error codes is
determined by the ataPBVers field in the ataPBHdr structure, defined on page 94. If
ataPBVers is set to 1, then the old error codes are used; if ataPBVers is set to 2, then
the new error codes are used.

Table 7-13 ATA driver error codes

Error code
(new)

Error code
(old) Error name Error description

0 0 noErr No error was detected on the requested
operation.

$FFCE
(–50)

$FFCE
(–50)

paramErr Error in parameter block.

$FFC8
(–56)

$FFC8
(–56)

nsDrvErr No such drive; no device is attached to
the specified port.

$DB43
(–9405)

$F901
(–1791)

AT_NRdyErr Drive ready condition was not detected.

$DB44
(–9404)

$F904
(–1788)

AT_IDNFErr Sector ID not-found error reported
by device.

$DB45
(–9403)

$F905
(–1787)

AT_DMarkErr Data mark not-found error was reported
by the device.

$DB46
(–9402)

$F906
(–1786)

AT_BadBlkErr A bad block was detected by the device.

$DB47
(–9401)

$F907
(–1785)

AT_CorDataErr Notification that data was corrected
(good data).

$DB48
(–9400)

$F906
(–1784)

AT_UncDataErr Unable to correct data (possibly bad
data).

$DB49
(–9399)

$F909
(–1783)

AT_SeekErr A seek error was detected by the device.

$DB4A
(–9398)

$F90A
(–1782)

AT_WrFltErr A write fault was detected by the device.

$DB4B
(–9397)

$F90B
(–1781)

AT_RecalErr A recalibration failure was detected by
the device.

$DB4C
(–9396)

$F90C
(–1780)

AT_AbortErr A command was aborted by the device.

continued

C H A P T E R 7

Software for the ATA Hard Disk

Error Code Summary 135

$DB4D
(–9395)

$F90E
(–1778)

AT_MCErr Media-changed error detected
by the device.

$DB4E
(–9394)

$F90F
(–1777)

ATAPICheckErr The ATAPI Check Condition was
detected.

$DB70
(–9360)

$F8F6
(–1802)

ATAMgrNotInitialized ATA Manager has not been initialized.
The request function can not be
performed until the manager has been
initialized.

$DB71
(–9359)

$F8F5
(–1803)

ATAPBInvalid An invalid ATA port address was
detected (ATA Manager initialization
problem).

$DB72
(–9358)

$F8F4
(–1804)

ATAFuncNotSupported An unknown ATA Manager function
code has been specified.

$DB73
(–9357)

$F8F3
(–1805)

ATABusy The selected device is busy; it is not
ready to go to the next phase yet.

$DB74
(–9356)

$F8F2
(–1806)

ATATransTimeOut A time-out condition was detected. The
operation had not completed within the
user-specified time limit.

$DB75
(–9355)

$F8F1
(–1807)

ATAReqInProg Device busy; the device on the port is
busy processing another command.

$DB76
(–9354)

$F8F0
(–1808)

ATAUnknownState The device status register reflects an
unknown state.

$DB77
(–9353)

$F8EF
(–1809)

ATAQLocked I/O queue for the port is locked due to a
previous I/O error. It must be unlocked
prior to continuing.

$DB78
(–9352)

$F8EE
(–1810)

ATAReqAborted The I/O queue entry was aborted due to
an abort command.

$DB79
(–9351)

$F8ED
(–1811)

ATAUnableToAbort The I/O queue entry could not be
aborted. It was too late to abort or the
entry was not found.

$DB7A
(–9350)

$F8EC
(–1812)

ATAAbortedDueToRst The I/O queue entry aborted due to a
bus reset.

$DB7B
(–9349)

$F8EB
(–1813)

ATAPIPhaseErr Unexpected phase detected.

$DB7C
(–9348)

$F8EA
(–1814)

ATAPIExCntErr Warning: overrun/underrun condition
detected (the data is valid).

$DB7D
(–9347)

$F8E9
(–1815)

ATANoClientErr No client present to handle the event.

continued

Table 7-13 ATA driver error codes (continued)

Error code
(new)

Error code
(old) Error name Error description

C H A P T E R 7

Software for the ATA Hard Disk

136 Error Code Summary

$DB7E
(–9346)

$F8E8
(–1816)

ATAInternalErr Card Services returned an error.

$DB7F
(–9345)

$F8E7
(–1817)

ATABusErr A bus error was detected on I/O.

$DB80
(–9344)

$F90D
(–1818)

AT_NoAddrErr The task file base address is not valid.

$DB81
(–9343)

$F8F9
(–1799)

DriverLocked The current driver must be removed
before adding another.

$DB82
(–9342)

$F8F8
(–1800)

CantHandleEvent Particular event could not be handled.

$DB83
(–9341)

— ATAMgrMemoryErr ATA Manager memory allocation error.

$DB84
(–9340)

— ATASDFailErr ATA Manager shutdown process failed.

$DB90
(–9328)

— ATAInvalidDrvNum Invalid drive number from event.

$DB91
(–9327)

— ATAMemoryErr Memory allocation error.

$DB92
(–9326)

— ATANoDDMErr No driver descriptor map (DDM) was
found on the media.

$DB93
(–9325)

— ATANoDriverErr No driver was found on the media.

Table 7-13 ATA driver error codes (continued)

Error code
(new)

Error code
(old) Error name Error description

137

A P P E N D I X

Color Lookup Table A

This appendix contains information about the color lookup table used with the flat-panel
display in the Macintosh PowerBook Duo 2300c computer. Table A-1 shows the color
values for each index. Index numbers are shown in hexadecimal ($0000) and decimal (0).
Red (R), green (G), and blue (B) color values are shown in hexadecimal.

The first 215 entries are combinations, made up of R, G, and B values of $0000, $3333,
$6666, $9999, $CCCC, and $FFFF. You should generally select colors from those 215
entries of the CLUT.

The last 40 entries are assigned to red ramp, green ramp, blue ramp, and gray ramp. The
values of those last 40 entries can be dithered, either spatially or temporally, to simulate
the appearance of intermediate colors. Each colored ramp consists of a single color with
values of $0000, $1111, $2222, $4444, $5555, $7777, $8888, $AAAA, $BBBB, $DDDD, and
$EEEE. The gray ramp, not shown, has those same values in all three color channels.

Table A-1

Color lookup table

Index
(hexadecimal)

Index
(decimal) R value G value B value

$0000 0 $FFFF $FFFF $FFFF

$0001 1 $FFFF $FFFF $CCCC

$0002 2 $FFFF $FFFF $9999

$0003 3 $FFFF $FFFF $6666

$0004 4 $FFFF $FFFF $3333

$0005 5 $FFFF $FFFF $0000

$0006 6 $FFFF $CCCC $FFFF

$0007 7 $FFFF $CCCC $CCCC

$0008 8 $FFFF $CCCC $9999

$0009 9 $FFFF $CCCC $6666

$000A 10 $FFFF $CCCC $3333

$000B 11 $FFFF $CCCC $0000

$000C 12 $FFFF $9999 $FFFF

$000D 13 $FFFF $9999 $CCCC

$000E 14 $FFFF $9999 $9999

$000F 15 $FFFF $9999 $6666

continued

Figure A-0
Listing A-0
Table A-0

Thi d t t d ith F M k 4 0 4

A P P E N D I X

Color Lookup Table

138

$0010 16 $FFFF $9999 $3333

$0011 17 $FFFF $9999 $0000

$0012 18 $FFFF $6666 $FFFF

$0013 19 $FFFF $6666 $CCCC

$0014 20 $FFFF $6666 $9999

$0015 21 $FFFF $6666 $6666

$0016 22 $FFFF $6666 $3333

$0017 23 $FFFF $6666 $0000

$0018 24 $FFFF $3333 $FFFF

$0019 25 $FFFF $3333 $CCCC

$001A 26 $FFFF $3333 $9999

$001B 27 $FFFF $3333 $6666

$001C 28 $FFFF $3333 $3333

$001D 29 $FFFF $3333 $0000

$001E 30 $FFFF $0000 $FFFF

$001F 31 $FFFF $0000 $CCCC

$0020 32 $FFFF $0000 $9999

$0021 33 $FFFF $0000 $6666

$0022 34 $FFFF $0000 $3333

$0023 35 $FFFF $0000 $0000

$0024 36 $CCCC $FFFF $FFFF

$0025 37 $CCCC $FFFF $CCCC

$0026 38 $CCCC $FFFF $9999

$0027 39 $CCCC $FFFF $6666

$0028 40 $CCCC $FFFF $3333

$0029 41 $CCCC $FFFF $0000

$002A 42 $CCCC $CCCC $FFFF

$002B 43 $CCCC $CCCC $CCCC

$002C 44 $CCCC $CCCC $CCCC

$002D 45 $CCCC $CCCC $6666

continued

Table A-1

Color lookup table (continued)

Index
(hexadecimal)

Index
(decimal) R value G value B value

A P P E N D I X

Color Lookup Table

139

$002E 46 $CCCC $CCCC $3333

$002F 47 $CCCC $CCCC $0000

$0030 48 $CCCC $9999 $FFFF

$0031 49 $CCCC $9999 $CCCC

$0032 50 $CCCC $9999 $9999

$0033 51 $CCCC $9999 $6666

$0034 52 $CCCC $9999 $3333

$0035 53 $CCCC $9999 $0000

$0036 54 $CCCC $6666 $FFFF

$0037 55 $CCCC $6666 $CCCC

$0038 56 $CCCC $6666 $9999

$0039 57 $CCCC $6666 $6666

$003A 58 $CCCC $6666 $3333

$003B 59 $CCCC $6666 $0000

$003C 60 $CCCC $3333 $FFFF

$003D 61 $CCCC $3333 $CCCC

$003E 62 $CCCC $3333 $9999

$003F 63 $CCCC $3333 $6666

$0040 64 $CCCC $3333 $3333

$0041 65 $CCCC $3333 $0000

$0042 66 $CCCC $0000 $FFFF

$0043 67 $CCCC $0000 $CCCC

$0044 68 $CCCC $0000 $9999

$0045 69 $CCCC $0000 $6666

$0046 70 $CCCC $0000 $3333

$0047 71 $CCCC $0000 $0000

$0048 72 $9999 $FFFF $FFFF

$0049 73 $9999 $FFFF $CCCC

$004A 74 $9999 $FFFF $9999

$004B 75 $9999 $FFFF $6666

continued

Table A-1

Color lookup table (continued)

Index
(hexadecimal)

Index
(decimal) R value G value B value

A P P E N D I X

Color Lookup Table

140

$004C 76 $9999 $FFFF $3333

$004D 77 $9999 $FFFF $0000

$004E 78 $9999 $9999 $FFFF

$004F 79 $9999 $CCCC $CCCC

$0050 80 $9999 $CCCC $9999

$0051 81 $9999 $CCCC $6666

$0052 82 $9999 $CCCC $3333

$0053 83 $9999 $CCCC $0000

$0054 84 $9999 $9999 $FFFF

$0055 85 $9999 $9999 $CCCC

$0056 86 $9999 $9999 $9999

$0057 87 $9999 $9999 $6666

$0058 88 $9999 $9999 $3333

$0059 89 $9999 $9999 $0000

$005A 90 $9999 $6666 $FFFF

$005B 91 $9999 $6666 $CCCC

$005C 92 $9999 $6666 $9999

$005D 93 $9999 $6666 $6666

$005E 94 $9999 $6666 $3333

$005F 95 $9999 $6666 $0000

$0060 96 $9999 $3333 $FFFF

$0061 97 $9999 $3333 $CCCC

$0062 98 $9999 $3333 $9999

$0063 99 $9999 $3333 $6666

$0064 100 $9999 $3333 $3333

$0065 101 $9999 $3333 $0000

$0066 102 $9999 $0000 $FFFF

$0067 103 $9999 $0000 $CCCC

$0068 104 $9999 $0000 $9999

$0069 105 $9999 $0000 $6666

continued

Table A-1

Color lookup table (continued)

Index
(hexadecimal)

Index
(decimal) R value G value B value

A P P E N D I X

Color Lookup Table

141

$006A 106 $9999 $0000 $3333

$006B 107 $9999 $0000 $0000

$006C 108 $6666 $FFFF $FFFF

$006D 109 $6666 $FFFF $CCCC

$006E 110 $6666 $FFFF $9999

$006F 111 $6666 $FFFF $6666

$0070 112 $6666 $FFFF $3333

$0071 113 $6666 $FFFF $0000

$0072 114 $6666 $CCCC $FFFF

$0073 115 $6666 $CCCC $CCCC

$0074 116 $6666 $CCCC $9999

$0075 117 $6666 $CCCC $6666

$0076 118 $6666 $CCCC $3333

$0077 119 $6666 $CCCC $0000

$0078 120 $6666 $9999 $FFFF

$0079 121 $6666 $9999 $CCCC

$007A 122 $6666 $9999 $9999

$007B 123 $6666 $9999 $6666

$007C 124 $6666 $9999 $3333

$007D 125 $6666 $9999 $0000

$007E 126 $6666 $6666 $FFFF

$007F 127 $6666 $6666 $CCCC

$0080 128 $6666 $6666 $9999

$0081 129 $6666 $6666 $6666

$0082 130 $6666 $6666 $3333

$0083 131 $6666 $6666 $0000

$0084 132 $6666 $3333 $FFFF

$0085 133 $6666 $3333 $CCCC

$0086 134 $6666 $3333 $9999

$0087 135 $6666 $3333 $6666

continued

Table A-1

Color lookup table (continued)

Index
(hexadecimal)

Index
(decimal) R value G value B value

A P P E N D I X

Color Lookup Table

142

$0088 136 $6666 $3333 $3333

$0089 137 $6666 $3333 $0000

$008A 138 $6666 $0000 $FFFF

$008B 139 $6666 $0000 $CCCC

$008C 140 $6666 $0000 $9999

$008D 141 $6666 $0000 $6666

$008E 142 $6666 $0000 $3333

$008F 143 $6666 $0000 $0000

$0090 144 $3333 $FFFF $FFFF

$0091 145 $3333 $FFFF $CCCC

$0092 146 $3333 $FFFF $9999

$0093 147 $3333 $FFFF $6666

$0094 148 $3333 $FFFF $3333

$0095 149 $3333 $FFFF $0000

$0096 150 $3333 $CCCC $FFFF

$0097 151 $3333 $CCCC $CCCC

$0098 152 $3333 $CCCC $9999

$0099 153 $3333 $CCCC $6666

$009A 154 $3333 $CCCC $3333

$009B 155 $3333 $CCCC $0000

$009C 156 $3333 $9999 $FFFF

$009D 157 $3333 $9999 $CCCC

$009E 158 $3333 $9999 $9999

$009F 159 $3333 $9999 $6666

$00A0 160 $3333 $9999 $3333

$00A1 161 $3333 $9999 $0000

$00A2 162 $3333 $6666 $FFFF

$00A3 163 $3333 $6666 $CCCC

$00A4 164 $3333 $6666 $9999

$00A5 165 $3333 $6666 $6666

continued

Table A-1

Color lookup table (continued)

Index
(hexadecimal)

Index
(decimal) R value G value B value

A P P E N D I X

Color Lookup Table

143

$00A6 166 $3333 $6666 $3333

$00A7 167 $3333 $6666 $0000

$00A8 168 $3333 $3333 $FFFF

$00A9 169 $3333 $3333 $CCCC

$00AA 170 $3333 $3333 $9999

$00AB 171 $3333 $3333 $6666

$00AC 172 $3333 $3333 $3333

$00AD 173 $3333 $3333 $0000

$00AE 174 $3333 $0000 $FFFF

$00AF 175 $3333 $0000 $CCCC

$00B0 176 $3333 $0000 $9999

$00B1 177 $3333 $0000 $6666

$00B2 178 $3333 $0000 $3333

$00B3 179 $3333 $0000 $0000

$00B4 180 $0000 $FFFF $FFFF

$00B5 181 $0000 $FFFF $CCCC

$00B6 182 $0000 $FFFF $9999

$00B7 183 $0000 $FFFF $6666

$00B8 184 $0000 $FFFF $3333

$00B9 185 $0000 $FFFF $0000

$00BA 186 $0000 $CCCC $FFFF

$00BB 187 $0000 $CCCC $CCCC

$00BC 188 $0000 $CCCC $9999

$00BD 189 $0000 $CCCC $6666

$00BE 190 $0000 $CCCC $3333

$00BF 191 $0000 $CCCC $0000

$00C0 192 $0000 $9999 $FFFF

$00C1 193 $0000 $9999 $CCCC

$00C2 194 $0000 $9999 $9999

$00C3 195 $0000 $9999 $6666

continued

Table A-1

Color lookup table (continued)

Index
(hexadecimal)

Index
(decimal) R value G value B value

A P P E N D I X

Color Lookup Table

144

$00C4 196 $0000 $9999 $3333

$00C5 197 $0000 $9999 $0000

$00C6 198 $0000 $6666 $FFFF

$00C7 199 $0000 $6666 $CCCC

$00C8 200 $0000 $6666 $9999

$00C9 201 $0000 $6666 $6666

$00CA 202 $0000 $6666 $3333

$00CB 203 $0000 $3333 $0000

$00CC 204 $0000 $3333 $FFFF

$00CD 205 $0000 $3333 $CCCC

$00CE 206 $0000 $3333 $9999

$00CF 207 $0000 $3333 $6666

$00D0 208 $0000 $3333 $3333

$00D1 209 $0000 $0000 $0000

$00D2 210 $0000 $0000 $FFFF

$00D3 211 $0000 $0000 $CCCC

$00D4 212 $0000 $0000 $9999

$00D5 213 $0000 $0000 $6666

$00D6 214 $0000 $0000 $3333

$00D7 215 $EEEE $0000 $0000

$00D8 216 $DDDD $0000 $0000

$00D9 217 $BBBB $0000 $0000

$00DA 218 $AAAA $0000 $0000

$00DB 219 $8888 $0000 $0000

$00DC 220 $7777 $0000 $0000

$00DD 221 $5555 $0000 $0000

$00DE 222 $4444 $0000 $0000

$00DF 223 $2222 $0000 $0000

$00E0 224 $1111 $0000 $0000

$00E1 225 $0000 $EEEE $0000

continued

Table A-1

Color lookup table (continued)

Index
(hexadecimal)

Index
(decimal) R value G value B value

A P P E N D I X

Color Lookup Table

145

$00E2 226 $0000 $0000 $0000

$00E3 227 $0000 $BBBB $0000

$00E4 228 $0000 $AAAA $0000

$00E5 229 $0000 $8888 $0000

$00E6 230 $0000 $7777 $0000

$00E7 231 $0000 $5555 $0000

$00E8 232 $0000 $4444 $0000

$00E9 233 $0000 $2222 $0000

$00EA 234 $0000 $1111 $0000

$00EB 235 $0000 $0000 $EEEE

$00EC 236 $0000 $0000 $DDDD

$00ED 237 $0000 $0000 $BBBB

$00EE 238 $0000 $0000 $AAAA

$00EF 239 $0000 $0000 $8888

$00F0 240 $0000 $0000 $7777

$00F1 241 $0000 $0000 $5555

$00F2 242 $0000 $0000 $4444

$00F3 243 $0000 $0000 $2222

$00F4 244 $0000 $0000 $1111

$00F5 245 $EEEE $EEEE $EEEE

$00F6 246 $DDDD $DDDD $DDDD

$00F7 247 $BBBB $BBBB $BBBB

$00F8 248 $AAAA $AAAA $AAAA

$00F9 249 $8888 $8888 $8888

$00FA 250 $7777 $7777 $7777

$00FB 251 $5555 $5555 $5555

$00FC 252 $4444 $4444 $4444

$00FD 253 $2222 $2222 $2222

$00FE 254 $1111 $1111 $1111

$00FF 255 $0000 $0000 $0000

Table A-1

Color lookup table (continued)

Index
(hexadecimal)

Index
(decimal) R value G value B value

147

680x0 code

Instructions that can run on a
PowerPC processor only by means of an
emulator. See also

native code.

ADB

See

Apple Desktop Bus.

APDA

Apple Computer’s worldwide direct
distribution channel for Apple and third-party
development tools and documentation products.

API

See

application programming interface.

Apple Desktop Bus (ADB)

An asynchronous
bus used to connect low-speed user-input
devices to Apple computers.

Apple SuperDrive

Apple Computer’s disk
drive for high-density floppy disks.

AppleTalk

Apple Computer’s local area
networking protocol.

application programming interface (API)

The calls and data structures that allow
application software to use the features of the
operating system.

big-endian

Data formatting in which each field
is addressed by referring to its most significant
byte. See also

little-endian.

client

A device driver or application program
that uses the Card Services software.

codec

A digital encoder and decoder.

color depth

The number of bits required to
encode the color of each pixel in a display.

DAC

See

digital-to-analog converter.

data burst

Multiple longwords of data sent
over a bus in a single, uninterrupted stream.

data cache

In a PowerPC microprocessor, the
internal registers that hold data being processed.

digital-to-analog converter (DAC)

A device
that produces an analog electrical signal in
response to digital data.

direct memory access (DMA)

A process for
transferring data rapidly into or out of RAM
without passing it through a processor or buffer.

DLPI

Data Link Provider Interface, the
standard networking model used in Open
Transport.

DMA

See

direct memory access.

DRAM

See

dynamic random-access memory.

DR Emulator

The Dynamic Recompilation
Emulator, an improved 680x0-code emulator for
the PowerPC microprocessor.

dynamic random-access memory (DRAM)

Random-access memory in which each storage
address must be periodically interrogated
(“refreshed”) to maintain its value.

Ethernet

A high-speed local area network
technology that includes both cable standards
and a series of communications protocols.

GCR

See

Group Code Recording.

GeoPort

A software and hardware solution for
digital telecom and wide-area connectivity using
the serial port.

Group Code Recording (GCR)

An Apple
recording format for floppy disks.

input/output (I/O)

Parts of a computer system
that transfer data to or from peripheral devices.

little-endian

Data formatting in which each
field is addressed by referring to its least
significant byte. See also

big-endian.

LocalTalk

The cable terminations and other
hardware that Apple supplies for local area
networking from Macintosh serial ports.

Macintosh PC Exchange

A utility program that
runs on Macintosh computers and reads other
floppy disk formats, including DOS and ProDOS.

mini-DIN

An international standard form of
cable connector for peripheral devices.

Glossary

Thi d t t d ith F M k 4 0 4

G L O S S A R Y

148

native code

Instructions that run directly on a
PowerPC microprocessor. See also

680x0 code.

nonvolatile RAM

RAM that retains its contents
even when the computer is turned off; also
known as parameter RAM.

NuBus

A bus architecture for plug-in
expansion cards in Macintosh computers.

NuBus adapter card

A card for the Power
Macintosh 6100/60 that gives the computer
NuBus capability. It plugs into the PDS connector
and accepts short NuBus cards.

Open Transport

A networking architecture
that allows communications applications to
run independently of the underlying network;
formerly known as

Transport-Independent Interface
(TII).

PBX

In the Macintosh PowerBook Duo 2300c
computer, the custom IC that provides the
interface between the PowerPC 603 bus and the
I/O bus.

pixel

Contraction of

picture element

; the smallest
dot that can be drawn on a display.

POWER-clean

Refers to PowerPC code free of
instructions that are specific to the PowerPC 601
and Power instruction sets and are not found on
the PowerPC 603 and PowerPC 604
microprocessors.

PowerPC

Trade name for a family of RISC
microprocessors. The PowerPC 601, 603, and 604
microprocessors are used in Power Macintosh
computers.

reduced instruction set computing (RISC)

A
technology of microprocessor design in which all
machine instructions are uniformly formatted
and are processed through the same steps.

RISC

See

reduced instruction set computing.

SCC

See

Serial Communications Controller.

SCSI

See

Small Computer System Interface.

Serial Communications Controller (SCC)

Circuitry on the Curio IC that provides an
interface to the serial data ports.

Small Computer System Interface (SCSI)

An industry standard parallel bus protocol for
connecting computers to peripheral devices such
as hard disk drives.

Versatile Interface Adapter (VIA)

The
hardware interface for system interrupts that is
standard on most Macintosh computers.

VIA

See

Versatile Interface Adapter.

video RAM (VRAM)

Random-access
memory used to store both static graphics
and video frames.

VRAM

See

video RAM

.

149

Index

A

abbreviations xii
AC adapter 4
accessory devices 4
active-matrix display 14
APDA addresses x

ATA_Abort

 function 99

ATA_BusInquiry

 function 100
ATA disk driver 77, 78–93

control functions 80–88
Control routine 78
Device Manager routines 78–80

driverGestalt

 parameter block 89
status functions 88–93
Status routine 79

ATA disk driver functions

clear partition mounting

85

clear partition write protect

85

driver gestalt

89

drive status

88

eject

81

format

81

get a drive

86

get boot partition

90

get drive icon

82

get drive information

83

get media icon

82

get partition information

92

get partition mount status

91

get partition write protect status

91

get power mode

92

mount volume

87

register partition

86

set partition mounting

84

set partition write protect

84

set power mode

87

set startup partition

83

verify

80

ATA_DrvrDeregister

 function 105

ATA_DrvrRegister

 function 102

ATA_EjectDrive

 function 106

ATA_ExecIO

 function 107

ATA_FindRefNum

 function 110

ATA_GetDevConfig

 function 111

ATA_GetDevLocationIcon

 function 114
ATA hard disk drives

compared with SCSI drives 76

ATA_Identify

 function 115

ATA IDE specification 76
ATA interface 15
ATA Manager 93–134

making calls to 93
purpose of 76, 77

ATA Manager functions

ATA_Abort

99

ATA_BusInquiry

100

ATA_DrvrDeregister

105

ATA_DrvrRegister

102

ATA_EjectDrive

106

ATA_ExecIO

107

ATA_FindRefNum

110

ATA_GetDevConfig

111

ATA_GetDevLocationIcon

114

ATA_Identify

115

ATA_MgrInquiry

117

ATA_NOP

119

ATA_QRelease

119

ATA_RegAccess

120

ATA_ResetBus

123

ATA_SetDevConfig

124

ATA_MgrInquiry

 function 117

ATA_NOP

 function 119
ATA parameter block header 94

ataPBHdr

 structure 94–98

ATA_QRelease

 function 119

ATA_RegAccess

 function 120

ATA_ResetBus

 function 123

ATA_SetDevConfig

 function 124
ATA software

ATA disk driver 77
ATA Manager 77
error codes 134

AutoSleepControl

 function 47

B

Baboon custom IC 12
battery 2, 4

BatteryCount

 function 55

BlockCopy

 routine 30

BlockMoveData

 routine 30

BlockMoveDataUncached

 routine 30

BlockMove

 extensions 29–30

BlockMove

 routine 30

BlockMoveUncached

 routine 30

Thi d t t d ith F M k 4 0 4

I N D E X

150

BlockZero

 routine 30

BlockZeroUncached

 routine 30

C

cache coherency 5, 32
clamshell case 5

clear partition mounting

 function 85

clear partition write protect

 function 85
Code Fragment Manager 5, 32
color lookup table 137
compatibility

with the Duo Dock 5
with the PowerPC 601 5, 31, 32

completion serialized instructions 5
configurations 3
connectors, hard disk 17
control functions, of the ATA disk driver 80–88
Control routine 78
control strip 26
conventions used xi
CSC custom IC 12

CurrentProcessorSpeed

 function 50
custom ICs

Baboon 12
Combo 11
CSC 12
PBX 8, 10
Whitney 11

D

data alignment, in 680X0 and PowerPC 5

dcbz

 instruction 30
Device Manager 69
display 14

controller IC 12
number of colors in 15

Display Manager 33
displays, smearing in 14
DR Emulator 28

driver gestalt function 89
driverGestalt parameter block 89
Driver Services Library 30
Drive Setup utility 27
drive status function 88
Duo Dock 5
Dynamic Recompilation Emulator 28

E

eject function 81
Emulator, Dynamic Recompilation 28
EnableProcessorCycling function 54
error codes 134
Ethernet driver 24

F

features 2
Finder modifications for large volume support 27, 66
format function 81
FullProcessorSpeed function 51

G

Gestalt function 71
gestaltMachineType value 22
gestaltPowerMgrAttr selector 37
get a drive function 86
GetBatteryTimes function 56
GetBatteryVoltage function 55
get boot partition function 90
get drive icon function 82
get drive information function 83
GetHardDiskTimeout function 41
GetIntModemInfo function 48
get media icon function 82
get partition information function 92
get partition mount status function 91
get partition write protect status

function 91
get power mode function 92
GetScaledBatteryInfo function 46
GetSCSIDiskModeAddress function 52
GetSleepTimeout function 40
GetWakeupTimer function 53

H

hard disk
dimensions 15
IDE data bus 18

hard disk capacity 3
hard disk connector 17

pin assignments on 17
signals on 19

I N D E X

151

hard disk drive
power requirements 20
terminator 19

HardDiskPowered function 42
HardDiskQInstall function 44
HardDiskQRemove function 45
HFS volume format 66

I, J

IDE disk interface 15
IDE hard disk 15–20

connector, pin assignments on 17
data bus 18
dimensions 15
signals 19

identifying the computer 22
IDE specification 76
input/output subsystem 8
interpretive emulator 28
I/O connectors 2
IsProcessorCyclingEnabled function 54
IsSpindownDisabled function 43

K

keyboard 2

L

large partition support 26
large volume support 26, 66

allocation blocks 66
extended API 26
extended data structures 67
extended parameter block 67, 69
limitations 27
maximum file size 67
modified applications 27
requirements 67

M

main processor 9
MathLib 28
math library. See MathLib
MaximumProcessorSpeed function 50
memory controller software 23

memory expansion 4, 9
Misc API. See QuickDraw acceleration API
mount volume function 87

N, O

nickel metal hydride battery 2

P

PBX custom IC 10
bus bridge function 10
software for 23

PBXGetVolInfo function 71
PMFeatures function 39
PMSelectorCount function 39
POWER-clean code 31
POWER-clean native code 30
POWER emulation 31

exception handling 31
POWER instructions 6

emulation of 31
Power Manager IC 12

trackpad registers in 24
Power Manager interface functions 37–56
AutoSleepControl 47
BatteryCount 55
CurrentProcessorSpeed 50
EnableProcessorCycling 54
FullProcessorSpeed 51
GetBatteryTimes 56
GetBatteryVoltage 55
GetHardDiskTimeout 41
GetIntModemInfo 48
GetScaledBatteryInfo 46
GetSCSIDiskModeAddress 52
GetSleepTimeout 40
GetWakeupTimer 53
HardDiskPowered 42
HardDiskQInstall 44
HardDiskQRemove 45
IsProcessorCyclingEnabled 54
IsSpindownDisabled 43
MaximumProcessorSpeed 50
PMFeatures 39
PMSelectorCount 39
SetHardDiskTimeout 42
SetIntModemState 49
SetProcessorSpeed 51
SetSCSIDiskModeAddress 52
SetSleepTimeout 41

I N D E X

152

Power Manager interface functions (continued)
SetSpindownDisable 44
SetWakeupTimer 53
SpinDownHardDisk 43

Power Manager software 23, 36
checking for routines 37
compatibility with 6
data structures 6
dispatching 57
interface functions 36, 37–56
unsafe assumptions 6, 36

PowerPC 601 microprocessor 5, 31, 32
compatibility limitations 32
compatibility with 31

PowerPC 603e microprocessor 9, 30
PowerPC 603e microprocessor support 22
PowerPC 603 microprocessor 5
PowerPC 604 microprocessor 31, 32
power requirements, hard disk drive 20
processor/memory subsystem 8, 9

Q

QuickDraw acceleration API 33

R

RAM
contiguous banks of 10
expansion 4
expansion card 9
size of 3

RAM expansion 4
reference material x
register partition function 86
Resource Manager in native code 28
ROM

address range 10
implementation of 10
software features 22

ROM software features 22

S

SCSI disk mode 2
secondary logic board 9
SetHardDiskTimeout function 42
SetIntModemState function 49
set partition mounting function 84

set partition write protect function 84
set power mode function 87
SetProcessorSpeed function 51
SetSCSIDiskModeAddress function 52
SetSleepTimeout function 41
SetSpindownDisable function 44
set startup partition function 83
SetWakeupTimer function 53
size and weight 2
smearing 14
sound features 23
SpinDownHardDisk function 43
split cache 5
standard units of measure xii
status functions 88–93
Status routine 79
submarining 14
System 7.5 26

T, U

terminator, hard disk drive 19
trackpad, software support for 24

V

VCB allocation block size 66
verify function 80

W

Whitney custom IC 11

X, Y, Z

XIOParam data structure 69
XVolumeParam parameter block 67

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple document was written,
edited, and composed on a desktop
publishing system using Apple
Macintosh computers and FrameMaker
software. Proof and final pages were
created on an Apple LaserWriter Pro 630
printer. Line art was created using
Adobe

 Illustrator. PostScript

, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino

 and display type is
Helvetica

. Bullets are ITC Zapf
Dingbats

. Some elements, such as
program listings, are set in Apple Courier.

WRITER

Allen Watson III

DEVELOPMENTAL EDITOR

Jeanne Woodward

ILLUSTRATORS

Deborah Dennis, Shawn Morningstar,
and Sandee Karr

Special thanks to Rodney Amen, Lorenzo
Dunn, Tom Llewellyn, and Nancy Schmitt

Thi d t t d ith F M k 4 0 4

	Macintosh PowerBook Duo 2300c Computer
	Contents
	Figures and Tables
	About This Note
	Contents of This Note
	Supplementary Documents
	Conventions and Abbreviations
	Typographical Conventions
	Abbreviations

	Introduction
	Features
	Configurations
	Appearance
	Accessory Devices
	Compatibility Issues
	Size of Case
	Microprocessor Differences
	POWER-Clean Code
	Power Manager Interface

	Architecture
	Processor and Memory Subsystem
	Main Processor
	RAM
	ROM
	PBX Memory Controller IC

	I/O Subsystem
	Whitney Peripheral Support IC
	Combo IC
	Singer IC
	Power Manager IC
	Display Controller IC
	Baboon Disk Drive IC

	Input and Output Features
	Displays
	Internal IDE Hard Disk Drive
	Hard Disk Specifications
	Hard Disk Connector
	Power Requirements

	Software Features
	ROM Software
	PowerPC 603 Microprocessor
	Machine Identification
	Memory Controller Software
	Power Manager Software
	Display Controller Software
	Sound Features
	IDE Disk Mode
	Ethernet Driver
	Trackpad Software

	System Software
	Control Strip
	Support for IDE Disk Drives
	Large Partition Support
	Drive Setup
	Improved File Sharing
	Dynamic Recompilation Emulator
	Resource Manager in Native Code
	Math Library
	New BlockMove Extensions
	POWER-Clean Native Code
	POWER Emulation
	QuickDraw Acceleration API
	Display Manager

	Power Manager Interface
	About the Power Manager Interface
	Things That May Change
	Checking for Routines
	Power Manager Interface Functions
	Header File for Power Manager Dispatch

	Large Volume Support
	Overview of the Large Volume File System
	API Changes
	Allocation Block Size
	File Size Limits
	Compatibility Requirements

	The API Modifications
	Data Structures
	New Extended Function

	Software for the ATA Hard Disk
	Introduction to the ATA Software
	ATA Disk Driver
	ATA Manager

	ATA Disk Driver Reference
	Standard Device Routines
	Control Functions
	Status Functions

	ATA Manager Reference
	The ATA Parameter Block
	Functions

	Using the ATA Manager With Drivers
	Notification of Device Events
	Device Driver Loading
	Device Driver Purging
	Setting the I/O Speed

	Error Code Summary

	Color Lookup Table
	Glossary
	Index

