

Technical Publications
© Apple Computer, Inc. 1998

Network Services
Location Manager
Developer’s Kit

Apple Computer, Inc.
© 1997-1998 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
QuickView™ is licensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures, Listings, and Tables v

Preface About This Manual vii

Conventions Used in This Manual vii
For more information viii

Chapter 1 Network Services Location Manager 9

About the NSL Manager 1-12
About NSL Plug-ins 1-15

About the DNS Plug-in 1-15
About the SLP Plug-in 1-17

Searching for Network Services 1-19

Chapter 2 Network Services Location Manager Reference 25

NSL Manager Constants and Data Types 2-27
ClientAsyncInfo Structure 2-27
NSLError Structure 2-29

NSL Manager Functions 2-32
Managing NSL Manager Sessions 2-32
Making a Lookup Request 2-34
Looking for Neighborhoods and Services 2-37
Managing Memory 2-45
Managing Services 2-47

NSL Manager Utility Functions 2-49
NSL Manager Result Codes 2-54
iii

Chapter 3 Network Services Location Manager Plug-In Reference 57

NSL Manager Plug-in Constants and Data Types 3-59
PluginAsyncInfo Structure 3-59
PluginData Structure 3-60

NSL Manager Plug-in Utility Functions 3-62
NSL Manager Plug-in Routines 3-64

Index 75
iv

Figures, Listings, and Tables

Chapter 1 Network Services Location Manager 9

Figure 1-1 Overview of a network service lookup 1-12
Figure 1-2 Overview of a service registration 1-14
Figure 1-3 Flow of a DNS lookup 1-16
Figure 1-4 Flow of an SLP lookup 1-18

Listing 1-1 Initializing the NSL Manager 1-19
Listing 1-2 Creating a request parameter block 1-19
Listing 1-3 Preparing an NSL lookup request 1-20
Listing 1-4 Searching for neighborhoods 1-20
Listing 1-5 Searching for services 1-22
Listing 1-6 Reclaiming memory 1-23
Listing 1-7 Deinitializing the NSL Manager 1-23

Chapter 2 Network Services Location Manager Reference 25

Figure 2-1 Standard alert dialog box 2-30

Table 2-1 Problem and solution strings for some NSL error conditions 2-31

Chapter 3 Network Services Location Manager Plug-In Reference 57

Figure 3-1 NSL plug-in icon 3-65
v

vi

P R E F A C E

A

This
Loc
way
netw

Conventions

The
type
sup

Tex
poin

Tex
pres

Tex
indi
bout This Manual

 document describes the programming interface for the Network Services
ation (NSL) Manager. The NSL Manager provides a protocol-independent
 for applications to discover available network services with minimal
ork traffic.

Used in This Manual 0

 Courier font is used to indicate function names, code, and text that you
. This manual includes special text elements to highlight important or

plemental information:

t set off in this manner presents sidelights or interesting
ts of information. ◆

t set off in this manner—with the word Important—
ents important information or instructions. ▲

t set off in this manner—with the word Warning—
cates potentially serious problems. ▲
vii

viii

P R E F A C E

For more inf

The
dev

■ In
te

■ N
c
(a

■ D

■ R
r

ormation 0

 following sources provide additional information that is important for NSL
elopers:

side Macintosh , available online at http://devworld.apple.com/techinfo/
chdocs/mac/mac.html

SL Network Administrators Guide , which tells administrators how to
onfigure DNS and SLP servers so they can participate in NSL lookups
vailable with the final version of the NSL SDK)

NS and Bind by Paul Albitz and Cricket Liu, O’Reilly & Associates, Inc. 1994

FC 2165, Service Location Protocol, available at http://www.isi.edu/
fc-editor/rfc.html

C H A P T E R 1

Contents

Contents

Figure 1-0
Listing 1-0
Table 1-0
1 Network Services Location
Manager
About the NSL Manager 4
About NSL Plug-ins 7

About the DNS Plug-in 7
About the SLP Plug-in 9

Searching for Network Services 11
9

C H A P T E R 1

Network Services Location Manager 1

The Network Services Location (NSL) Manager provides a
protocol-independent way for applications to discover available network
services with minimal network traffic.

The NSL Manager provides

■ AppleTalk-like ease-of-use for the dynamic discovery of traditional and
non-traditional network services

■ Support for accepted and proposed industry standards, including Domain
Name Service (DNS) and Service Location Protocol (SLP)

■ A flexible, expandable architecture that can be easily leveraged by client and
server applications

A wide variety of applications will become easier to use when they call the NSL
Manager. For example,

■ Instead of requiring the user to type a URL to locate a web server, a browser
application that calls the NSL Manager could have an “Open Location”
command that polls the network for Hypertext Transfer Protocol (HTTP)
servers and displays a list of HTTP universal resource locators (URLs) from
which the user can select a particular URL.

■ Collaboration software, such as a video-conferencing server, would register
itself as an available service on the corporate Intranet. The users of client
video-conferencing software could then search the Intranet for available
conferences and join a particular conference without having to remember a
cryptic URL or Internet Protocol (IP) address.

The NSL Manager acts as an intermediary between the providers of network
services and applications that want information about such services. It also
registers network services that make registration requests.

This chapter describes how you can use the NSL Manager to

■ add network-service search functionality to your application

■ register a network service with the NSL Manager so that it can be found in
searches

The NSL Manager will be available on all PowerPC-based computers that run a
version of Mac OS 8.5 or later and will be accompanied by two NSL plug-ins that
perform searches: DNS and SLP. Additional NSL plug-ins may also become
available from Apple Computer or third-party developers.
11

C H A P T E R 1

Network Services Location Manager

The section “About the NSL Manager” explains the relationship between
applications that call the NSL Manager and the NSL plug-ins. The section
“About NSL Plug-ins” describes the NSL plug-ins that come with the NSL SDK.
The section “Searching for Network Services” provides sample code of an
application calling the NSL Manager to search for services.

About the NSL Manager 1

The NSL Manager provides a protocol-independent interface for applications
that need to locate network services and plug-ins that search for network
services. Figure 1-1 illustrates the relationship between applications, the NSL
Manager, and the NSL plug-ins.

Figure 1-1 Overview of a network service lookup

Application

NSL
Manager

NSL
plug-ins

Network of services

DNS SLP

Request flow

Response flow
12 About the NSL Manager

C H A P T E R 1

Network Services Location Manager

Applications that search for services can focus the search by specifying two
values:

■ a services list, which is an NSL data type that allows the application to
specify the services that are to be searched for.

■ a neighborhood, which is an NSL data type that allows the application to
define the scope of the search. For example, a neighborhood data type may
contain a domain name, such as apple.com.

The following steps outline the flow of a service lookup:

1. The application creates a lookup request and calls the NSL Manager’s
NSLStartServicesLookup function.

2. The NSL Manager receives the request and passes it to those NSL plug-ins
that are capable of responding to the request.

3. Each NSL plug-in that receives the request starts to look for the specified
services.

4. Providers of services send their responses to the NSL plug-ins.

5. The NSL plug-ins pass the responses to the NSL Manager.

6. The NSL Manager passes the responses to the application that initiated the
lookup. If more than one plug-in responds, the NSL Manager returns the
responses to the application in a single response stream.

Applications that provide services can register themselves with the NSL
Manager as shown in Figure 1-2.
About the NSL Manager 13

C H A P T E R 1

Network Services Location Manager

Figure 1-2 Overview of a service registration

The following steps outline the flow of a service registration:

1. The application creates a service registration request and calls the NSL
Manager’s NSLRegisterService function.

2. The NSL Manager receives the request and passes it to the NSL plug-in that
is capable of registering the service.

3. The NSL plug-in receives the request and registers the service.

4. The NSL Manager returns a value to the application indicating that the
service was registered successfully.

Note
Currently, the SLP plug-in is the only plug-in provided by
Apple Computer that can register services. ◆

Network service application

NSL
Manager

NSL
plug-insDNS SLP

Registration request

Registration response
14 About the NSL Manager

C H A P T E R 1

Network Services Location Manager

About NSL Plug-ins 1

An NSL plug-in is an extension that searches for services. It makes itself
available to the NSL Manager when the NSL Manager is initialized, and it
resides in memory only when it is responding to lookup requests from
applications.

Note
The Extensions Manager can be used to enable and disable
individual NSL plug-ins. ◆

The NSL Manager can pass lookup requests to any plug-in that adheres to the
NSL Manager API.

When the NSL Manager is initialized, each NSL plug-in provides the following
information to the NSL Manager:

■ the types of services the plug-in can search for, such as HTTP

■ the protocol the plug-in uses to conduct searches, such as DNS

The NSL SDK comes with two NSL plug-ins: DNS and SLP.

About the DNS Plug-in 1

The DNS plug-in allows applications to receive lists of services from DNS
servers. The information about each service is taken from the “well-known
services” field of each DNS entry. Figure 1-3 shows the flow of a DNS lookup.
About NSL Plug-ins 15

C H A P T E R 1

Network Services Location Manager

Figure 1-3 Flow of a DNS lookup

The DNS plug-in provides the following routines for the NSL Manager to call:

■ An initialization routine that allocates memory and opens network
connections to DNS servers

■ A deinitialization routine that deallocates memory and closes network
connections

■ A start-neighborhood-lookup routine that starts a neighborhood lookup

■ A start-services-lookup routine that starts a service lookup

■ A continue-lookup routine that resumes a lookup for services or
neighborhoods that has paused in order to deliver lookup results to the
application

■ A cancel-lookup routine that cancels an ongoing lookup

Application

NSL
Manager

DNS plug-in

Request flow

Response flow
DNS server DNS server
16 About NSL Plug-ins

C H A P T E R 1

Network Services Location Manager

■ An error-number conversion routine that provides a pair of strings
describing the error and a possible solution for any error number that the
plug-in may return

■ An information routine that provides details about the services and protocols
the plug-in supports, as well as a comment string that describes the services
and protocol the plug-in supports

About the SLP Plug-in 1

The SLP plug-in uses the Service Location Protocol to locate services. The
Service Location Protocol is an emerging Internet Engineering Task Force (IETF)
protocol designed to simplify the discovery and use of network resources. SLP
is well-suited for client-server applications and for establishing connections
between network peers that offer or consume generic services. SLP supports
servers that register services dynamically as well as clients that use multicast
protocols to broadcast for services.

The SLP plug-in accepts service registrations from applications that provide
network services running on the local host. When the SLP plug-in registers a
service, it creates an SLP Service Agent for the service. The Service Agents listen
for lookup requests and respond appropriately when the SLP plug-in queries
them.

The SLP plug-in also listens for and registers with any SLP Directory Agent
Servers (DAs) that may be present on the local subnet. The SLP plug-in then
listens for and registers with any other DAs that may announce their
availability on the local subnet.

Note
When the SLP plug-in is first loaded into memory, it uses IP
multicast to locate DAs. Any routers on the local subnet
must be configured to support IP multicast. ◆

If a network has a DA, Service Agents register themselves with the DA. The SLP
plug-in can then query the DA directly, thereby minimizing network traffic. In
Figure 1-4, the SLP plug-in can bypass the Service Agents and query the DA
directly. If the DA becomes unavailable, the SLP plug-in will query each Service
Agent individually.
About NSL Plug-ins 17

C H A P T E R 1

Network Services Location Manager

Figure 1-4 Flow of an SLP lookup

Like the DNS plug-in, the SLP plug-in provides routines that initialize and
deinitialize the plug-in, start, continue, and cancel a service or neighborhood
lookup, return a pair of strings that describe an error condition and a possible
solution for any error code that the SLP plug-in may return, and a routine that
returns information that describes the plug-in’s capabilities. The SLP plug-in
also provides routines to register and deregister services.

For more information about SLP, see RFC 2165.

Application

NSL
Manager

SLP plug-in

Request flow

Response flow

SLP server
(Directory Agent)

SLP service agents
18 About NSL Plug-ins

C H A P T E R 1

Network Services Location Manager

Searching for Network Services 1

To search for network services, an application calls NSLOpenNavigationAPI to
initialize the NSL Manager, as shown in Listing 1-1.

Listing 1-1 Initializing the NSL Manager

OSStatus status;
status = NSLOpenNavigationAPI(&gOurClientRef);

The NSL Manager returns a client reference that the application uses to prepare
a lookup request and to call NSLCloseNavigationAPI when the application no
longer needs to make lookup requests.

Next, the application calls NSLMakeNewServicesList to create a services list and
calls NSLMakeRequestPB to convert the resulting services list into a request
parameter block, as shown in Listing 1-2.

Listing 1-2 Creating a request parameter block

NSLServicesList serviceList = NULL;
serviceList = NSLMakeNewServicesList("http,ftp");
iErr.theErr = NSLMakeRequestPB(serviceList, "", &newDataPtr);

In Listing 1-2, the application creates a services list that specifies that HTTP and
FTP services are to be searched for. If the application doesn’t specify any
services, all services will be searched for. The application then calls
NSLMakeRequestPB with the services list as a parameter. The NSLMakeRequestPB
function formats the services list in a way that allows any plug-in to parse the
services list properly.

Next, the application creates a lookup request by calling NSLPrepareRequest, as
shown in Listing 1-3.
Searching for Network Services 19

C H A P T E R 1

Network Services Location Manager

Listing 1-3 Preparing an NSL lookup request

long bufLen = 4096;
char* buffer = NULL;
NSLRequestRef ourRequestRef;
ClientAsyncInfoPtr ourAsyncInfo;
NSLError iErr = kNSLErrorNoErr;

buffer = NewPtr(bufLen);

iErr = NSLPrepareRequest(NULL, NULL, gOurClientRef, &ourRequestRef,
 buffer, bufLen, &ourAsyncInfo);

if (iErr.theErr)
{

// Handle error.
}

Calling NSLPrepareRequest returns a requestRef and sets up a ClientAsyncInfo
structure for this request. The application uses the ClientAsyncInfo structure to
search for neighborhoods and services. The application can control the way the
search is conducted by specifying

■ a maximum time for the search

■ an alert threshold (that is, return search results whenever a certain number if
items have been returned)

■ an alert interval (that is, return search results whenever a specified time
elapses)

The NSL Manager uses the ClientAsyncInfo structure to convey search results
and status information about the search from the plug-in to the application.

In Listing 1-4, the application calls NSLStartNeighborhoodLookup to obtain the
first available neighborhood on the Intranet and calls NSLContinueLookup until it
has obtained all of the available neighborhoods on the Intranet.

Listing 1-4 Searching for neighborhoods

// Set the values of the ourAsyncInfo parameter block
ourAsyncInfo->clientContextPtr = NULL;
ourAsyncInfo->maxSearchTime = 0;// no max search time
20 Searching for Network Services

C H A P T E R 1

Network Services Location Manager

ourAsyncInfo->alertInterval = 0; // no alert interval
ourAsyncInfo->alertThreshold = 1;// return after each item

if (iErr.theErr == noErr)

iErr = NSLStartNeighborhoodLookup(ourRequestRef, neighborhood,
 ourAsyncInfo);

do {
if (iErr.theErr == noErr && ourAsyncInfo->totalItems > 0)

{
while (NSLGetNextNeighborhood(ourAsyncInfo, &nhPtr,

 &nhLength))
{

if (nhLength > 0 && nhLength < kBufferLength)
{
p2cstr((unsigned char*) nhPtr);

 // Each neighborhood is a data structure that
 // starts with a pstring of the name

printf("%s\r", nhPtr);
}
else
{

done = true;
}

}
if (ourAsyncInfo->searchState == kNSLSearchStateComplete)
done = true;

else
iErr = NSLContinueLookup(ourAsyncInfo);

}

} while (!iErr.theErr && !done);

if (buffer)
DisposePtr(buffer);

}

The application could display the name of each neighborhood and allow the
user to select one.

In Listing 1-5, the application calls NSLStartServicesLookup to start the service
lookup in the selected neighborhood, as specified by the neighborhood
Searching for Network Services 21

C H A P T E R 1

Network Services Location Manager
parameter. The ourRequest parameter was created earlier by calling
NSLPrepareRequest and the newDataPtr parameter was created earlier by calling
NSLMakeRequestPB.

The application continues to call NSLContinueLookup until it has received
information about all of the services that match the search criteria.

Listing 1-5 Searching for services

iErr = NSLStartServicesLookup(ourRequestRef, neighborhood, newDataPtr,
 ourAsyncInfo);

do {
if (iErr.theErr == noErr && ourAsyncInfo->totalItems > 0)
{

while (NSLGetNextUrl(ourAsyncInfo, &urlPtr, &urlLength))
{

if (urlLength > 0)
{

// Process resultBuffer.
}
else

{
done = true;

}
}
if (ourAsyncInfo->searchState == kNSLSearchStateComplete)

done = true;
else

iErr = NSLContinueLookup(ourAsyncInfo);
}

} while (!iErr.theErr && !done);

When the lookup is complete, the application reclaims memory allocated for the
services list, the request parameter block, and the lookup request, as shown in
Listing 1-6.
22 Searching for Network Services

C H A P T E R 1

Network Services Location Manager
Listing 1-6 Reclaiming memory

NSLDisposeServicesList(serviceList);
NSLDeleteRequest(ourRequestRef);
NSLFreeTypedDataPtr(newDataPtr);

When the application has no need to make additional lookups, it calls
NSLCloseNavigationAPI to close the NSL Manager, as shown in Listing 1-7.

Listing 1-7 Deinitializing the NSL Manager

NSLCloseNavigationAPI(gOurClientRef);

If this application is the last application that has a requirement for a particular
plug-in, the NSL Manager unloads that plug-in from memory.
Searching for Network Services 23

C H A P T E R 2

Contents

Contents
Figure 2-0
Listing 2-0
Table 2-0
2 Network Services Location
Manager Reference
NSL Manager Constants and Data Types 3
ClientAsyncInfo Structure 3
NSLError Structure 5

NSL Manager Functions 8
Managing NSL Manager Sessions 8

NSLOpenNavigationAPI 8
NSLCloseNavigationAPI 9

Making a Lookup Request 10
NSLMakeNewServicesList 10
NSLAddServiceToServicesList 10
NSLPrepareRequest 11

Looking for Neighborhoods and Services 13
NSLStartNeighborhoodLookup 13
NSLStartServicesLookup 16
NSLContinueLookup 18
NSLErrorToString 20
NSLCancelRequest 21

Managing Memory 21
NSLDisposeServicesList 21
NSLDeleteRequest 22

Managing Services 23
NSLRegisterService 23
NSLDeregisterService 24

NSL Manager Utility Functions 25
NSLFreeNeighborhood 25
NSLFreeTypedDataPtr 25
NSLGetNextNeighborhood 26
25

C H A P T E R 2
NSLGetNextUrl 27
NSLMakeNewNeighborhood 27
NSLMakeRegistrationPB 28
NSLMakeRequestPB 29

NSL Manager Result Codes 30
26 Contents

C H A P T E R 2
Network Services Location Manager Reference 2

NSL Manager Constants and Data Types 2

ClientAsyncInfo Structure 2

The ClientAsyncInfo structure contains information about how a neighborhood
or a service lookup is to be conducted and where lookup results are to be
stored. You obtain a pointer to a ClientAsyncInfo structure by calling
NSLPrepareRequest (page 2-35), and you pass that pointer as a parameter when
you call NSLStartNeighborhoodLookup (page 2-37), NSLStartServicesLookup
(page 2-40), or NSLContinueLookup (page 2-42).

Before you call NSLStartServicesLookup or NSLStartNeighborhoodLookup, you can
modify the way in which the lookup is conducted by changing certain values in
the ClientAsyncInfo structure. However, once you call NSLStartServicesLookup
or NSLStartNeighborhoodLookup, you should not modify the ClientAsyncInfo
structure.

When NSLStartServicesLookup, NSLStartServicesLookup, or NSLContinueLookup
returns, or when your application’s notification routine is called, the
ClientAsyncInfo structure contains information about the status of the lookup
and any search results.

typedef struct ClientAsyncInfo
{

void* clientContextPtr;
void* mgrContextPtr;
char* resultBuffer;
long bufferLen;
long maxBufferSize;
UInt32 startTime;
UInt32 intStartTime;
UInt32 maxSearchTime;
UInt32 alertInterval;
UInt32 totalItems;
UInt32 alertThreshold;
NSLSearchState searchState;
NSL Manager Constants and Data Types 27

C H A P T E R 2

Network Services Location Manager Reference
NSLError searchResult;
UInt32 searchDataType

} ClientAsyncInfo, *ClientAsyncInfoPtr;

Field descriptions
clientContextPtr A value set by the application for its own use.
mgrContextPtr A value set by the NSL Manager for its own use.
resultBuffer A pointer to the buffer that contains lookup results.
bufferLen The number of bytes in resultBuffer that contain valid

data.
maxBufferSize The length of resultBuffer.
startTime Used by the NSL Manager for internal purposes. Your

application should not modify this field.
intStartTime Used by the NSL Manager for internal purposes. Your

application should not modify this field.
maxSearchTime An application-specified limit in ticks on the total amount

of time that is to be expended on the search. The default
value is zero, which indicates that the search time is not to
be limited. The value of maxSearchTime does not override
any limit that a plug-in may impose.

alertInterval An application-specified value that defines in ticks the
interval at which the application’s notification routine is to
be called or the interval at which NSLStartServicesLookup,
NSLStartNeighborhoodLookup, or NSLContinueLookup are to
return. The default value is zero, which indicates that no
alert interval is specified.

totalItems The total number of items in resultbuffer.
alertThreshold An application-specified value that causes the application’s

notification routine to be called or NSLStartServicesLookup,
NSLStartNeighborhoodLookup, or NSLContinueLookup to
return whenever the specified number of items have been
placed in resultBuffer. Typically, applications that cause
NSLStartServicesLookup or NSLStartNeighborhoodLookup to
operate asynchronously set alertThreshold to 1, and
applications that cause NSLStartNeighborhood or
NSLStartServicesLookup to operate synchronously set
alertThreshold to zero, which indicates that no alert
threshold is specified. The default value is zero.
28 NSL Manager Constants and Data Types

C H A P T E R 2

Network Services Location Manager Reference
searchState A value that describes the current search state. The value
can be one of the following:

kNSLSearchStateBufferFull= 1,
kNSLSearchStateOnGoing = 2,
kNSLSearchStateComplete = 3,
kNSLSearchStateStalled = 4

searchResult An NSLError structure containing an error code that the
NSL Manager or a plug-in may have returned.

searchDataType An event code that indicates whether the information
stored in this ClientAsyncInfo structure pertains to a
neighborhood lookup (kNSLNeighborhoodLookupDataEvent)
or a service lookup (kNSLServicesLookupDataEvent).

NSLError Structure 2

The NSLError structure is used by certain NSL Manager functions to return an
error code as well as contextual information about that error code.

typedef struct NSLError {
OSStatus theErr;
UInt32 theContext;

} NSLError *NSLErrorPtr;

Field descriptions
theErr The error code.

theContext A value used by the NSL Manager to determine whether it
generated the error code or whether a plug-in generated
error code. If a plug-in generated the error code, the value
of theContext allows the NSL Manager to identify the
responsible plug-in.

Comparing the constant kNSLErrorNoErr to the value returned by an function
that returns an NSLError structure is a simple way to determine whether an
error occurred.

If you want to display information about the error to the user, your application
should call NSLErrorToString (page 2-44) to obtain two strings — a problem
NSL Manager Constants and Data Types 29

C H A P T E R 2

Network Services Location Manager Reference
string and a solution string. To display the strings, use a movable modal dialog
box, as shown in Figure 2-1.

Figure 2-1 Standard alert dialog box

Table 2-1 lists the problem and solution strings for error conditions that
commonly occur.

Problem string

Solution string
30 NSL Manager Constants and Data Types

C H A P T E R 2

Network Services Location Manager Reference
Table 2-1 Problem and solution strings for some NSL error conditions

 Condition Description Problem string Solution string

Service not
available

The application calls
NSLStartServicesLookup, but
when the plug-in tries to
communicate with the servers of
that service, the servers do not
answer. This condition might
be due to a protocol-
specific configuration error that
prevented the server from
receiving the plug-in’s query.
For example, the address of a
DNS server address in the TCP/
IP control panel is not correct.

The list of <type of
service> services
may not be
complete, because
not all requests for
these services were
answered.

If the item you're
looking for is not
there, please
check your
network setup
and try again.

Timeout The application calls
NSLStartServicesLookup and the
plug-in initiates the query but
does not receive any results.

The list of <type of
service> services
may not be
complete because
the network search
timed out.

Your <type of
network> network
may have been
interrupted.
Please try again
later.

Network
failure

The application calls
NSLStartServicesLookup and the
plug-in detects that the network
is down.

Your network is
not responding.

Your <type of
network> network
may have been
interrupted.
Please try again
later.

Connection
failure

The application calls
NSLStartServicesLookup but the
plug-ins cannot communicate
with the servers because there is
no appropriate network
connection.

You can not
connect to your
<type of network>
network.

Check your
network settings
and make sure all
networking
cables are
properly
attached. Then
try again.

Not
enough
memory

The application calls
NSLStartServicesLookup but
there is not enough memory to
load one or more plug-ins or for
one or more plug-ins to initialize
itself.

The last command
could not be
completed because
there is not
enough memory.

<standard low
memory
instructions>
NSL Manager Constants and Data Types 31

C H A P T E R 2

Network Services Location Manager Reference
NSL Manager Functions 2

Managing NSL Manager Sessions 2

NSLOpenNavigationAPI 2

Open a session with the NSL Manager.

OSStatus NSLOpenNavigationAPI (NSLClientRef* newref);

newref On input, a pointer to an NSLClientRef in which the NSL
Manager returns a value that your application uses in
subsequent NSLPrepareRequest (page 2-35) and
NSLCloseNavigationAPI calls (page 2-33).

function result A value of noErr indicates that the session was opened and all
available plug-ins loaded successfully. A value of
kNSLSomePluginsFailedToLoad indicates that the session was
opened and at least one plug-in loaded successfully. If
NSLOpenNavigationAPI returns any of the following error codes,
your application should not call any other NSL Manager
functions: kNSLNotInitialized, kNSLInsufficientSysVer,
kNSLInsufficientOTVer, and kNSLPluginLoadFailed.

DISCUSSION

The NSLOpenNavigationAPI function opens a session with the NSL Manager and
returns an NSLClientRef that your application later uses to prepare NSL lookup
requests and to close the NSL session. If no other application has opened a
session, calling NSLOpenNavigationAPI initializes the NSL Manager. You must
call NSLOpenNavigationAPI before you call any other NSL Manager functions.
32 NSL Manager Functions

C H A P T E R 2

Network Services Location Manager Reference
The version of the NSL Manager that comes with the NSL SDK requires Mac OS
version 8.0 or later and Open Transport 1.2 or later in order to initialize
successfully.

Note
The NSLOpenNavigationAPI function is a synchronous
call. ◆

NSLCloseNavigationAPI 2

Close a session with the NSL Manager.

void NSLCloseNavigationAPI (NSLClientRef theClient);

theClient On input, the NSLClientRef, obtained by previously calling
NSLOpenNavigationAPI (page 2-32), that identifies the session that
is to be closed.

DISCUSSION

The NSLCloseNavigationAPI function closes the specified NSL Manager session.

▲ W AR N I N G

If your application calls NSLCloseNavigationAPI while a
lookup is in progress, any data that would have been
returned is lost. ▲

Your application is responsible for reclaiming memory that it allocates for
services lists, parameter blocks, and lookup requests. Your application should
reclaim this memory by calling NSLDisposeServicesList (page 2-45),
NSLDeleteRequest (page 2-46) and NSLFreeTypedDataPtr (page 2-49), respectively.

Note
The NSLCloseNavigationAPI is a synchronous call. ◆
NSL Manager Functions 33

C H A P T E R 2

Network Services Location Manager Reference
Making a Lookup Request 2

NSLMakeNewServicesList 2

Create a services list.

NSLServicesList NSLMakeNewServicesList (char* initialServiceList);

initialServiceList
On input, a pointer to a comma-delimited, null-terminated
string of service names, such as http,ftp.

function result A services list. NSLMakeNewServicesList returns NULL if it can’t
create the services list because, for example, there is not enough
memory or because the NSL Manager is not initialized.

DISCUSSION

The NSLMakeNewServicesList function creates a services list and fills it with the
names of the services specified in initialServiceList. After you create the
services list, you can add the names of additional services by calling
NSLAddServiceToServicesList (page 2-34).

When you have no further use for the services list, you can reclaim the memory
allocated to it by calling NSLDisposeServicesList (page 2-45).

Note
The NSLMakeNewServicesList function is a synchronous
call. ◆

NSLAddServiceToServicesList 2

Add the name of a service to a services list.

NSLError NSLAddServiceToServicesList (NSLServicesList serviceList,
NSLServiceType serviceType);
34 NSL Manager Functions

C H A P T E R 2

Network Services Location Manager Reference
serviceList On input, a services list previously created by calling
NSLMakeNewServicesList (page 2-34).

serviceType On input, a service type that is to be added to the services list.

function result If the value of NSLError.theErr is noErr, the service was added to
the list. Other possible values are kNSLNotInitialized,
kNSLBadServiceTypeErr, kNSLNullListPtr, and
kNSLBadProtocolTypeErr.

DISCUSSION

The NSLAddServicesToServiceList function adds the name of the specified
service to a services list.

IMPORTANT

You must create serviceList by calling
NSLMakeNewServicesList before you call
NSLAddServicesToServicesList. ▲

Call NSLAddServiceToServicesList for each service that you want to add to the
services list.

Note
The NSLAddServiceToServicesList function is a
synchronous call. ◆

NSLPrepareRequest 2

Create a lookup request.

NSLError NSLPrepareRequest (NSLClientNotifyProcPtr notifier,
void* contextPtr,
NSLClientRef theClient,
NSLRequestRef* ref,
char* bufPtr,
unsigned long bufLen,
ClientAsyncInfoPtr* infoPtr);
NSL Manager Functions 35

C H A P T E R 2

Network Services Location Manager Reference
notifier On input, NULL (for synchronous lookups) or a pointer to your
application’s notification routine (for asynchronous lookups).

contextPtr On input, an application-defined value that your application can
use to associate lookup results with the request that initiated
them.

theClient On input, an NSLClientRef obtained by previously calling
NSLOpenNavigationAPI (page 2-32) that identifies the NSL
Manager session.

ref On output, a pointer to the resulting lookup request.

bufPtr On output, a pointer to the buffer in which lookup results are to
be placed.

bufLen On output, the length of the buffer pointed to by bufPtr.

infoPtr On output, infoPtr contains default information about how the
search is to be conducted. Your application can change the
defaults before it starts the lookup.

function result If the value of NSLError.theErr is noErr, the request was created.
Other possible values include kNSLNotInitialized,
kNSLDuplicateSearchInProgress, and kNSLBadClientInfoPtr.

DISCUSSION

The NSLPrepareRequest function creates a lookup request, which your
application later uses as a parameter when it calls NSLStartNeighborhoodLookup
(page 2-37) or NSLStartServicesLookup (page 2-40).

If notifier is null when you call NSLPrepareRequest, any lookup that uses the
resulting lookup request is performed synchronously. NSLStartServicesLookup
(page 2-40) and NSLContinueLookup (page 2-42) will return when the result buffer
is full, the lookup is complete, or an error occurs. Your application can cause
NSLStartServicesLookup and NSLContinueLookup to return at a specified interval,
when a specified number of items is in the result buffer, or when a specified
amount of time has elapsed by modifying the value of the alertInterval,
alertThreshold, and maxSearchTime fields, respectively, of the ClientAsyncInfo
structure (page 2-27) pointed to by infoPtr.

If notifier is a pointer to your application’s notification routine, your
application’s notification routine will be called when the result buffer is full,
when the lookup is complete, or when an error occurs. Your application can
36 NSL Manager Functions

C H A P T E R 2

Network Services Location Manager Reference
cause your application’s notification routine to be called at a specified interval,
when a specified number of items is in the result buffer, or when a specified
amount of time has elapsed by modifying the value of the alertInterval,
alertThreshold, and maxSearchTime fields, respectively, of the ClientAsyncInfo
structure (page 2-27) pointed to by infoPtr.

When your application no longer needs the lookup request, it should call
NSLDeleteRequest (page 2-46) to reclaim memory associated with the request.

Note
The NSLPrepareRequest function is a synchronous call. ◆

If NSLPrepareRequest returns kDuplicateSearchInProgress, there is an ongoing
lookup that is using an identical NSLRequestRef. Your application can ignore this
warning, delete the newly created NSLRequestRef, or cancel the lookup that is
using the identical NSLRequestRef.

Looking for Neighborhoods and Services 2

NSLStartNeighborhoodLookup 2

Look for neighborhoods.

NSLError NSLStartNeighborhoodLookup (NSLRequestRef ref,
NSLNeighborhood neighborhood,
ClientAsyncInfo* asyncInfo);

ref On input, an NSLRequestRef created by previously calling
NSLPrepareRequest (page 2-35).

neighborhood On input, an NSLNeighborhood value created by previously
calling NSLMakeNewNeighborhood (page 2-51). If neighborhood was
created with a value of name that was NULL,
NSLStartNeighborhoodLookup returns the first default
neighborhood. If neighborhood was created with a value of name
that is a name, NSLStartNeighborhoodLookup returns a related
NSL Manager Functions 37

C H A P T E R 2

Network Services Location Manager Reference
name. For example, if neighborhood was created with a value of
name that is apple.com, NSLStartNeighborhoodLookup returns a
subdomain of apple.com.

asyncInfo On input, a pointer to the asyncInfo structure in whose
resultBuffer field NSLStartNeighborhood is to store
neighborhood lookup results.

function result If the value of NSLError.theErr is noErr,
NSLStartNeighborhoodLookup returned successfully. Possible
errors are kNSLNotInitialized, kNSLSearchAlreadyInProgress,
kNSLNoPluginsForSearch, kNSLBufferTooSmallForData, and
kNSLNullNeighborhoodPtr.

DISCUSSION

The NSLStartNeighborhoodLookup function returns a neighborhood value that
your application can use to define the scope of a subsequent service lookup.

IMPORTANT

For any NSLRequestRef, only one neighborhood or service
lookup can be in progress at any one time. ▲

If ref was created with a value of notifier that is null,
NSLStartNeighborhoodLookup operates synchronously. If ref was created with a
value of notifier that is pointer to your application’s notification routine,
NSLStartNeighborhoodLookup operates asynchronously.

When NSLStartNeighborhoodLookup returns (if called synchronously) or when
the NSL Manager calls your application’s notification routine (if
NSLStartNeighborhoodLookup is called asynchronously), your application should
check the value of asyncInfo.searchState, which contains one of the following
values:

kNSLSearchStateBufferFull = 1,
kNSLSearchStateOnGoing = 2,
kNSLSearchStateComplete = 3,
kNSLSearchStateStalled = 4

If the value of asyncInfo.searchState is kNSLSearchStatusBufferFull, your
application should process the data returned in asyncInfo.resultBuffer. Then it
should call NSLContinueLookup (page 2-42) to resume the lookup.
38 NSL Manager Functions

C H A P T E R 2

Network Services Location Manager Reference
IMPORTANT

Calling NSLContinueLookup will cause the information in the
result buffer to be overwritten. ▲

If the value of asyncInfo.searchState is kNSLSearchStateOnGoing, the value of
asyncInfo.alertInterval or asyncInfo.alertThreshold has been reached. Your
application should process the data returned in asyncInfo.resultBuffer. Then it
should call NSLContinueLookup to resume the lookup.

If the value of asyncInfo.searchState is kNSLSearchStateComplete, the lookup is
complete. Your application should process the data returned in
asyncInfo.resultBuffer.

If the value of asyncInfo.searchState is kNSLSearchStateStalled, the value of
asyncInfo.alertInterval or asyncInfo.maxSearchTime has been reached, but
there is no data in the result buffer. One or more plug-ins for this lookup is
waiting to receive data from a server but has not yet timed out. If the value of
asyncInfo.searchState is noErr, your application should call NSLContinueLookup
to resume the lookup.

If NSLStartNeighborhoodLookup returns kNSLBufferTooSmallForData, the value of
asyncInfo.maxBuffserSize is too small to hold an item that would otherwise
have been returned. Your application can cancel and restart the lookup, or it can
call NSLContinueLookup to resume the lookup even though some data will be
lost.

IMPORTANT

If more than one plug-in participates in a lookup, the result
buffer may contain valid data even though
NSLStartNeighborhoodLookup returns an error code from one
of the plug-ins. If the value of asyncInfo.searchState is
kNSLSearchStateBufferFull, your application should
process the data in the result buffer. ▲

SEE ALSO

NSLGetNextNeighborhood (page 2-50) for information about processing the data
in the result buffer.
NSL Manager Functions 39

C H A P T E R 2

Network Services Location Manager Reference
NSLStartServicesLookup 2

Look for services.

NSLError NSLStartServicesLookup (NSLRequestRef ref,
NSLNeighborhood neighborhood,
TypedDataPtr requestData,
ClientAsyncInfo* asyncInfo);

ref On input, an NSLRequestRef created by previously calling
NSLPrepareRequest (page 2-35).

neighborhood On input, an NSLNeighborhood value created by previously
calling NSLMakeNewNeighborhood (page 2-51).

requestData On input, a parameter block that describes the search
parameters. To format requestData properly, call
NSLMakeRequestPB (page 2-53).

asyncInfo On input, a pointer to a ClientAsyncInfo structure (page 2-27)
obtained by calling NSLPrepareRequest.

function result If the value of NSLError.theErr is noErr, NSLStartServicesLookup
returned successfully. Other possible values are
kNSLNotInitialized, kNSLSearchAlreadyInProgress,
kNSLNoPluginsForSearch, kNSLNullNeighborhoodPtr, and
kNSLBufferTooSmallForData.

DISCUSSION

The NSLStartServicesLookup function starts a service lookup.

IMPORTANT

For any NSLRequestRef, only one neighborhood or service
lookup can be ongoing at any one time. ▲

If ref was created with a value of notifier that is null, NSLStartServicesLookup
operates synchronously. If ref was created with a value for notifier that is
pointer to your application’s notification routine, NSLStartServicesLookup
operates asynchronously.

When NSLStartServicesLookup returns (if called synchronously) or when the
NSL Manager calls your application’s notification routine (if
40 NSL Manager Functions

C H A P T E R 2

Network Services Location Manager Reference
NSLStartServicesLookup is called asynchronously), your application should
check the value of asyncInfo.searchState, which contains one of the following
values:

kNSLSearchStateBufferFull = 1,
kNSLSearchStateOnGoing = 2,
kNSLSearchStateComplete = 3,
kNSLSearchStateStalled = 4

If the value of asyncInfo.searchState is kNSLSearchStatusBufferFull, your
application should process the data returned in asyncInfo.resultBuffer. Then it
should call NSLContinueLookup (page 2-42) to resume the lookup.

IMPORTANT

Calling NSLContinueLookup will cause the information in the
result buffer to be overwritten. ▲

If the value of asyncInfo.searchState is kNSLSearchStateOnGoing, the value of
asyncInfo.alertInterval or asyncInfo.alertThreshold has been reached. Your
application should process the data returned in asyncInfo.resultBuffer. Then it
should call NSLContinueLookup to resume the lookup.

If the value of asyncInfo.searchState is kNSLSearchStateComplete, the lookup is
complete.Your application should process the data returned in
asyncInfo.resultBuffer.

If the value of asyncInfo.searchState is kNSLSearchStateStalled, the value of
asyncInfo.alertInterval or asyncInfo.maxSearchTime has been reached, but
there is no data in the result buffer. One or more plug-ins for this lookup is
waiting to receive data from a server but has not yet timed out. If the value of
asyncInfo.searchState is noErr, your application should call NSLContinueLookup
to resume the lookup.

If NSLStartServicesLookup returns kNSLBufferTooSmallForData, the value of
asyncInfo.maxBuffserSize is too small to hold an item that would otherwise
have been returned. Your application can cancel and restart the lookup, or it can
call NSLContinueLookup to resume the lookup even though some data will be
lost.
NSL Manager Functions 41

C H A P T E R 2

Network Services Location Manager Reference
IMPORTANT

If more than one plug-in participates in a lookup, the result
buffer may contain valid data even though
NSLStartServicesLookup returns an error code from one of
the plug-ins. If the value of asyncInfo.searchState is
kNSLSearchStateBufferFull, your application should
process the data in the result buffer. ▲

To cancel an ongoing lookup, call NSLCancelRequest (page 2-45).

SEE ALSO

NSLGetNextUrl (page 2-51) for information about processing the data in the
result buffer. NSLDeleteRequest (page 2-46) for information about deleting a
lookup request that is no longer needed.

NSLContinueLookup 2

Continue a lookup.

NSLError NSLContinueLookup (ClientAsyncInfo* asyncInfo);

asyncInfo A pointer to the ClientAsyncInfo structure (page 2-27) for this
lookup.

function result If the value of NSLError.theErr is noErr, NSLContinueLookup
returned successfully. Possible errors include
kNSLNotInitialized, kNSLNoContextAvailable,
kNSLBadClientInfoPtr, and kNSLCannotContinueLookup, and
kNSLBufferTooSmallForData.

DISCUSSION

The NSLContinueLookup function continues a service lookup or a neighborhood
lookup that has paused because NSLStartNeighborhoodLookup,
NSLStartServicesLookup, or a previous call to NSLContinueLookup has returned,
or because your application’s notification routine has been called. Your
application should check the value of asyncInfo.searchState, which contains
one of the following values:
42 NSL Manager Functions

C H A P T E R 2

Network Services Location Manager Reference
kNSLSearchStateBufferFull = 1,
kNSLSearchStateOnGoing = 2,
kNSLSearchStateComplete = 3,
kNSLSearchStateStalled = 4

If the value of asyncInfo.searchState is kNSLSearchStatusBufferFull, your
application should process the data returned in asyncInfo.resultBuffer. Then it
should call NSLContinueLookup again to resume the lookup.

IMPORTANT

Calling NSLContinueLookup will cause the information in the
result buffer to be overwritten. ▲

If the value of asyncInfo.searchState is kNSLSearchStateOnGoing, the value of
asyncInfo.alertInterval or asyncInfo.alertThreshold has been reached. Your
application should process the data returned in asyncInfo.resultBuffer. Then it
should call NSLContinueLookup again to resume the lookup.

If the value of asyncInfo.searchState is kNSLSearchStateComplete, the lookup is
complete.Your application should process the data returned in
asyncInfo.resultBuffer.

If the value of asyncInfo.searchState is kNSLSearchStateStalled, the value of
asyncInfo.alertInterval or asyncInfo.maxSearchTime has been reached, but
there is no data in the result buffer. One or more plug-ins for this lookup is
waiting to receive data from a server but has not yet timed out. If the value of
asyncInfo.searchState is noErr, your application should call NSLContinueLookup
again to resume the lookup.

If NSLContinueLookup returns kNSLBufferTooSmallForData, the value of
asyncInfo.maxBuffserSize is too small to hold an item that would otherwise
have been returned. Your application can cancel and restart the lookup, or it can
call NSLContinueLookup again to resume the lookup even though some data will
be lost.

IMPORTANT

If more than one plug-in participates in a lookup, the result
buffer may contain valid data even though
NSLContinueLookup returns an error code from one of the
plug-ins. If the value of asyncInfo.searchState is
kNSLSearchStateBufferFull, your application should
process the data in the result buffer. ▲

To cancel an ongoing lookup, call NSLCancelRequest (page 2-45).
NSL Manager Functions 43

C H A P T E R 2

Network Services Location Manager Reference
SEE ALSO

NSLGetNextUrl (page 2-51) for information about processing the data in the
result buffer. NSLDeleteRequest (page 2-46) for information about deleting a
lookup request that is no longer needed.

NSLErrorToString 2

Obtain information about an error.

OSStatus NSLErrorToString (NSLError theErr,
char* errorString,
char* solutionString);

theErr On input, an NSLError structure (page 2-29) whose theErr field
contains an NSL error number.

errorString On input, a pointer to the buffer in which NSLErrorToString is to
place a string containing a description of the problem that
caused the error. The length of errorString should be 256 bytes.

solutionString
On input, a pointer to the buffer in which NSLErrorToString is to
place a string containing a possible solution to the problem. The
length of solutionString should be 256 bytes.

function result A value of noErr indicates that NSLErrorToString returned
successfully. If NSLError.theContext is zero and NSLError.theErr
contains an error number that is not within the range of NSL
error numbers, NSLErrorToString returns kNSLBadReferenceErr.
The NSLErrorToString function returns kNSLNotInitialized if
your application has not opened a session with the NSL
Manager by previously calling NSLOpenNavigationAPI
(page 2-32).

DISCUSSION

The NSLErrorToString function obtains information about an NSLError structure
(page 2-29) so that your application can display an appropriate error message.
The NSLError structure may have been returned by the NSL Manager or by an
NSL plug-in. For any given lookup, search results may be returned by more
44 NSL Manager Functions

C H A P T E R 2

Network Services Location Manager Reference
than one plug-in. You may not want to display an error message if one or more
plug-ins return data without error.

Note
The NSLErrorToString function is a synchronous call. ◆

NSLCancelRequest 2

Cancel an ongoing lookup.

NSLError NSLCancelRequest (NSLRequestRef ref);

ref On input, the NSLRequestRef obtained by previously calling
NSLPrepareRequest (page 2-35) for the lookup that is to be
canceled.

function result If the value of NSLError.theErr is noErr, the request was
canceled successfully. Other possible values are
kNSLNotInitialized and kNSLBadReferenceErr.

DISCUSSION

The NSLCancelRequest function cancels an ongoing lookup. Any outstanding
I/O is also canceled.

Managing Memory 2

NSLDisposeServicesList 2

Dispose of a services list.

void NSLDisposeServicesList (NSLServicesList theList);

theList On input, the services list that is to be disposed of.
NSL Manager Functions 45

C H A P T E R 2

Network Services Location Manager Reference
DISCUSSION

The NSLDisposeServicesList function reclaims memory by disposing of a
services list. Once you’ve incorporated the information in a services list into a
request parameter block, you can dispose of the services list.

Calling NSLCloseNavigationAPI (page 2-33) does not reclaim memory allocated
for services lists, so your application should dispose of services lists before it
closes the NSL session.

Note
The NSLDisposeServicesList function is a synchronous
call. ◆

NSLDeleteRequest 2

Delete a lookup request.

NSLError NSLDeleteRequest (NSLRequestRef ref);

ref On input, the NSLRequestRef obtained by previously calling
NSLPrepareRequest (page 2-35) for the lookup request that is to
be deleted.

function result If the value of NSLError.theErr is noErr, the lookup request was
deleted. Other possible values are kNSLNotInitialized and
kNSLBadReferenceErr.

DISCUSSION

The NSLDeleteRequest function deletes the specified lookup request and
deallocates memory associated with it, including the ClientAsyncInfo structure.
If a lookup is in progress for the specified lookup request when you call
NSLDeleteRequest, the lookup is terminated and any outstanding I/O is lost.

The NSLDeleteRequest function does not deallocate memory associated with the
services list or request parameter blocks. To deallocate memory for services
lists, call NSLDisposeServicesList (page 2-45); to deallocate memory for
parameter blocks, call NSLFreeTypedDataPtr (page 2-49).
46 NSL Manager Functions

C H A P T E R 2

Network Services Location Manager Reference
Note
The NSLDeleteRequest is a synchronous call. ◆

Managing Services 2

NSLRegisterService 2

Register a service.

NSLError NSLRegisterService (TypedDataPtr requestData);

requestData On input, a TypedDataPtr containing information about the
service that is to be registered. To format requestData properly,
call NSLMakeRegistrationPB (page 2-52).

function result If the value of NSLError.theErr is noErr, the service was
registered. The NSLRegisterService function returns
kNSLNoSupportForService, which indicates that none of the
currently installed plug-ins support the service for which
registration is requested. Another possible error is
kNSLNotInitialized.

DISCUSSION

The NSLRegisterService function registers the specified service with the NSL
Manager. An application that provides a network service should call
NSLRegisterService as part of its standard startup procedure.

Once the service is registered, your application can call NSLFreeTypedDataPtr
(page 2-49) to reclaim memory allocated for requestData.

Note
The NSLRegisterService is a synchronous call. ◆

Your application should keep its NSL Manager session open while the services
it registers remain available. Your application should call NSLDeregisterService
(page 2-48) to deregister its services as part of its standard shutdown procedure.
NSL Manager Functions 47

C H A P T E R 2

Network Services Location Manager Reference
Then your application can call NSLCloseNavigationAPI (page 2-33) to close its
NSL session.

NSLDeregisterService 2

Deregister a service.

NSLError NSLDeregisterService (TypedDataPtr requestData);

requestData On input, a TypedDataPtr identifying the service that is to be
deregistered. You can use the requestData value that you used to
register the service (if you have not already disposed of it) or
you can call NSLMakeRegistrationPB (page 2-52) to format
requestData properly.

function result If the value of NSLError.theErr is noErr, the service was
deregistered. The NSLDeregisterService function returns
kNSLNoSupportForService, which indicates that none of the
currently installed plug-ins support the service for which
deregistration is requested. Other possible errors include
kNSLNotInitialized.

DISCUSSION

The NSLDeregisterService function deregisters the service specified by
requestData. You should call NSLDeregisterService as part of your standard
shutdown procedure. Once your application has deregistered the services it has
previously registered, it can call NSLCloseNavigationAPI (page 2-33).

Note
The NSLDeregisterService is a synchronous call. ◆
48 NSL Manager Functions

C H A P T E R 2

Network Services Location Manager Reference
NSL Manager Utility Functions 2

NSLFreeNeighborhood 2

Dispose of an NSLNeighborhood value.

NSLNeighborhood NSLFreeNeighborhood (NSLNeighborhood neighborhood);

neighborhood On input, the NSLNeighborhood value that is to be disposed of.

function result If no error occurred, an NSLNeighborhood value whose value is
NULL. Possible errors include kNSLBadDataTypeErr, which
indicates that neighborhood is not of the type NSLNeighborhood.

DISCUSSION

The NSLMakeNewNeighborhood function disposes of an NSLNeighborhood value and
reclaims that memory that was allocated to it.

Note
The NSLMakeNewNeighborhood function is a synchronous
call. ◆

NSLFreeTypedDataPtr 2

Free memory allocated for a request or registration parameter block.

TypedDataPtr NSLFreeTypedDataPtr (TypedDataPtr nslTypeData);

nslTypeData On input, a TypedDataPtr obtained by previously calling
NSLMakeRequestPB (page 2-53) or NSLMakeRegistrationPB
(page 2-52).
NSL Manager Utility Functions 49

C H A P T E R 2

Network Services Location Manager Reference
function result If no error occurred, a TypedDataPtr whose value is NULL.
Possible errors include kNSLBadDataTypeErr, which indicates that
nslTypeData is not a valid parameter block.

DISCUSSION

The NSLFreeTypedDataPtr function frees memory that your application caused
to be allocated when it previously called NSLMakeRequestPB (page 2-53) and
NSLMakeRegistrationPB (page 2-52). Your application should call
NSLFreeTypedDataPtr (page 2-49) when it has no further use for the parameter
block specified by nslTypeData.

NSLGetNextNeighborhood 2

Obtain information about the next neighborhood in a buffer.

Boolean NSLGetNextNeighborhood (ClientAsyncInfoPtr infoPtr,
NSLNeighborhood* neighborhood,
long* neighborhoodlength);

infoPtr On input, a pointer to a ClientAsyncInfo structure (page 2-27)
whose resultBuffer field may contain another neighborhood.

neighborhood On output, if another neighborhood was found in resultBuffer,
a pointer to the beginning of the neighborhood’s name.

neighborhoodLength
On output, the length of the neighborhood pointed to by
neighborhood.

function result A Boolean value. A value of TRUE indicates that neighborhood
points to the next neighborhood in resultBuffer. A value of
FALSE indicates that there are no more names in resultBuffer.

DISCUSSION

The NSLGetNextNeighborhood function obtains the starting position and the
length of the next neighborhood in a result buffer.
50 NSL Manager Utility Functions

C H A P T E R 2

Network Services Location Manager Reference
Note
The NSLGetNextNeighborhood function is a synchronous
call. ◆

NSLGetNextUrl 2

Obtain information about the next URL in a buffer.

Boolean NSLGetNextUrl (ClientAsyncInfoPtr infoPtr,
char** urlPtr,
long* urlLength);

infoPtr On input, a pointer to a ClientAsyncInfo structure (page 2-27)
whose resultBuffer field may contain a URL.

urlPtr On output, if a URL was found in resultBuffer, a pointer to the
beginning of the URL.

urlLength On output, the length of the URL pointed to by urlPtr.

function result A Boolean value. A value of TRUE indicates that urlPtr points to
the next URL in resultBuffer. A value of FALSE indicates that
there are no more URLs in resultBuffer.

DISCUSSION

The NSLGetNextUrl function obtains the starting position and the length of the
next URL in a result buffer. You call NSLGetNextUrl to parse the URLs returned
by a previous call to NSLStartServicesLookup.

NSLMakeNewNeighborhood 2

Create a neighborhood.

NSLNeighborhood NSLMakeNewNeighborhood (char* name,
char* protocolList);
NSL Manager Utility Functions 51

C H A P T E R 2

Network Services Location Manager Reference
name On input, a pointer to a string containing a name. If dns is
specified in protocolList, the value of name should be a domain
name, such as apple.com. If slp is specified in protocolList, the
value of name should be a scope. Other types of names may be
appropriate depending on the installed plug-ins. To create an
NSLNeighborhood that can be used to obtain a list of default
neighborhoods when you call NSLStartNeighborhoodLookup, set
name to NULL.

protocolList On input, a pointer to a comma-separated, null-terminated list
of protocols (such as dns,slp) that are to participate in a lookup
conducted with the resulting NSLNeighborhood value. If the value
of protocolList is NULL, all available protocols will participate in
the lookup.

function result An NSLNeighborhood value that can be used in a subsequent call
to NSLStartServicesLookup. If NSLMakeNewNeighborhood can’t
create an NSLNeighborhood value, it returns NULL. This might
happen, for example, if there is not enough memory.

DISCUSSION

The NSLMakeNewNeighborhood function creates an NSLNeighborhood value that
defines the boundary of a subsequent search.

When you have no further use for an NSLNeighborhood value, you can reclaim
the memory allocated to it by calling NSLFreeNeighborhood (page 2-49).

Note
The NSLMakeNewNeighborhood function is a synchronous
call. ◆

NSLMakeRegistrationPB 2

Create a registration parameter block.

OSStatus NSLMakeRegistrationPB (NSLAttribute attribute,
NSLPath urlToService,
TypedDataPtr* newDataPtr);
52 NSL Manager Utility Functions

C H A P T E R 2

Network Services Location Manager Reference
attribute On input, a null-terminated string containing a description of
the service that is being registered, such as “Web Sharing.” The
value of attribute differentiates the service from other services
of the same type.

urlToService On input, a null-terminated string containing the URL of the
service that is to be registered. The URL, such as
http://www.apple.com, includes the service type (in this
example, http).

newDataPtr On input, the address of the TypedDataPtr at which
NSLMakeRegistrationPB is to place the resulting parameter block.

function result A value of noErr indicates that NSLMakeRegistrationPB returned
successfully. A possible error is kNSLNotInitialized.

DISCUSSION

The NSLMakeRegistrationPB function creates a parameter block that is formatted
properly for use with subsequent calls to NSLRegisterService and
NSLDeregisterService (page 2-48).

NSLMakeRequestPB 2

Create a request parameter block.

OSStatus NSLMakeRequestPB (NSLServicesList serviceList,
NSLAttribute attribute,
TypedDataPtr* newDataPtr);

serviceList On input, an NSLServiceList created by previously calling
NSLMakeNewServicesList (page 2-34). If serviceList is empty, all
possible services will be returned in the lookup.

attribute On input, a null-terminated string containing a description of
the service that is to be searched for, such as “Web Sharing.” The
value of attribute differentiates one service from other services
of the same type. If attribute is empty, any subsequent lookup
will not differentiate between services of the same type.
NSL Manager Utility Functions 53

C H A P T E R 2

Network Services Location Manager Reference
newDataPtr On input, the address of the TypedDataPtr at which
NSLMakeRequestPB is to place the resulting parameter block.

function result A value of noErr indicates that NSLMakeRequestPB returned
successfully. Possible errors include kNSLBadDomainErr.

DISCUSSION

The NSLMakeRequestPB function creates a parameter block that is formatted
properly for use with subsequent calls to NSLStartServicesLookup (page 2-40).

NSL Manager Result Codes 2

All of the NSL Manager functions return a result code. The result codes specific
to the NSL Manager are listed here. In addition, NSL Manager functions may
return other Mac OS result codes, which are described in Inside Macintosh.

noErr 0 No error.
kNSLNotInitialized -4199 The NSL Manager could

not be initialized.
kNSLInsufficientSysVer -4198 The installed version of

the Mac OS does not
support the NSL
Manager. (For the NSL
Manager SDK, Version
8.0 or later is required.)

kNSLInsufficientOTVer -4197 The installed version of
Open Transport does
support the NSL
Manager. (Open
Transport 1.2 or later is
required.)

kNSLNoElementsInList -4196 A specified list is empty.
kNSLBadReferenceErr -4195 The specified

NSLClientRef or
NSLRequestRef is invalid.

kNSLBadServiceTypeErr -4194 The specified service type
is not supported.
54 NSL Manager Result Codes

C H A P T E R 2

Network Services Location Manager Reference
kNSLBadDataTypeErr -4193 The specified parameter
is not of the correct data
type.

kNSLBadNetConnection -4192 A network error
occurred. AppleTalk or
TCP/IP may be turned
off, or the computer may
not be connected to the
network.

kNSLNoSupportForService -4191 No plug-in supports the
requested service
registration or
deregistration.

kNSLInvalidPluginSpec -4190 The theContext field of
the specified NSLError
structure is invalid.

kNSLMismatchedBufferLengths -4189 Reserved.
kNSLRequestBufferAlreadyInList -4188 Reserved.
kNSLNoContextAvailable -4187 The asyncInfo parameter

provided in a call to
NSLContinueLookup is
invalid.

kNSLBufferTooSmallForData -4186 The application’s result
buffer is too small to store
the data returned by a
plug-in.

kNSLCannotContinueLookup -4185 The lookup cannot be
continued due to an error
condition or a bad state.

kNSLBadClientInfoPtr -4184 The specified
ClientAsyncInfoPtr is
invalid.

kNSLNullListPtr -4183 The pointer to the
specified list is invalid.

kNSLBadProtocolTypeErr -4182 The specified
NSLServiceType is empty.

kNSLPluginLoadFailed -4181 During system
initialization, the NSL
Manager was unable to
load any plug-ins.

kNSLNoPluginsFound -4180 During system
initialization, the NSL
Manager was unable to
find any valid plug-ins to
load.
NSL Manager Result Codes 55

C H A P T E R 2

Network Services Location Manager Reference
kNSLSearchAlreadyInProgress -4179 A search is already in
progress for the specified
clientRef.

kNSLNoPluginsForSearch -4178 None of the installed
plug-ins are able to
respond to the lookup
request.

kNSLNullNeighborhoodPtr -4177 The pointer to a
neighborhood is invalid.

kNSLSomePluginsFailedToLoad -4176 During system
initialization, the NSL
Manager was unable to
load some plug-ins.

kNSLErrNullPtrError -4175 A specified pointer is
invalid.

kNSLNotImplementedYet -4174 The requested
functionality is not
available.
56 NSL Manager Result Codes

C H A P T E R 3

Contents

Contents
Figure 3-0
Listing 3-0
Table 3-0
3 Network Services Location
Manager Plug-In Reference
NSL Manager Plug-in Constants and Data Types 3
PluginAsyncInfo Structure 3
PluginData Structure 4

NSL Manager Plug-in Utility Functions 6
NSLGetNameFromNeighborhood 6
NSLParseRegistrationPB 7
NSLParseRequestPB 8

NSL Manager Plug-in Routines 8
GetPluginInfo 9
InitPlugin 9
Register 10
StartNeighborhoodLookup 11
StartServicesLookup 12
ContinueLookup 14
ErrNumToString 15
CancelLookup 16
Deregister 16
UnloadPlugin 17
57

C H A P T E R 3
Network Services Location Manager Plug-In Reference 3

NSL Manager Plug-in Constants and Data Types 3

PluginAsyncInfo Structure 3

The NSL Manager passes a PluginAsyncInfo structure as a parameter to the
plug-in’s StartNeighborhoodLookup, StartServicesLookup, and ContinueLookup
routines. The PluginAsyncInfo structure contains all of the information that the
plug-in needs to start or continue a lookup. The plug-in uses the
PluginAsyncInfo structure to maintain state information about an ongoing
lookup request and to return information about the lookup to the NSL
Manager.

typedef struct PluginAsyncInfo
{

void* mgrContextPtr;
void* pluginContextPtr;
void* pluginPtr;
char* resultBuffer;
long bufferLen;
long maxBufferSize;
UInt32 maxSearchTime;
UInt32 reserved1;
UInt32 reserved2;
UInt32 reserved3;
NSLCLientRef clientRef
NSLRequestRef requestRef
NSLSearchState searchState;
OSStatus searchResult;

} PluginAsyncInfo, *PluginAsyncInfoPtr;

Field descriptions
mgrContextPtr A value set by the NSL Manager for its own use.
pluginContextPtr A value set by the plug-in for its own use.
pluginPtr A pointer to the plug-in object that is waiting for the

application to call NSLContinueLookup.
NSL Manager Plug-in Constants and Data Types 59

C H A P T E R 3

Network Services Location Manager Plug-In Reference
resultBuffer A pointer to the buffer that the plug-in can use to store
lookup results.

bufferLen The length of valid data in resultBuffer.
maxBufferSize The maximum length of resultBuffer.
maxSearchTime The total amount of time, specified in ticks, that is to be

spent on the lookup. The default value is zero, which
indicates that the lookup time is not to be limited. An
application may specify a maximum search time before it
calls NSLStartNeighborhoodLookup or
NSLStartServicesLookup, in which case the plug-in is
obligated to comply. The NSL Manager does not have a
mechanism for enforcing compliance.

Reserved1 Reserved.
Reserved2 Reserved.
Reserved3 Reserved.
clientRef A value identifying the application that made the request.
requestRef A value specifying the lookup request.
searchState A value that the plug-in sets to indicate the current state of

the lookup. The value can be one of the following:
kNSLSearchStateBufferFull= 1,
kNSLSearchStateOnGoing = 2,
kNSLSearchStateComplete = 3,
kNSLSearchStateStalled = 4

searchResult An NSLError structure that the plug-in uses to return error
information.

PluginData Structure 3

Plug-ins use the PluginData structure to inform the NSL Manager about the
protocols and services they support. The NSL Manager obtains this information
by calling the plug-in’s GetPluginInfo routine (page 3-65).

typedef struct PluginData
{

long reserved1;
long reserved2;
long reserved3;
Boolean isPurgeable;
60 NSL Manager Plug-in Constants and Data Types

C H A P T E R 3

Network Services Location Manager Plug-In Reference
UInt16 totalLen;
UInt16 dataTypeOffset;
UInt16 serviceListOffset;
UInt16 protocolListOffset;
UInt16 commentStringOffset;

} PluginData, *PluginDataPtr;

Field descriptions
reserved1 Reserved.
reserved2 Reserved.
reserved3 Reserved.
isPurgeable TRUE if the plug-in can be purged from memory; FALSE if the

plug-in cannot be purged from memory.
totalLen The length of the PluginData structure.
dataTypeOffset The offset from the beginning of the PluginData structure at

which the data type resides.
serviceListOffset The offset from the beginning of the PluginData structure at

which are listed the services the plug-in supports.
protocolListOffset The offset from the beginning of the PluginData structure at

which are listed the protocols the plug-in supports.
commentStringOffset

The offset from the beginning of the PluginData structure at
which the comment string begins. The comment string
should describe the protocols and services that the plug-in
supports, and may contain other information suitable for
display to the user.
NSL Manager Plug-in Constants and Data Types 61

C H A P T E R 3

Network Services Location Manager Plug-In Reference
NSL Manager Plug-in Utility Functions 3

NSLGetNameFromNeighborhood 3

Obtain the name from a neighborhood.

void NSLGetNameFromNeighborhood (NSLNeighborhood neighborhood,
char** name,
long* length);

neighborhood On input, the NSLNeighborhood value from which the name is to
be obtained.

name On output, the name that neighborhood contains.

length On output, the length of name.

DISCUSSION

The NSLGetNameFromNeighborhood function obtains the name from an
NSLNeighborhood value. The plug-in uses the name to limit the scope of a
lookup. The format of the name is depends on the protocols that the plug-in
supports. For example, a plug-in that supports DNS would expect the value of
name to be a name such as apple.com, and an plug-in that supports AppleTalk
would expect name to be an AppleTalk zone name, such as CC 6 4th Floor
South.

NSL plug-ins call NSLGetNameFromNeighborhood from their
StartNeighborhoodLookup (page 3-67) and StartServicesLookup (page 3-68)
routines.
62 NSL Manager Plug-in Utility Functions

C H A P T E R 3

Network Services Location Manager Plug-In Reference
NSLParseRegistrationPB 3

Parse a registration parameter block.

OSStatus NSLParseRegistrationPB (TypedDataPtr newDataPtr,
char** attributePtr,
UInt16* attributeLen,
char** urlPtr,
UInt16* urlLen);

newDataPtr On input, the registration parameter block that is to be parsed.

attributePtr On output, a pointer to the attribute stored in a registration
parameter block.

attributeLen On output, a pointer to the length of the attribute pointed to by
attributePtr.

urlPtr On output, a pointer to the URL stored in a registration
parameter block.

urlLen On output, a pointer to the length of the URL pointed to by
urlPtr.

function result A value of noErr indicates that NSLParseRequestPB returned
successfully. The NSLParseRegistrationPB function returns
kBadDataTypeError if newDataPtr is not a valid request parameter
block.

DISCUSSION

The NSLParseRegistrationPB function parses a registration parameter block.
When the NSL Manager calls an NSL plug-in’s Register routine (page 3-66), the
NSL Manager passes the parameter block to the plug-in, which calls
NSLParseRegistrationPB to determine the location of the list of URLs and
attributes the application has specified for the registration.
NSL Manager Plug-in Utility Functions 63

C H A P T E R 3

Network Services Location Manager Plug-In Reference
NSLParseRequestPB 3

Parse a request parameter block.

OSStatus NSLParseRequestPB (TypedDataPtr newDataPtr,
UInt16* serviceListOffset,
UInt16* attributeOffset);

newDataPtr On input, the address of the TypedDataPtr that is to be parsed.

serviceListOffset
On output, the offset in newDataPtr at which the service list
begins.

attributeOffset
On output, the offset in newDataPtr at which the attribute begins.

function result A value of noErr indicates that NSLParseRequestPB returned
successfully. The NSLParseRequestPB function returns
kBadDataTypeError if newDataPtr is not a valid request parameter
block.

DISCUSSION

The NSLParseRequestPB function parses a request parameter block. When the
NSL Manager calls an NSL plug-in’s StartServicesLookup routine (page 3-68),
the NSL Manager passes the parameter block to the plug-in, which calls
NSLParseRequestPB to determine the location of the service list and attributes
that the application has specified for the lookup.

NSL Manager Plug-in Routines 3

NSL plug-ins reside in the Extensions folder inside the System Folder. The icon
for NSL plug-ins is shown in Figure 3-1.
64 NSL Manager Plug-in Routines

C H A P T E R 3

Network Services Location Manager Plug-In Reference
Figure 3-1 NSL plug-in icon

The creator code for an NSL plug-in is 'NSLp' and the type code is 'shlb'.

Each NSL plug-in provides the routines described in this section for the NSL
Manager to call.

GetPluginInfo 3

Provide information about the plug-in.

OSStatus GetPluginInfo (PluginDataPtr* theData);

theData A pointer to a PluginData structure (page 3-60) in which the
plug-in is to return information about itself.

result A value indicating that GetPluginInfo completed successfully.
The GetPluginInfo routine can return any NSL error code to
indicate that it did not provide the requested information.

DISCUSSION

The NSL Manager calls a plug-in’s GetPluginInfo routine to determine the
protocols, data types, and services that the plug-in supports. The NSL Manager
uses the information returned in theData to determine which plug-ins to use
when applications attempt to register services or start lookups.

InitPlugin 3

Initialize the plug-in.

OSStatus InitPlugin (void);
NSL Manager Plug-in Routines 65

C H A P T E R 3

Network Services Location Manager Plug-In Reference
result A value of noErr indicates that InitPlugin successfully
initialized the plug-in.

DISCUSSION

The InitPlugin routine allocates memory for the plug-in and opens network
connections that the plug-in will use.

Register 3

Register services.

OSStatus Register (TypedDataPtr dataPtr);

dataPtr A TypedDataPtr that specifies the services that are to be
registered.

result A value of noErr indicates that Register successfully registered
the specified services. To indicate that the services were not
successfully registered, Register can return any NSL error code.
For example, if Register cannot parse dataPtr, it should return
kNSLBadDataTypeErr.

DISCUSSION

The Register routine registers the services specified by dataPtr. The NSL
Manager calls a plug-in’s Register routine in response to an application that
calls the NSL Manager’s NSLRegisterService function (page 2-47).

To parse the services specified by dataPtr, the Register routine calls
NSLParseRegistrationPB (page 3-63).
66 NSL Manager Plug-in Routines

C H A P T E R 3

Network Services Location Manager Plug-In Reference
StartNeighborhoodLookup 3

Look for neighborhoods.

OSStatus StartNeighborhoodLookup (NSLNeighborhood neighborhood,
NSLMgrNotifyProcPtr notifier,
PluginAsyncInfo* infoPtr);

neighborhood An NSLNeighborhood value that identifies the neighborhood in
which the lookup is to be conducted.

notifier The NSL Manager’s notification routine, which the plug-in calls
when the result buffer contains one item, the lookup is
complete, the maximum search time has been reached, or an
error has occurred.

infoPtr A pointer to a PluginAsyncInfo structure whose clientRef and
requestRef fields identify the application and request associated
with the lookup that is to be started, whose maxSearchTime field
may limit the amount of time that is to be spent on the lookup,
whose resultBuffer field is to be changed to point to the
plug-in’s lookup result, and whose searchState and
searchResult fields are used to store status information about
the lookup.

result A value of noErr indicates that StartNeighborhoodLookup
completed successfully. The StartNeighborhoodLookup routine
can return any NSL error code to indicate that it did not start the
lookup. A value of kNSLBadDataTypeErr indicates that the search
was not started because one or more of the input parameters is
invalid.

DISCUSSION

The StartNeighborhoodLookup routine performs the lookup specified by
neighborhood. The NSL Manager calls a plug-in’s StartNeighborhoodLookup
routine in response to an application that calls the NSL Manager’s
NSLStartNeighborhoodLookup function (page 2-37).

To obtain the name of the neighborhood specified by neighborhood, the
StartNeighborhoodLookup routine calls NSLGetNameFromNeighborhood (page 3-62).
NSL Manager Plug-in Routines 67

C H A P T E R 3

Network Services Location Manager Plug-In Reference
A plug-in’s StartNeighborhoodLookup routine stores one neighborhood in its
result buffer, changes infoPtr.resultBuffer to point to its result buffer, sets
infoPtr.bufferLen to the length of the valid data in its result buffer, and calls
the NSL Manager’s notification routine.

If the value of infoPtr.maxSearchTime is a non-zero positive value when the
plug-in’s StartNeighborhoodLookup routine is called, StartNeighborhoodLookup
routine should maintain a count of the time in ticks that it spends on this
lookup.

To maintain context information about this lookup, the
StartNeighborhoodLookup routine can use infoPtr.pluginContext.

StartServicesLookup 3

Look for services.

OSStatus StartServicesLookup (NSLNeighborhood neighborhood,
TypedDataPtr dataPtr,
NSLMgrNotifyProcPtr notifier,
PluginAsyncInfo* infoPtr);

neighborhood An NSLNeighborhood value that specifies the neighborhood in
which the service lookup is to be conducted.

dataPtr A TypedDataPtr that identifies the parameters for a lookup.

notifier The NSL Manager’s notification routine, which the plug-in calls
when the result buffer contains one item, the lookup is
complete, the maximum search time has been reached, or an
error has occurred.

infoPtr A pointer to a PluginAsyncInfo structure whose clientRef and
requestRef fields identify the application and request associated
with the lookup that is to be started, whose maxSearchTime field
may specify a limit on the amount of time that is to be spent on
the search, whose resultBuffer field should be changed to point
to the plug-in result, and whose searchState and searchResult
fields are used to store status information about the lookup.
68 NSL Manager Plug-in Routines

C H A P T E R 3

Network Services Location Manager Plug-In Reference
result A value of noErr indicates that StartServicesLookup completed
successfully. The StartServicesLookup routine can return any
NSL error code to indicate that it did not start the lookup. A
value of kNSLBadDataTypeErr indicates that the search was not
started because one or more of the input parameters is invalid.

DISCUSSION

The StartServicesLookup routine performs the lookup specified by dataPtr. The
NSL Manager calls a plug-in’s StartServicesLookup routine in response to an
application that calls the NSL Manager’s NSLStartServicesLookup function
(page 2-40).

IMPORTANT

The StartServicesLookup routine may be called
synchronously or asynchronously, so it should be prepared
to handle both modes. ▲

To obtain the name of the neighborhood specified by neighborhood, the
StartNeighborhoodLookup routine calls NSLGetNameFromNeighborhood (page 3-62).

To parse the lookup parameters specified by dataPtr, the StartServicesLookup
routine calls NSLParseRequestPB (page 3-64).

Upon receipt of a URL, a plug-in’s StartServicesLookup routine places the URL
in its result buffer, changes infoPtr.resultBuffer to point to its result buffer,
sets infoPtr.bufferLen to the length of the valid data in its result buffer, and
calls the NSL Manager’s notification routine.

If the value of infoPtr.maxSearchTime is a non-zero positive value,
StartServicesLookup should limit the overall time for this lookup to the
specified time in ticks if the specified time is less than the plug-in’s own limit.

To maintain context information about this lookup, the StartServicesLookup
routine can use infoPtr.pluginContextPtr.
NSL Manager Plug-in Routines 69

C H A P T E R 3

Network Services Location Manager Plug-In Reference
ContinueLookup 3

Continue a lookup.

OSStatus ContinueLookup (NSLMgrNotifyProcPtr notifier,
PluginAsyncInfo* infoPtr);

notifier The NSL Manager’s notification routine, which the plug-in’s
ContinueLookup routine calls when the result buffer is full, the
lookup is complete, the maximum search time, alert interval, or
item threshold has been reached, or an error has occurred.

infoPtr A pointer to a PluginAsyncInfo structure whose clientRef and
requestRef fields identify the application and request associated
with the lookup that is to be continued, whose resultBuffer
field is used to store lookup results, and whose searchState and
searchResult fields are used to store status information about
the lookup.

result A value indicating that ContinueLookup completed successfully.
The ContinueLookup routine can return any NSL error code to
indicate that it did not continue the lookup.

DISCUSSION

The ContinueLookup routine continues a lookup that is in progress. The lookup
that is to be continued is identified by infoPtr.requestRef. The NSL Manager
calls a plug-in’s ContinueLookup routine in response to an application that calls
the NSL Manager’s NSLContinueLookup function (page 2-42).

IMPORTANT

The ContinueLookup routine may be called synchronously or
asynchronously, so the ContinueLookup routine should be
prepared to handle both modes. ▲

Upon receipt of an item, a plug-in’s ContinueLookup routine places the item in its
result buffer, changes infoPtr.resultBuffer to point to its result buffer, sets
infoPtr.bufferLen to the length of the valid data in its result buffer, and calls
the NSL Manager’s notification routine.

If the value of infoPtr.maxSearchTime was a non-zero positive value when the
plug-in’s StartServicesLookup routine was called, ContinueLookup routine
70 NSL Manager Plug-in Routines

C H A P T E R 3

Network Services Location Manager Plug-In Reference
should maintain a count of the time that it has spent on this lookup and limit
the search to the specified time.

Note
For a particular lookup, the value of
infoPtr.maxSearchTime should not change between calls to
StartServicesLookup and ContinueLookup or between
successive calls to ContinueLookup. ◆

ErrNumToString 3

Provide strings that correspond to error codes.

OSStatus ErrNumToString (OSStatus errNum,
StringPtr errString,
StringPtr theSolution);

errNum The error code, previously returned by one of the plug-in’s
routines, for which a string description and string solution are to
be obtained.

errString A StringPtr in which ErrorToString is to place a string of up to
256 bytes that describe the error condition that corresponds to
theError.

theSolution A StringPtr in which ErrNumToString is to place a string of up to
256 bytes that suggest a solution to the error condition that
corresponds to errNum.

result A value indicating that ErrNumToString completed successfully.
The ErrNumToString routine can return any NSL error code to
indicate that it did not provide the requested strings.

DISCUSSION

The ErrNumToString routine stores in errString a string that describes the error
number specified by errNum and stores in theSolution a suggested solution. The
NSL Manager calls a plug-in’s ErrNumToString routine when an application calls
the NSL Manager’s NSLErrorToString function (page 2-44).
NSL Manager Plug-in Routines 71

C H A P T E R 3

Network Services Location Manager Plug-In Reference
When ErrNumToString returns, the NSL Manager returns the strings to the
application. The application may choose to display errString and theSolution
to the user, so both strings should be suitable for display.

IMPORTANT

A plug-in’s ErrNumToString routine should be able to
provide a value for errString and theSolution for every
error code that the plug-in returns. ▲

CancelLookup 3

Cancel a lookup.

OSStatus CancelLookup (PluginAsyncInfo* infoPtr);

infoPtr A pointer to a PluginAsyncInfo structure whose requestRef field
identifies the lookup that is to be canceled.

result A value indicating that CancelLookup successfully canceled the
lookup. The CancelLookup routine can return any NSL error code
to indicate that it did not cancel the lookup.

DISCUSSION

The CancelLookup routine cancels the lookup associated with
infoPtr.requestRef. The NSL Manager calls a plug-in’s CancelLookup routine
when an application calls the NSL Manager’s NSLCancelRequest function
(page 2-45).

Deregister 3

Deregister services.

OSStatus Deregister (TypedDataPtr dataPtr);

dataPtr A TypedDataPtr that identifies the services that are to be
deregistered.
72 NSL Manager Plug-in Routines

C H A P T E R 3

Network Services Location Manager Plug-In Reference
result A value of noErr indicates that Deregister successfully
deregistered the specified services. To indicate that the services
were not successfully deregistered, Deregister can return any
NSL error code. For example, if Deregister cannot parse
dataPtr, it should return kNSLBadDataTypeErr.

DISCUSSION

The Deregister routine deregisters the services specified in dataPtr. The NSL
Manager calls a plug-in’s Deregister routine in response to an application that
calls the NSL Manager’s NSLDeregisterService function (page 2-48).

To parse the services specified by dataPtr, the Deregister routine calls
NSLParseRegistrationPB (page 3-63).

UnloadPlugin 3

Unload a plug-in.

OSStatus UnloadPlugin(Boolean forceQuit);

forceQuit A Boolean value. If forceQuit is TRUE, the UnloadPlugin routine
must deinitialize itself completely. If forceQuit is FALSE, the
UnloadPlugin routine can conduct all or part of its
deinitialization procedures at its discretion.

result A value of noErr indicates that UnloadPlugin successfully
deinitialized the plug-in. If the value of forceQuit is FALSE,
UnloadPlugin can return any NSL error code to indicate that it
needs to remain in memory.

DISCUSSION

The UnloadPlugin routine stops any of its lookups that are in progress, closes
open network connections, and deallocates memory that it has allocated for its
use.

The NSL Manager calls a plug-in’s UnloadPlugin routine in response to an
application that calls the NSL Manager’s NSLCloseNavigationAPI function
NSL Manager Plug-in Routines 73

C H A P T E R 3

Network Services Location Manager Plug-In Reference
(page 2-33) when that application is the last application having an open NSL
Manager session.

If the plug-in needs to remain in memory (for example, to handle requests for
registered services) and if forceQuit is FALSE, the plug-in can return an error
code and remain in memory. However, if forceQuit is TRUE, the plug-in must
deinitialize itself completely and prepare to be unloaded from memory.
74 NSL Manager Plug-in Routines

In

A, B

alert
interval 2-28
threshold 2-28

C

canceling lookup req
CancelLookup routin
ClientAsyncInfo str
ContinueLookup rou
continuing a lookup

applications 1-20,
plug-ins 3-70–3-71

creator code for plug

D

deregistering service
applications 2-48
plug-ins 3-72–3-73

Deregister routine
DNS plug-in 1-15–1-

E

ErrNumToString rou
error codes 2-54–2-5
error strings

obtaining 2-44–2-4
providing 3-71–3-
dex
uests 2-45
e 3-72
ucture 2-27–2-29
tine 3-70–3-71

1-22, 2-42–2-44

-ins 3-65

s

3-72–3-73
17

tine 3-71–3-72
6

5
72

F

functions
NSLAddServicesToServicesList 2-34–2-35
NSLCancelRequest 2-45
NSLCloseNavigationAPI 1-23, 2-33
NSLContinueLookup 1-20, 1-22, 2-42–2-44
NSLDeleteRequest 1-23, 2-46–2-47
NSLDeregisterService 2-48
NSLDisposeServicesList 1-23, 2-45
NSLErrorToString 2-44–2-45
NSLFreeTypedDataPtr 1-23
NSLMakeNewServicesList 1-19, 2-34
NSLMakeRequestPB 1-19
NSLOpenNavigationAPI 2-32–2-33
NSLPrepareRequest 1-19, 2-35–2-37
NSLRegisterService 2-47–2-48
NSLStartNeighborhoodLookup 1-20, 2-37–2-39
NSLStartServicesLookup 1-21, 2-40–2-42

G, H

GetPluginInfo routine 3-65

I, J, K

icon for plug-ins 3-65
InitPlugin routine 3-65
interval, alert 2-28
75

I N D E X

76

L

looking for
neighborhoods

applications 2-3
plug-ins 3-67–3-

services
applications 1-2
overview 1-12–1
plug-ins 3-68–3-

lookup requests
canceling

applications 2-4
plug-in 3-72

deleting 2-46–2-47
making 1-19
preparing 2-35–2-

M

maximum search tim
memory, reclaiming

N

neighborhoods
definition 1-13
disposing of 2-49
looking for

applications 1-2
plug-ins 3-67–3-

making 2-51
obtaining 2-50–2-5
parsing 3-62

NSLAddServicesToS

function 2-34–
NSLCancelRequest f
NSLCloseNavigatio

NSLContinueLookup

2-42–2-44
NSLDeleteRequest f
7–2-39
68

1, 2-40–2-42
-13
69

5

37

e 2-28, 3-60
1-22, 2-46–2-47, 2-49

0, 2-37–2-39
68

1

ervicesList
2-35

unction 2-45
nAPI function 1-23, 2-33
 function 1-20, 1-22,

unction 1-23, 2-46–2-47

NSLDeregisterService function 2-48
NSLDisposeServicesList function 1-23, 2-45
NSLError structure 2-29–2-31
NSLErrorToString function 2-44–2-45
NSLFreeNeighborhood function 2-49
NSLFreeTypedDataPtr function 1-23, 2-49
NSLGetNameFromNeighborhood function 3-62
NSLGetNextNeighborhood function 2-50–2-51
NSLGetNextURL function 2-51
NSLMakeNewNeighborhood utility function 2-51
NSLMakeNewServicesList function 1-19, 2-34
NSLMakeRegistrationPB utility function 2-52
NSLMakeRequestPB utility function 1-19,

2-53–2-54
NSLOpenNavigationAPI function 2-32–2-33
NSLParseRegistrationPB function 3-63
NSLParseRequestPB function 3-64
'NSLp' creator code 3-65
NSLPrepareRequest function 1-19, 2-35–2-37
NSLRegisterService function 2-47–2-48
NSLStartNeighborhoodLookup function 1-20,

2-37–2-39
NSLStartServicesLookup function 1-21,

2-40–2-42

O

overview of the NSL Manager 1-11

P, Q

parsing
neighborhoods 3-62
registration parameter blocks 3-63
request parameter blocks 3-64

PluginAsyncInfo structure 3-59–3-60
PluginData structure 3-60–3-61, 3-65

I N D E X

plug-ins
creator code for 3-
DNS 1-15–1-17
icon for 3-65
location of 3-64
overview 1-15–1-1
routines for 3-65–3
SLP 1-17–1-18
type code for 3-65

problem string 2-29

R

registering services
applications 2-47–
overview 1-13–1-1
plug-ins 3-66

Register routine 3-
registration paramet

disposing of 2-49
making 2-52
parsing 3-63

request parameter bl
disposing of 2-49
making 1-19, 2-53–
parsing 3-64

requests, lookup
canceling 2-45
continuing 2-42–2
deleting 2-46–2-47
preparing 2-35–2-
starting 2-40–2-42

requirements for NSL
result codes 2-54–2-5
routines, plug-in
CancelLookup 3-7
ContinueLookup 3
Deregister 3-72–
ErrNumToString 3
GetPluginInfo 3-
InitPlugin 3-65
65

8
-74

2-48
4

66
er blocks

ocks

2-54

-44

37

1-11
6

2
-70–3-71

3-73
-71–3-72
65

Register 3-66
StartNeighborhoodLookup 3-67–3-68
StartServicesLookup 3-68–3-69
UnloadPlugin 3-73–3-74

S

sample code 1-19–1-23
search time, maximum 2-28, 3-60
services

deregistering
applications 2-48
plug-ins 3-72–3-73

looking for
applications 1-21, 2-40–2-42
plug-ins 3-68–3-69

registering
applications 2-47–2-48
plug-ins 3-66

services lists 1-13
adding to 2-34–2-35
making 1-19, 2-34

'shlb' type code 3-65
SLP plug-in 1-17–1-18
solution string 2-30
StartNeighborhoodLookup routine 3-67–3-68
StartServicesLookup routine 3-68–3-69
structures
ClientAsyncInfo structure 2-27–2-29
NSLError structure 2-29–2-31
PluginAsyncInfo 3-59–3-60
PluginData 3-60–3-61, 3-65

T

threshold, alert 2-28
type code for plug-ins 3-65
77

I N D E X

78

U–Z

UnloadPlugin routin
URLs, processing 2-5
utility functions
NSLFreeNeighborh

NSLFreeTypedData

NSLGetNameFromNe

NSLGetNextNeighb

NSLGetNextURL 2-
NSLMakeNewNeighb

NSLMakeRegistrat

NSLMakeRequestPB

NSLParseRegistra

NSLParseRequestP
e 3-73–3-74
1

ood 2-49
Ptr 2-49
ighborhood 3-62
orhood 2-50–2-51

51
orhood 2-51
ionPB 2-52

2-53–2-54
tionPB 3-63
B 3-64

	Network Services Location Manager Developer’s Kit
	Contents
	Figures, Listings, and Tables
	About This Manual
	Conventions Used in This Manual
	For more information

	Network Services Location Manager
	About the NSL Manager
	About NSL Plug-ins
	About the DNS Plug-in
	About the SLP Plug-in

	Searching for Network Services

	Network Services Location Manager Reference
	NSL Manager Constants and Data Types
	ClientAsyncInfo Structure
	NSLError Structure

	NSL Manager Functions
	Managing NSL Manager Sessions
	NSLOpenNavigationAPI
	NSLCloseNavigationAPI
	Making a Lookup Request
	NSLMakeNewServicesList
	NSLAddServiceToServicesList
	NSLPrepareRequest
	Looking for Neighborhoods and Services
	NSLStartNeighborhoodLookup
	NSLStartServicesLookup
	NSLContinueLookup
	NSLErrorToString
	NSLCancelRequest
	Managing Memory
	NSLDisposeServicesList
	NSLDeleteRequest
	Managing Services
	NSLRegisterService
	NSLDeregisterService

	NSL Manager Utility Functions
	NSLFreeNeighborhood
	NSLFreeTypedDataPtr
	NSLGetNextNeighborhood
	NSLGetNextUrl
	NSLMakeNewNeighborhood
	NSLMakeRegistrationPB
	NSLMakeRequestPB

	NSL Manager Result Codes

	Network Services Location Manager Plug-In Reference
	NSL Manager Plug-in Constants and Data Types
	PluginAsyncInfo Structure
	PluginData Structure

	NSL Manager Plug-in Utility Functions
	NSLGetNameFromNeighborhood
	NSLParseRegistrationPB
	NSLParseRequestPB

	NSL Manager Plug-in Routines
	GetPluginInfo
	InitPlugin
	Register
	StartNeighborhoodLookup
	StartServicesLookup
	ContinueLookup
	ErrNumToString
	CancelLookup
	Deregister
	UnloadPlugin

	Index

