

WebObjects
Tools and Techniques

K

Apple, NeXT, and the publishers have tried to make the information contained in
this manual as accurate and reliable as possible, but assume no responsibility for
errors or omissions. They disclaim any warranty of any kind, whether express or
implied, as to any matter whatsoever relating to this manual, including without
limitation the merchantability or fitness for any particular purpose. In no event shall
they be liable for any indirect, special, incidental, or consequential damages arising
out of purchase or use of this manual or the information contained herein. NeXT or
Apple will from time to time revise the software described in this manual and
reserves the right to make such changes without obligation to notify the purchaser.

Copyright

 1998 by Apple Computer, Inc., 1 Infinite Loop, Cupertino, CA 95014.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher or
copyright owner. Printed in the United States of America. Published simultaneously
in Canada.

NeXT, the NeXT logo, OPENSTEP, Enterprise Objects, Enterprise Objects
Framework, Objective-C, WEBSCRIPT, and WEBOBJECTS are trademarks of
NeXT Software, Inc. Apple is a trademark of Apple Computer, Inc., registered in the
United States and other countries. PostScript is a registered trademark of Adobe
Systems, Incorporated. Windows NT is a trademark of Microsoft Corporation.
UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited. ORACLE is a registered trademark
of Oracle Corporation, Inc. SYBASE is a registered trademark of Sybase, Inc. All
other trademarks mentioned belong to their respective owners.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013 [or, if
applicable, similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-86].

This manual describes WebObjects 4.0.

Writing: Nancy Craighill and Terry Donoghue
Design and Illustrations: Karin Stroud
Production: Terri FitzMaurice

Contents

Table of Contents
Contents iii

Setting Up WebObjects Applications 7

Introduction 9

Creating WebObjects Application Projects 9
Choosing Assistance 11

Choosing the Programming Language 11

The Structure of a WebObjects Application Project 12
Adding or Deleting Items From a Project 13

Web Components 15

Classes 17

Headers 17

Other Sources 17

Resources 17

Web Server Resources 18

Subprojects 18

Supporting Files 19

Frameworks 19

Libraries 20

Non Project Files 20

Opening an Existing Project 20

Editing Your Project’s Source Files 21

Editing Your Component’s HTML and Declarations Files 22

Building Your Application 23
The Application Wrapper 24

Launching Your Application 25

Installing Your Application 26

Rapid Turnaround Mode 27
Rapid Turnaround and Direct Connect Mode 28

Testing With a Web Server 28
Editing With WebObjects Builder 31

Introduction 33

The Component Window 33

The WebObjects Builder Toolbar 34
Editing Modes 35

Entering Text 36

Creating Elements With the Toolbar 37

Menu Equivalents For Toolbar Commands 38

Selecting Elements 39

Hiding Editing Marks 39

The Inspector 39

Structure Elements 41
Paragraphs 41

Lists 41

Headings 42

Horizontal Rule 42

Images 42

Custom Marker 42

Removing Elements or Text From a Container 43

Working With Tables 44
Creating Tables 44

Table Editing Modes 44

Sizing Tables 46

Inspecting Tables, Rows, and Cells 46

Creating Hyperlinks 47

Setting Page Attributes 48

Setting Colors 49

Palettes 50
Creating and Using Palette Items 51

Changing a Palette Icon 52
v

Working With Dynamic Elements 55

Introduction to Dynamic Elements 57

Attributes 57

Creating Dynamic Elements 58
Using the Toolbar 58

Dragging Elements into the Component Window 58

Using the Add WebObject Panel 59

The Object Browser 60
Creating Variables and Methods in WebObjects Builder 62

Adding Display Groups 65

Configuring the Display Group 67

Creating a Detail Display Group 69

Binding Elements 70

Creating Form-Based Dynamic Elements 74

Dynamic and Static Inspectors 75

Creating Other WebObjects 77
Dynamic Strings 78

Dynamic Hyperlinks 79

Repetitions 80

Conditionals 81

Custom WebObjects 82

Generic WebObjects 84

Dynamic Images 85

WOApplets 86

Reusable Components 87

Direct To Web 91

Creating a Direct to Web Project 94
The Different Looks for WebObjects Applications 97

The Structure of a Direct to Web Project 99

Using Your Direct to Web Application 101
Launching a Direct to Web Application 101

The Login Page 103

Dynamically Generated Pages 103

Query Pages 105

List Pages and Select Components 107

Inspect and Edit Pages 109
vi
Edit-Relationship Pages 111

Master-Detail Pages 112

Customizing Your Application With WebAssistant 113
Running WebAssistant With appletviewer 114

WebAssistant Overview 115

Restricting Access to Entities 116

Customizing Pages 117

Setting Which Properties are Displayed 118

Changing How Properties Are Displayed 119

Textual Attributes and Formatting 121

Representation of Relationships 122

WebAssistant Expert Mode 124

Generating Components 126

Modifying Your Application’s Code 129

Using Direct to Web in Other WebObjects Applications 130
Embedding Direct to Web Components 130

Direct to Web Component Reference 132

Linking to a Direct to Web Page 134

Setting Up the Page Wrapper 134

Implementing the Action Method 135

Setting Up a Next-Page Callback 136

Deploying a Direct To Web Application 137

Setting Up WebObjects Applications

Chapter 1

9

Introduction

To develop server-based WebObjects applications, you use two primary
tools: Project Builder and WebObjects Builder. These tools help you
perform the major tasks required to develop your application

Project Builder is an integrated software-development application. It
contains a project browser, a code editor, build and debugging support, and
many other features needed to develop an application. It helps you to:

• Create and manage your project.
• Write code to provide behavior in your application.
• Build and launch your application.

This chapter discusses the main features of Project Builder that you use
when developing WebObjects applications. For more information on
Project Builder’s other features, refer to its on-line help.

WebObjects Builder is described in the chapters “Editing With
WebObjects Builder” and “Working With Dynamic Elements”.

This document refers to example projects located in the
/

Apple/Developer/Examples/WebObjects

 directory.

Creating WebObjects Application Projects

A WebObjects application project contains all the files needed to build and
maintain your application. You use Project Builder to create a new project.

1. Launch Project Builder.

On Mac OS X Server, choose Project Builder from the Apple menu
under Developer Applications. On Windows NT, you can launch
Project Builder from the WebObjects program group in the Start
menu.

2. Choose Project

m

New.

Chapter 1

Setting Up WebObjects Applications

10

The New Project panel has a Project Type pop-up list that lets you choose
the type of project you want to create.

3. In the Project Type pop-up list, make sure WebObjectsApplication is
selected.

Another type of project you may want to create is WebObjectsFramework.
See “Frameworks”

for more information.

4. Click Browse to specify your project’s location.

Type your project’s location and name directly in the Project Path text
field.

5. Navigate to the directory in which to create your project.

6. Type the name of the project you want to create in the File name field.

7. Click Save.

The New Project panel now shows the path you specified.

8. Click OK.

The WebObjects Application Wizard launches.

Set the project type here.

Click to choose the directory
in which to create your project.

Choose a directory here.

Type the project name here.

Click when finished.

Creating WebObjects Application Projects

11

Choosing Assistance

If your application doesn’t access a database, choose None for Available
Assistance.

If your application accesses a database, you also choose None if you want to
develop the entire application yourself. However, you may wish to use one
of the levels of assistance that WebObjects provides. Information about
Direct to Web option can be found in the “Direct To Web” chapter.
Information about the Database Wizard can be found in “Creating a
WebObjects Database Application” in

Getting Started With WebObjects

.

Choosing the Programming Language

WebObjects supports three languages:

• Java
• Objective-C
• WebScript

Java and Objective-C are

compiled

 languages. WebScript, which is based on
Objective-C, is a

scripted

 language. A scripted language allows you to make
changes to your application withoutcompiling. When you use compiled
code, your application runs faster, but you must continually build your
application before running it.

Java files have the extension

.java

, Objective-C files have the extension

.m

,
and WebScript files have the extension

.wos

.

The language you choose in the Wizard applies to the following files:

Choose level of assistance.

Choose programming language.

Click to proceed.

Chapter 1

Setting Up WebObjects Applications

12

• The Main

component

. A component in WebObjects represents a page in your
application (or possibly part of a page). When you create your project,
Project Builder provides you with an initial component called Main. The
component’s code file implements the behavior of the component.

• The

application

and

 session

code files. Application code contains variables
and methods that affect the entire application. Session code contains
variables and methods that affect a single user’s session.

If, for example, you specify Java as your primary language, the Wizard will create
the files

Application.java

,

Session.java

, and

Main.java

 for you. You can mix languages in a
project by choosing a different language when you create individual
components.

The Structure of a WebObjects Application Project

On disk, your project is a folder whose name is the project name. The project
folder contains all the files in your project. The file

PB.project

 is the

project file

. You
can open a project by double-clicking this file.

Project Builder displays a browser showing the contents of your project. The
first column lists several categories of files that your project may contain. The
following sections describe these categories.

Double-click here to
open your project.

Chapter 1

Setting Up WebObjects Applications

13

Adding or Deleting Items From a Project

As you work with your project, you’ll use Project Builder to create new items
(such as components or classes) or to add files (such as images) that you created
with other programs to the project. For items in certain suitcases (such as
subprojects and frameworks), there’s a specific command to add them, discussed
in the section about the suitcase. For other suitcases, you use the following
procedures.

To create a new item of a particular kind:

1. Select the appropriate suitcase in first column of the browser.

2. Choose File

m

New in Project.

The New File panel comes up with the suitcase you selected open by
default.

Your project’s components.
Double-click to edit in
WebObjects Builder.

Files in the selected component.
Click to display their contents
in Project Builder.

Categories ("suitcases") of
project resources.

Click here, then
choose File->New
in Project.

Enter new file
name here.

Chapter 1

Setting Up WebObjects Applications

14

3. Type the name of the item and click OK.

The new item is added to your project.

To add an existing item (for example, a component, a framework, or a source
file) to a suitcase, first select the suitcase in the first column of the browser. Then
either:

• Double-click the suitcase.
• Double-click the suitcase icon at the top right of the browser window.
• Choose Project

m

Add Files.

A panel called Add

SuitcaseName

 appears, allowing you to find an item to be
added to the suitcase.

In addition, you can drag a file directly onto the suitcase icon in the browser, and
the file is copied into the project and added to the suitcase.

To delete items from a project:

1. Select one or more items in the browser.

2. Choose Project

m

Remove Files.

A panel appears, giving you the option of removing the files from the
project only or from the disk as well.

Double-click to add existing
files to this suitcase.

The Structure of a WebObjects Application Project

15

Web Components

A

component

 represents a page, or part of a page, in your application. An
application can have one or more components.

Every application starts with a component called Main, which is shown in
the Web Components suitcase in the second column of the browser as

Main.wo

. All components have the

.wo

 extension.

If you double-click a component, WebObjects Builder opens the
component for editing. “Editing With WebObjects Builder” shows how to
edit your component using WebObjects Builder.

On disk, a component is represented as a folder with the

.wo

 extension.
Every component has several files that specify the component’s look and
behavior. The name of each one is the component’s name followed by a
specific file extension. These are the files in the Main component:

•

Main.html

 is the HTML template for the component. This file contains
HTML tags, just like any web page; in addition, it typically contains
tags for dynamic WebObjects elements.

•

Main.wod

 is the

declarations file

 that specifies bindings between the
dynamic elements and variables or methods in your code.

•

Main.woo

 is used to store information about display groups (if your project
accesses a database) and encodings for HTML templates. You should
never edit this file (it does not appear in Project Builder’s browser).

To create a new component:

1. With Web Components selected in the first column of the browser,
choose File

m

New in Project.

2. In the New File panel, type the name of your project and click OK.

The WebObjects Component Wizard appears.

Chapter 1

Setting Up WebObjects Applications

16

3. If you want the Wizard to assist you in creating a component with database
access, choose Component Wizard from Available Assistance; otherwise
choose None. See “Creating a WebObjects Database Application” in

Getting
Started With WebObjects

 for more information on using the Wizard with
databases.

4. Specify the language for your component and click Finish.

Classes

The Classes suitcase contains Java, Web Script and Objective-C classes. For
example, if your application’s primary language is Java, this suitcase contains the

Application.java

,

Session.java

,

DirectAction.java

, and

 Main.java

 files. The files have the
extension

.wos

 if the primary language is Web Script and

.m

 if the primary
language is Objective-C . There is a class file for each component, as well as any
other classes you add to the project

The Structure of a WebObjects Application Project

17

You can specify that Java classes are client-side, server-side, or common
classes. See “Subprojects”

for more information on how to do this.

Headers

The Headers suitcase contains header files for projects that use Objective-
C.

Other Sources

The Other Sources suitcase contains compiled code that doesn’t belong to
a particular class.

Resources

The Resources suitcase contains files that are needed by your application at
run time, but which do not need to be in the web server’s document root
(and hence will not be accessible to users). It includes:

• Configuration files
• EOModel files
• API

files containing the keys defined by a component (for example,

Main.api

) that other components can bind to (see “Reusable
Components”).

Web Server Resources

The Web Server Resources suitcase contains files, such as images and
sounds that must be under the web server’s document root at run time.
When developing your application, you place these files in your project
directory and add them to the project (see “Adding or Deleting Items From
a Project”). When you build your project, Project Builder copies the files in

Chapter 1

Setting Up WebObjects Applications

18

this suitcase into the WebServerResources folder of your application wrapper
(see “The Application Wrapper”).

Subprojects

A subproject has the same structure as a WebObjects Application project. You
can use subprojects to divide large projects into manageable chunks.

When you create a new project, ProjectBuilder creates two subprojects
(ClientSideJava and CommonJava) in your project folder. By default, they are
not added to the Subprojects suitcase. If you need to use them, you must add
them to the project. Then you can add your Java classes to the appropriate
project as follows:

• Add server-side Java classes to your top-level project.
• Add client-side Java classes to the ClientSideJava subproject.
• Add Java classes that are common to both client and server to the

CommonJava subproject.

Note:

 These subprojects have the makefile variables

JAVA_IS_CLIENT_SIDE

 and

JAVA_IS_SERVER_SIDE

set in

Makefile.preamble

 so that the appropriate Java code is
generated when you build your project.

To create a subproject:

1. Choose Project

m

New Subproject.

2. Specify the name of your subproject in the New Subproject panel, the type
of project from the Type pull-down menu, and click OK.

A subproject is created inside the project, with a similar structure to the
top-level project. You can add items to the subproject in the same way that
you add items to the top-level project.

To add an existing subproject (such as ClientSideJava or CommonJava) to your
project:

1. Double-click Subprojects in the first column of the browser.

The Structure of a WebObjects Application Project

19

2. In the Add Subprojects panel, navigate to the directory of the
subproject you want to add and click Open.

Supporting Files

The Supporting Files suitcase contains your project’s

Makefile

 (which you
should not edit since this file is maintained by Project Builder), as well as

Makefile.preamble

 and

Makefile.postamble

, which you can modify in order to
customize the build. You can add other files your project may need (such as
Read Me documents) to this suitcase so that they can be edited in Project
Builder.

Frameworks

A

framework

 is a collection of classes and resources that an application can
use. By storing items such as components and images in frameworks, you
can reuse them in multiple projects without having to create multiple
copies.

Every WebObjects Application project includes several frameworks by
default. When you build, your application links with these frameworks.
They are:

• WebObjects: The basic WebObjects classes.
• WOExtensions: Extensions to the WebObjects framework.
• EOAccess: The Enterprise Objects Access Layer.
• EOControl: The Enterprise Objects Control Layer.

Chapter 1

Setting Up WebObjects Applications

20

• Foundation: Basic object classes that most applications use (for example,
strings, numbers, and arrays).

You can include additional system frameworks in your project if you need to. To
add an existing framework to your project:

1. Double-click Frameworks in the first column of the browser.

2. In the Add Frameworks panel that appears, select a framework to add and
click Open.

In addition, you can create your own frameworks in order to share WebObjects
components and resources across multiple applications. To create a WebObjects
Framework:

1. Choose Project

m

New.

2. Select WebObjectsFramework from the pop-up menu.

3. Select the path where you want to create the framework.

Once you have created a framework, you can add components, images, and
other items to it in the same way that you would add them to a project. To have
your framework be accessible by other applications, you must install it (see
“Installing Your Application” for more information). See “Reusable
Components”

for more information on using components that live in
frameworks.

Libraries

The Libraries suitcase contains libraries that your application links to.

Non Project Files

The Non Project Files suitcase is used for files that you have opened that aren’t
part of the current project.

Opening an Existing Project

To open an existing project from Project Builder:

1. Choose Project

m

Open.

2. In the Open Project panel, navigate to the project folder and click Open.

Editing Your Project’s Source Files

21

To open an existing project from the file system, double-click the

PB.project

file in the project directory. Project Builder launches (if it is not already
running) and opens the project.

Editing Your Project’s Source Files

Every component in your project has a code file whose name is the name of
the component followed by the appropriate extension (

.java

 for Java,

.m

 for
Objective-C, and

.wos

 for WebScript). Your project may use different
languages for different components.

Each component’s code specifies the component’s behavior. Each
component is actually a subclass of WOComponent. This class has standard
methods (such as

awake

 and

init

) that you may want to override (see

WebObjects
Developer’s Guide

for more information on these methods). You can also write
your own methods and bind them to dynamic elements in your component
(see “Working With Dynamic Elements”, as well as the

Dynamic Elements
Reference

, for information on binding dynamic elements).

In addition to the component’s code, each project has an

application code file

(

Application.java

,

Application.m

, or

Application.wos

) and a session code file (Session.java,
Session.m, or Session.wos). These files implement your applications custom
subclasses of WOApplication and WOSession.

When you first create your project using the Wizard, you specify the
language you want to use (see “Choosing the Programming Language”).
This language applies to the application and session code, as well as to the
code for your initial component, Main. Other components may be written
in different languages.

Regardless of the language you select, all source code for classes appear in
the Classes suitcase. On disk, they are located at the top level of the project
directory.

Chapter 1 Setting Up WebObjects Applications

22

To save changes in your code, choose File m Save.

Note: WebObjects Builder gets information from Project Builder about variables
and methods in your code. If you add or delete a variable or method,
WebObjects Builder doesn’t get the updated information until you save the file.

Editing Your Component’s HTML and Declarations Files

While you must use Project Builder to edit your components’ code or script files,
you typically use WebObjects Builder’s graphical interface to generate the
HTML and declarations files. You can, however, also edit these files using
Project Builder.

To edit a component in WebObjects Builder:

1. Select Web Components in the first column of Project Builder’s browser.

2. Double-click the component name (for example, Main.wo) in the second
column.

Building Your Application

23

WebObjects Builder launches and opens your component in a window.
See “Editing With WebObjects Builder” for information on using
WebObjects Builder to edit your component.

To edit a component in Project Builder:

1. Select Web Components in the first column of Project Builder’s
browser.

2. Select the component you want to edit in the second column.

3. Select ComponentName.html or ComponentName.wod in the third column.

The text of the file appears in the lower pane of the browser, where it
can be edited.

4. Alternatively, you can double-click the file name or its icon at the top
right of the browser, and the file opens in a separate window.

Building Your Application

You must build your application if your project contains any compiled
code (Java or Objective-C). If your application uses WebScript only
(and you do not modify any web server resources), you do not need to
build. In this case, Project Builder runs a default executable
(WODefaultApp) when you launch your application.

Once you have built your application, you do not need to rebuild
unless you have made changes to your compiled code. You can make
changes to your components (the .html, .wod, or .wos files) and test them
without rebuilding.

For more information on how to build and run your application
quickly, see the “Rapid Turnaround Mode”.

Project Builder has a toolbar with buttons you use to build and launch
your application.

Chapter 1 Setting Up WebObjects Applications

24

1. Click in the toolbar to open the Project Build panel.

2. Click in the Project Build panel to build your project

The Project Build panel displays the commands that are being executed to
build your project. If all goes well, it displays the status message “Project
Name - Build succeeded”

3. Close the panel.

The Application Wrapper
When you build your project, Project Builder creates an application wrapper,
which is a folder whose name is the project name plus the extension .woa.

Click here to open the Project Build panel.

Click here to open the Launch panel.

Click here to open the Project Find panel.

Click here to open the Project Inspector.

Click here to build
your application.

Click here to set
build options.

Click here to “clean”
the project (delete
derived files).

Building Your Application

25

The application wrapper has a structure similar to that of a framework. It
consists of the following:

• The executable application.

• The application’s resources.

These include the application’s components as well as other files that
are needed by your application at run time.

• The application’s web server resources.

When you build and install your application, Project Builder copies all the
files from your Web Server Resources suitcase to a folder called
WebServerResources inside the application wrapper. If you have client-side
Java components in your project, these are also copied to the
WebServerResources folder.

Launching Your Application
To launch your application:

1. Click in the toolbar to open the Launch panel.

2. Click in the Launch panel to launch your application.

When you launch your application, your machine’s web browser is launched
by default and it accesses your application. To turn off this feature:

1. Click to bring up the Launch Options panel.

Chapter 1 Setting Up WebObjects Applications

26

2. Select Environment and Command-Line Arguments from the pop-up
menus.

3. Enter -browser OFF as a command line option.

You can also launch your application directly from a command line. See Serving
WebObjects for more information on command line options.

You can also launch your application by double-clicking its executable file.
When you build your application, Project Builder creates an executable file
(ProjectName.exe on Windows NT platforms) inside your application wrapper
(.woa) directory.

Installing Your Application
Some files in a web application (such as images and sounds) must be stored
under the web server’s document root in order for the server to access them. The
remaining files (such as your components and source code) must be accessible
to your application but not necessarily by the web server itself.

In previous versions of WebObjects, it was typical to store the entire project
under the web server's document root. This practice has advantages for
turnaround time during development. However, in deployment, it presents the
possibility of allowing users access to your source code. WebObjects has a “split
installation” feature that allows you to install only those files (such as images)
that the web server must have access to under the document root. The
remaining files can be stored elsewhere.

The same procedure applies to installing WebObjects applications and
frameworks. To install:

1. Click to open the Project Inspector.

2. Under “Install In:”, set the path where the application wrapper will be
installed.

3. In Project Builder’s Build panel, click .

4. From the Target pop-up menu, choose install. (By default, the target is set to
woapp.)

Rapid Turnaround Mode

27

5. Click in the Build panel to install your application.

The full application wrapper is copied into the “Install In:” directory,
and a wrapper containing only the Web Server Resources is copied into
the document root.

See Serving WebObjects for more information about installing your
application.

Rapid Turnaround Mode

For the most part, WebObjects is an interpreted environment. The HTML
templates, declarations files, and WebScript files each represent interpreted
languages. One of the main benefits of an interpreted environment is that
you don’t need to recompile every time you make a change to the project.
The ability to test your changes without rebuilding the project is called
“rapid turnaround” and, when using the rapid turnaround features, you’re
said to be in “rapid turnaround mode.”

WebObjects supports rapid turnaround of .html, .wod, and .wos files within
application projects, framework projects, and subprojects of either
applications or frameworks.

To support rapid turnaround, WebObjects must be able to locate the
resources of your application and its associated frameworks within your
system’s projects rather than the built products (the .woa or .framework
wrappers). To tell WebObjects where to look for your system’s projects you
must define the NSProjectSearchPath user default. Set this default to an
array of paths where your projects may be found. (Relative paths are taken
relative to the executable of your project.) The order of the entries in the
array defines the order in which projects will be located. The default
NSProjectSearchPath is ("../.."), which causes WebObjects to look in the

Select “Install.”

Chapter 1 Setting Up WebObjects Applications

28

directory where your application’s project resides for any other applicable
projects. For example, if your application’s executable resides in:

c:\web\docroot\WebObjects\Projects\MyProject\MyProject.woa

then from the executable’s directory, "../.." would point to:

c:\web\docroot\WebObjects\Projects

If you’ve set your project’s “Build In” directory to something other than the
default, "../.." isn’t likely to be appropriate; you should set your
NSProjectSearchPath to point to the directories where you keep your projects
while you work on them.

When your application is starting up, pay close attention to those log messages
which indicate that a given project is found and will be used instead of the built
product. Many problems can be solved by understanding how to interpret this
output. If no such log message is seen for a given project, it won’t be possible to
use rapid turnaround for that project. As well, if you have several projects with
the same name in the same directory, a conflict will be reported. This often
happens when you have several copies of the same project as backups in your
project directory. For example, you might have:

c:\web\docroot\WebObjects\Projects\MyApp

c:\web\docroot\WebObjects\Projects\Copy of MyApp

c:\web\docroot\WebObjects\Projects\MyAppOld

Even though the folders containing the projects have different names, the
PB.project files within them might be identical. WebObjects uses the
PROJECTNAME attribute inside your project’s PB.project file to determine the
name of the project, not the name of the directory for the project. If this
happens, you’ll need to move the backups to another directory to avoid the
conflict.

Rapid Turnaround and Direct Connect Mode
Direct connect mode allows you to test your application without involving a web
server. This means that you don’t have to install your WebServerResources
under the document root of your web server. The result is that rapid turnaround
is even more convenient when in direct connect mode because you don’t need
to rebuild to install WebServerResources changes to the document root.

Testing With a Web Server
When you’re working in direct connect mode, few issues arise with respect to
rapid turnaround. If your application has features which require a web server be
used even for testing, however, there are a couple of things to know to make

Rapid Turnaround Mode

29

rapid turnaround work for you. Specifically, since you are relying on the web
server to locate files within WebServerResources, you must follow these
guidelines:

1. Your projects must reside somewhere below your web server’s
document root.

2. NSProjectSearchPath should point to all projects of interest.

3. For application projects, the WOApplicationBaseURL user default
should specify the directory containing the application project. For
example, if your application’s project folder is:

c:\web\docroot\WebObjects\MyApp

then the WOApplicationBaseURL user default must be
"/WebObjects".

4. For framework projects, the WOFrameworksBaseURL user default
should specify the directory containing all framework projects used by
the application. For example, if your application uses
MyFramework.framework and that project resides in:

c:\web\docroot\WebObjects\Frameworks\MyFramework

then the WOFrameworksBaseURL user default must be
"/WebObjects/Frameworks".

Conveniently, the two examples above use the default locations for
WOApplicationBaseURL and WOFrameworksBaseURL; if your projects
reside in these default locations, you need only set NSProjectSearchPath.

Also, while it is possible to point WOApplicationBaseURL and
WOFrameworksBaseURL to other locations, it is not suggested that
WOFrameworksBaseURL be moved since all WebObjects applications use
WOExtensions.framework, which resides in the default location. If you set
WOFrameworksBaseURL to point elsewhere, one side effect will be that
the images in the “Raised Exception” panel will not render.

Editing With WebObjects Builder

Chapter 2

33

Introduction

WebObjects Builder is an application that provides graphical tools for
creating dynamic web pages (

components

). This chapter describes the basic
procedures for creating your components’ content with WebObjects
Builder.

A web page consists of

elements

. WebObjects Builder allows you to add most
of the common HTML elements to a component by using its graphical
editing tools. You can type text directly into a component window and you
can add additional HTML elements by using the buttons in the toolbar (or
their menu equivalents).

In addition, WebObjects allows you to create

dynamic elements

, whose look
and behavior are determined at run time. This chapter focuses on basic
editing tasks and the use of standard HTML elements. The next chapter,
“Working With Dynamic Elements”, provides more specifics on using
dynamic elements.

The Component Window

When you open a component, WebObjects Builder displays it in a

component
window

. You create your component’s appearance graphically in the upper
pane of the component window. The browser at the bottom of the window
(known as the

object browser)

displays variables and methods your
component uses.

The toolbar at the top of the window contains several buttons you use to
create the content of your component. WebObjects Builder also has menu
commands corresponding to these buttons.

Chapter 2

Editing With WebObjects Builder

34

Note:

 Depending on the width of the window, the toolbar may appear as two
rows or one.

The WebObjects Builder Toolbar

At the left of the toolbar are three buttons:

The pop-up list allows you to switch editing modes. See “Editing Modes”.

The button brings up the Inspector window, which allows you to set various
attributes of the currently selected element. “The Inspector” section describes
each type of element in more detail.

The button brings up the Palette window. See “Palettes” for more
information on creating and using palettes.

Editing Modes

WebObjects Builder allows you to view and edit your page in two modes:

Click one of these buttons to
create a specific element.

Pull-down menu lets you add
variables, methods, and
actions to your source code.

Elements pop-up list switches
buttons displayed to its right.

This window displays your
component’s elements graphically.

Object browser shows
variables and methods in
your application’s code

Pop-up list switches editing modes

Click to inspect selected element.

These buttons change properties of selected elements, or text.

The WebObjects Builder Toolbar

35

•

Graphical mode

 shows a visual representation of your component,
including its dynamic elements. The bottom pane, called the object
browser, lists the variables and methods that are defined in your scripts
or code files.

•

Source editing mode

 shows the text of your component’s HTML template
in the upper pane and the text of your declarations (

.wod

) file in the lower
pane. In this mode, you can enter any HTML code. For example, you
can include HTML elements that are not directly supported by
WebObjects Builder’s graphical tools. You can also add components
using the toolbar.

The pop-up list at the left of the toolbar allows you to switch between
graphical editing mode and source editing mode. When you choose source
editing mode, the text of your HTML template (

ComponentName

.html

)
appears. When you add elements graphically, their corresponding HTML
tags appear in this file.

As you can see, when you begin with a blank page, WebObjects Builder
automatically inserts the necessary elements such as <

HTML

>, <

HEAD

>, and
<

BODY

> for you.

The bottom pane shows your declarations (

Main.wod

) file. When you bind
variables to your dynamic elements, this file stores the information.
Normally, you don’t edit this file directly. “Working With Dynamic
Elements” shows how you use WebObjects Builder to create bindings.
Refer to the

WebObjects Developer’s Guide

for more information on working
with the declarations file.

The HTML source for
your component.

Information about bindings
is displayed here.

Chapter 2

Editing With WebObjects Builder

36

The Preferences panel provides several options for how text is displayed in both
graphical and source editing modes. Choose Tools

m

Options to bring up the
panel. For information on resource-handling preferences, see “Dragging
Elements into the Component Window”.

Entering Text

When you begin to edit a new component, the cursor (insertion point) appears
at the upper left of the screen. You can begin typing text directly, and the text
appears in the default font and size. If you press Enter, a line break (

element) is inserted after the line. If you want a paragraph element (

<P>

), press
Shift-Enter. See “Structure Elements” for information on other types of text
elements.

The top row of the toolbar contains a set of buttons that operate on the currently
selected text. If no text is selected, they change the setting for any text typed in
at the insertion point.

: In graphical mode, these buttons allow you to toggle the style of
the currently selected text. You can set any combination of bold (

), italics
(

<I>

), underline (

<U>

) and typewriter (fixed-width) font (

<TT>

). In source mode,
these buttons insert the code for the text style at the insertion point, or around
selected text.

: This pop-up list allows you to set the font size of the currently selected text.

Click here to set the default fonts.

To change the encoding of your
HTML document, choose one
from this pop-up list.

Click here to display
resource-handling preferences.

Click here to display formatting
preferences for HTML and
declarations files.

Chapter 2

Editing With WebObjects Builder

37

: This color well allows you to set the color of the currently selected text.
To change the color, click on the border of the color well and select a color from
the Colors panel. See “Setting Colors” for more information.

: This button changes the selected text to a hyperlink.

: This pop-up list allows you to center or justify text.

If you make a mistake, simply choose Undo from the Edit menu.

Creating Elements With the Toolbar

To create HTML elements, you use the buttons on the bottom row of the
toolbar (or at the right of the toolbar if your window is large). There are four

groups of buttons, only one of which is displayed at a time. The pop-up list

lets you switch the group of buttons that are displayed to its right. The groups
are:

•

Structures .

Use these buttons to create paragraphs, lists, images, and other
static HTML elements. See “Structure Elements” for more information.

•

Tables .

 Use these buttons to create and manipulate HTML table
elements. See “Working With Tables” for more information.

•

Dynamic form elements .

Use these buttons to create form elements in which
users enter information. WebObjects gives your application access to the
data entered by users by allowing you to associate, or

bind

, these elements
to variables in your application. See “Creating Form-Based Dynamic
Elements” for more information.

•

Other WebObjects .

 Use these buttons to create other dynamic elements,
which you can bind to variables and methods in your program to control how
they are displayed. Some of these (such as hyperlinks) have direct HTML
equivalents. Others are

abstract dynamic elements

, such as repetitions and
conditionals, which determine how many times an element is displayed or
whether it is displayed at all. See “Creating Other WebObjects” for detailed
information.

The general procedure for creating an HTML element is:

1. Place the cursor where you want the element to appear on the page.

2. Click the toolbar button representing the element you want.

Chapter 2

Editing With WebObjects Builder

38

The element is placed at the cursor position.

3. Select the element (see “Selecting Elements”). In most cases, the element
is already selected when you create it.

4. Bring the Inspector to the front by clicking it. If it is not open, click .

In the Inspector, you can set various properties of the element. For
example, you can change a paragraph’s type from plain to preformatted.

It’s important to be aware of what happens when you have text or other
elements selected and you create a new element:

• If the new element is a

container

 element (that is, it can contain other
elements), the selected elements are “wrapped” or contained inside the
new element.

• If the new element cannot contain other elements (for example, a horizontal
rule or image), the new element replaces the selection.

Menu Equivalents For Toolbar Commands

All the toolbar buttons have menu equivalents. This document refers to the
toolbar buttons, but of course you can use the menu commands as well:

• The Edit menu contains a View HTML or View Rendered menu item for
switching between graphical and source editing modes (or use the Control-
V keyboard equivalent).

• The Format menu contains equivalents for the buttons that affect the
selected text.

• The Elements menu contains equivalents for all the buttons that create
elements (that is, the switchable toolbar).

• The Tools menu contains commands to open the Inspector and Palette
windows (and other commands).

Selecting Elements

There are several operations you perform in WebObjects Builder that require
you to select an element, such as copying, deleting, inspecting, or “wrapping”
one element inside another.

The Inspector

39

You select text elements as you would in most text-editing applications: by
dragging, or by double-clicking words, or by triple-clicking lines, or by
Shift-clicking. The selected text appears shaded.

Some elements (such as text fields and text areas) can be selected simply by
clicking them; they appear with a line underneath.

Other elements (such as tables) require you to click outside the element
and drag across it in order to select it.

To select a range of elements, drag across them, or press the Shift key while
clicking at the end of the range.

Hiding Editing Marks

Just like you might do in a word processor, you can hide the

editing marks

,
the special graphics that denote returns and WOForm boundaries, by
choosing Hide Editing Marks from the Format menu. Choose Show
Editing Marks to display them again.

The Inspector

You use the Inspector to set HTML attributes of the elements in your
component.

To open the Inspector, click . The Inspector’s title and contents reflect
the element you’ve selected in the component window. Each element has
its own Inspector that allows you to set properties appropriate for the
element. For example, the Heading Inspector shown here allows you to set
the level of a heading element. Other elements have different properties
that you can set.

Chapter 2

Editing With WebObjects Builder

40

The top of the window shows the

element path

to the selected element. Any
element can be contained in a hierarchy of several levels of elements and can in
turn contain other elements. Here, the element path shows that the heading
element is contained in the page element, which is the top level of the hierarchy.
When you click an icon in the element path, the appropriate Inspector for that
element appears. In this case, if you click the page icon, the Page Attributes
Inspector appears. (

Note:

 If no element is selected, the Inspector shows Page
Attributes by default.)

The Make Dynamic button in the Inspector allows you to convert an HTML
element into a dynamic WebObjects element. Dynamic elements have a Make
Static button, which allows them to be converted to their static counterparts.
This feature is discussed in more detail in “Dynamic and Static Inspectors”.

Important:

 When you type a value (such as number of pixels) in one of the
Inspector’s fields, you must press Enter for the change to take effect. In other
words, if you simply type the value and move to another field, the change does
not take place.

Structure Elements

By default, the switchable toolbar displays the Structure elements.

The element path. Click to inspect
different elements in the hierarchy.

Click here to make static elements
dynamic and vice versa.

Click here to set the heading level.

Structure Elements

41

The following sections describe the elements you can create with these
buttons.

Paragraphs

Click

to create a new paragraph. If there is a text selection, the entire
selection becomes a paragraph.

You can use the Inspector to set the paragraph to one of the following tags:

• Plain (

<P>

)
• Preformatted (

<PRE>

)
• Address (

<ADDRESS>

)
• Block quote (

<BLOCKQUOTE>

)
• Division (

<DIV>

)

Lists

Click

to create a new list. If there is a selection, each line in the selection
becomes a list item (

). By default the list is an unordered (bulleted) list
(

). You can use the Inspector to change the list to an ordered list (

).
You can also change the way in which lists appear; for example, displaying
an ordered list in Roman numerals (on browsers that support this feature).

When typing in a list:

• Press Shift-Enter to create a second list item. (If you simply press Enter,
you will create a line break but no new list item.)

• Press Tab to create a new list nested inside the original list.
• Press Shift-Tab to move the nesting back one level.

Paragraph
Heading

Image Remove Selection
from Container

List Horizontal
Line

Custom
Marker

Chapter 2

Editing With WebObjects Builder

42

Headings

Click to create a heading. By default, an

<H3>

 element is created. You can
use the Inspector to change the level of the heading to between

<H1>

 and

<H6>

.

Horizontal Rule

Click to create horizontal rule (

<HR>

) element. You can use the Inspector to
vary its height and width, and whether it is displayed in as a flat or shaded line.

Images

Click to add a static image (

). A Select Image panel appears, allowing
you to select an image file to display at the insertion point. The Inspector allows
you to change the image’s properties, including its size, file path, and whether it
uses an absolute or relative reference.

With static images, you must specify a known file path. You can also create a

dynamic image

, which refers to an image file that lives in your project or in a
framework. See “Dynamic Images” for more information.

To set an image for the page background, see “Setting Page Attributes”.

Custom Marker

Not all legal HTML elements can be created directly using WebObjects
Builder’s buttons or menu commands. However, you can create any type of
element using the custom tag.

To create an HTML element using a custom marker:

1. Place the cursor where you want the element.

2. Click

.

 appears in the component window. You can replace the text
“Custom Marker” with the content of the element (if any).

3. In the Inspector, enter the tag’s name in the Marker field.

4. If the element doesn’t require an end tag, uncheck “Needs end marker.”

5. If the element has attributes you want to specify, click New Attribute, then
enter the attribute’s name and value.

Structure Elements

43

For example, if you want to create a

<DL>

 element, you would create a
custom marker and enter

DL

 for its name in the Inspector’s Marker text field.
Because “Needs end marker” is checked, the </DL> end tag is inserted for
you.

You can also enter source editing mode and type the marker and its text
directly.

Tip: To save a custom element so you can use it again, save it on a palette. See
“Palettes”.

Removing Elements or Text From a Container
You can remove an element or text from a containing element. For example,
if you’ve typed some text inside a form, but you decide you want the text
to be outside the form:

1. Select the text.

2. Click or choose Elements m Promote Selection.

This causes the text to be removed from the form.

Enter the element’s tag.

Check if element requires end tag.

Click to add an element attribute, then enter its value.

Chapter 2 Editing With WebObjects Builder

44

Working With Tables

To work with tables, you use the Tables section of the switchable toolbar (or the
equivalent commands in the Elements m Table menu).

Creating Tables

To create a table, click from the toolbar. A 2x2 table is created at the

insertion point. Its width is 100% of the window.

To add a column, click the icon at the upper right of the table. The column is
added at the right of the table.

To add a row, click the icon at the lower left of the table. The row is added at
the bottom of the table.

Table Editing Modes
There are two “modes” that you can be in when working with tables. When you
first create a table, you are in “structure editing” mode, indicated by the gray

handles and icons. In this mode, you can select cells, groups of cells, or the
entire table, and perform operations on them.

Add table Split cell
horizontally

Delete
selected row

Split cell
vertically

Merge
selected cells

Delete
selected column

Toggle between
table structure/ content editing

Click here to
add a column.

Click here to add a row. Double-click to enter
content-editing mode.

Working With Tables

45

The other mode is “content editing” mode, in which you can insert text or
other elements (including other tables) inside table cells. In this mode, the

gray handles and icons are not present.

To change from structure editing to content editing mode, double-click in
a cell. The cell’s contents are selected, and you can type or select an
element from the toolbar to replace them. To change from content editing
to structure editing mode, press Control and click in any cell other than the
one that was selected.

Alternatively, you can switch from one mode to the other by clicking in
the toolbar. Also, after you’ve clicked anywhere outside a table, clicking in
the table puts you in content editing mode; Control-clicking puts you in
structure editing mode.

In structure editing mode, you can:

• Select an individual cell by clicking it.

• Select a row by clicking one of the gray handles at the end of the row.

• Select a column by clicking the top cell in a column and dragging to the
bottom.

• Select additional cells by clicking them while holding down the Shift
key.

• Select the entire table, or any group of contiguous cells by clicking and
dragging.

• Delete a row by selecting it (or any cell in the row) and clicking .

• Delete a column by selecting any cell in the column and clicking .

• Split a selected cell horizontally by clicking or vertically by clicking

.

• Merge a group of selected contiguous cells into a single cell by clicking

. Note: This command isn’t enabled unless the selected cells make up
a group that could logically be merged into one cell.

• Wrap an abstract dynamic element (conditional or repetition) around a
selected row or cell (see “Repetitions”) by clicking dynamic element’s
icon in the toolbar.

Chapter 2 Editing With WebObjects Builder

46

In content editing mode, you can:

• Type text in the cell.

• Add another element inside a cell (by clicking its toolbar icon or using a
menu command).

In either mode, you can press Tab to move to the next cell to the right (or the
first cell of the next row if in the rightmost column). Pressing Shift-Tab moves
in the opposite direction through the table.

A special case arises when you have embedded a table within a table cell. In this
case:

• To edit text in a cell in the embedded table, just click in the cell.

• To select the embedded table or one of its elements, first click in the cell
surrounding the embedded table, and then Control-click the embedded
table to select it.

Sizing Tables
By default, the size of a table is determined by the contents of the table’s cells.
If you type text (or insert other elements) inside a table cell, the cell’s width
expands as necessary to fit the data. The width of any column, therefore, will be
that of the widest cell in the column. Note: In WebObjects Builder, a cell does not
resize until you have finished editing the cell and tabbed to another cell or
moved out of the table. To update the cell immediately, press the Escape key.

If you want to set the size of a table or cell explicitly, use the Inspector:

• To set the width or height of a table, select the table and use the Table
Inspector. You can enter values that correspond to HTML attributes
controlling the size of the table.

• To set the width or height of a cell, select the cell and use the Table Data
Inspector. Changing a cell’s size affects the size of the column or row
containing the cell.

Inspecting Tables, Rows, and Cells
An HTML table (<TABLE>) is a hierarchical structure, which contains rows
(<TR>); rows in turn contain cells (<TD>). When you select any of them, the
Inspector shows the path from the selected element up through the page, and
you can inspect any element in the path by clicking its icon. For example, if you

Creating Hyperlinks

47

select a table cell, you can inspect the cell (with the Table Data Inspector),
the row, or the table itself.

You can set the HTML properties of any table element (for example, its
height or width) using the Inspector.

Creating Hyperlinks

There are two types of hyperlinks that you can use in a WebObjects
application:

• A static hyperlink (which uses the HTML <A> tag), whose destination
is constant.

• A dynamic hyperlink (WOHyperlink), whose destination can be
specified at run time. See “Dynamic Hyperlinks” for more information
about these.

To create a static hyperlink:

1. Click on the toolbar.

This icon denotes the table cell.

Click here to inspect the table row.

Click here to inspect the table.

Use these fields to set the
table cell’s HTML properties.

Chapter 2 Editing With WebObjects Builder

48

2. Type the text that the hyperlink should contain. As you type, the text is
underlined.

3. Click again.

Alternatively, you can select existing text and then click once to
convert the text to a hyperlink.

4. Use the Inspector to set the destination of the link.

Note: While the destination of a static link cannot change, it’s possible to vary its
text at run time by using a dynamic string (see “Dynamic Strings”) inside the
hyperlink.

Setting Page Attributes

The top level in the element hierarchy is always the page itself. To inspect a
page’s attributes:

1. Select any element in the page.

2. In the Inspector, click the leftmost icon in the element path. (If necessary,
click the Inspector button in the toolbar to display the Inspector.)

Click to make hyperlink dynamic.

Click to make this element an anchor
that can be the destination of a link.

Setting Colors

49

The Title text field allows you to set the title of the document. If you click
the “Title is dynamic” checkbox, the title becomes a dynamic string whose
value is determined at run time. You enter its binding in the Title field. See
“Dynamic Strings” for more information.

You can set the colors to be displayed for the page’s background, text, or
links by clicking in the border of the appropriate color well (or by clicking
Colors). (See “Setting Colors” for more information on using the Colors
panel.) To select an image to use as the page’s background, click Texture.

Setting Colors

WebObjects Builder allows you to set the colors for a page’s background,
selected text, and hyperlinks.

To set the color of selected text in the component window, click in the

border of the color well in the toolbar. To set other colors, use the Page
Attributes Inspector.

Clicking the border of any color well brings up the Colors panel.

Click here to display Page Attributes.

Click here to make the title a dynamic string.

Enter the page title
(or the binding if the title is dynamic)

Select Partial document if the component is
designed for reuse within other components.

Click to open the Colors panel.

Click to choose a background image.

Click borders to open the Colors panel
and set the color.

Chapter 2 Editing With WebObjects Builder

50

The Colors panel provides several methods of selecting colors. When you select
a color, it appears in the currently selected color well.

You can drag colors from one color well to another, to the window at the top of
the Colors panel, or to one of the squares at the bottom of the Colors panel to
save it.

Palettes

A palette is a collection of resources (such as images, static or dynamic HTML
elements, and components). You can drag elements from a palette to a
component to use them. You can also drag elements from a component to a
palette to store them.

Palettes appear in WebObjects Builder’s palette window. To open the palette

window, click on the toolbar or choose Tools m Palette.

You can drag colors between this panel
and any color well.

These buttons provide different ways to select colors.

Drag frequently used colors to these squares to save.
Drag from squares to a color well to apply.

Palettes

51

The icons at the top of the palette window show the available palettes. To
select a palette, click its icon. Two pre-configured palettes are provided:
Java client-side components and components from the WOExtensions
framework.

You can create your own palettes to store frequently-used items, such as
custom forms, tables, or images, and you can load palettes created by
someone else.

To create a new palette, choose Palettes m New Palette. A panel appears,
asking you to specify a location to save the palette. (A palette is represented
on disk as a folder with the extension .wbpalette.) The palette appears in the

palette window with the default palette icon . To change the palette's
icon, see “Changing a Palette Icon”.

To add an existing palette to the palette window:

1. Choose Palettes m Open Palette.

2. Navigate to the palette’s location and click Open.

To remove a palette from the palette window:

1. Select the palette in the palette window.

2. Choose Palettes m Close Palette.

Creating and Using Palette Items
To add an item from a component to a palette:

1. Make the palette editable.

Click to display this palette.

Drag an item onto the window to
insert into the component.

Chapter 2 Editing With WebObjects Builder

52

If the palette’s background is gray, you can’t make any changes to it. To
enable editing, choose Palettes m Make Editable. The palette's
background changes to white and its title is appended with “Alt-drag to
insert item.”

2. In the component window, select the element or elements that you want to
add to the palette.

3. Hold down the Alt key and drag the selection to the palette.

The cursor changes to and displays in the palette when you are done

dragging. You can change the title of the item by selecting its name and
typing. To change the item's icon, see “Changing a Palette Icon”.

You can also add any item from the file system to a palette (including such things
as a component, an image, or an EOModel). To do so:

1. Make the palette editable.

2. Locate the item in the file system.

3. Drag the item onto the palette.

For example, to add a component to a palette, you would drag its .wo folder
to the palette.

When you are done adding elements to your palette, choose Palettes m Save
Palette or choose Palettes m Save Palette As.

To copy an item from a palette to the component window:

1. Make sure the palette is not editable (if its background is white, choose
Palettes m Make Uneditable).

Note: If the palette is editable, you can drag the item to the window, but it
will disappear from the palette.

2. Drag the item from the palette to the location in the component window
where you want it to appear.

Changing a Palette Icon
You can replace the icon of any palette, or any item in a palette, with an image
of your own choosing. To do so:

Palettes

53

1. Open the palette window and select the palette whose icon you want to
change.

2. Make the palette editable.

3. Drag an image from the file system onto the palette's icon.

You can use any image file recognized by WebObjects Builder (such as
a .gif, .tif or .jpg file) to change the icon of a palette or of any item in the
palette.

4. Save the palette.

Chapter 2 Editing With WebObjects Builder

54

Working With Dynamic Elements

Chapter 3

Introduction to Dynamic Elements

A dynamic element is an element whose exact HTML representation isn’t
determined until run time. Dynamic elements are represented in the
HTML template by the tag <WEBOBJECT>.

There are several types of dynamic elements that you can use in your
WebObjects applications. Some of them (such as dynamic forms or images)
have counterparts in standard HTML (<FORM> and) and are always
translated into those counterparts at run time. Others (such as conditionals
and repetitions) are abstract dynamic elements, which don’t translate
directly into HTML but control the generation of other elements.

This chapter describes the techniques you use to add dynamic elements to
your components and to bind them to variables and methods in your code.
For more information on programming with dynamic elements, see
“Dynamic Elements” in the WebObjects Developer’s Guide. For details about
specific dynamic elements, see the Dynamic Elements Reference.

Attributes

Every dynamic element has one or more attributes. These attributes are
used for several purposes:

• Some attributes are used to determine the exact HTML to be
generated when the element is displayed.

For example, the value attribute of a dynamic string element (WOString)
determines what text is generated in its place. At run time, WebObjects
replaces the WOString with the value of the variable or method that is
bound to it.

• Other attributes are used to capture information provided by users. In
particular, form elements have attributes used for this purpose.

For example, when the user submits a form, text typed by the user into
a dynamic text area (WOText) inside the form is assigned to the
variable bound to the value attribute of the text area.

• Other attributes are used to specify actions to be taken when an event
occurs.
57

Chapter 3

Working With Dynamic Elements

For example, a dynamic hyperlink (WOHyperlink) has an action attribute
that specifies an action method in the application that is executed when the
user clicks the link.

The process of associating an attribute with a variable or method in your code is
called binding. WebObjects Builder provides tools to make it easy for you to
create bindings. Information about your bindings is stored in the declarations
(.wod) file in your component.

Most dynamic elements have a number of attributes that you can bind. Some are
required and others are optional. For complete information about WebObjects’
dynamic elements and their attributes, see Dynamic Elements Reference.

Creating Dynamic Elements

There are several ways to add dynamic elements to your component.

Using the Toolbar
You create dynamic elements in the same way that you create other elements:
by clicking buttons in the toolbar or using the menu commands. In WebObjects
Builder, there are two groups of buttons in the switchable toolbar that allow you
to create dynamic elements:

• The Forms toolbar allows you to

create dynamic form elements. See “Creating Form-Based Dynamic
Elements” for more detailed information about working with forms.

• The Other WebObjects toolbar allows

you to create all other types of dynamic elements. See “Creating Other
WebObjects” for more details on each type of element.

Dragging Elements into the Component Window
Some elements can be created by dragging an item from the file system into a
component window. These include:

• Components (see “Reusable Components”)
• Client-side Java components (see “WOApplets”)
• Image files and image maps (see “Dynamic Images”)
58

Creating Dynamic Elements

In addition, you can also drag a model file (of type .eomodeld) into a
component to create a variable of type WODisplayGroup (see “Adding
Display Groups”).

Certain file types (such as .gif, .jpeg, .tif, .eps, and .bmp) are automatically
recognized by WebObjects Builder. The Preferences Panel (which you
display by choosing Tools m Options) shows a list of file extensions that
WebObjects Builder accepts. You can drag any item with one of those file
extensions into a component window, and the item will be added to your
project. You can add file types if you need them.

Using the Add WebObject Panel
The Add WebObject panel is an advanced feature for those who wish to
work in source editing mode. It allows you to add a dynamic element and
set its bindings by hand.

1. In other source editing or graphical mode, place the cursor at the point
in the HTML template where you want to add the element.

2. Choose Tools m Add WebObject.

A panel appears that allows you to create a dynamic element by
entering its class and its name. The name is used by the HTML
template and declarations (.wod) file to uniquely identify the element.
(Normally, you allow WebObjects Builder to generate names for you,
but if you add elements in source editing mode, you must specify their
names.)

3. Click Add.

Click here to add or remove
extensions that WebObjects
Builder recognizes.

If you’ve changed your
document root, click here
to inform WebObjects Builder.
59

Chapter 3

Working With Dynamic Elements

The element appears in the HTML template.

The Object Browser

The bottom part of the component window is the object browser, which displays
your application’s variables and methods. This display provides a graphical
method of binding objects in your code to dynamic elements in the component.

The first column of the object browser displays two types of objects:

• Keys are displayed above the horizontal line. A key can be either an instance
variable or a method that returns a value.

Element appears in HTML
source view.

Click here to add element
at cursor position.

Enter the element’s
bindings here.

Keys (variables and methods)
appear above the line.

Select key to display its keys and
actions in next column (indicated by “>”.

“>>” indicates an array. Select it to show its
keys (for example, count) in next column.

Actions appear below the line.
60

Chapter 3

Working With Dynamic Elements

• Actions are displayed below the line. An action (or action method) is a
method that takes no parameters and returns a component (the next page to
be displayed).

A “>” next to an object’s name in the browser indicates that it contains
additional keys and actions, which are displayed in the next column when you
select it.

In the figure, for example, the application object is selected, showing that there are
keys and actions defined in the session code. One of these, allGuests, is an array
(indicated by the “>>”), and the array’s count method is displayed in the next
column.

Note: If you rest the mouse pointer on a key, WebObjects Builder displays its
type.

When you create a new project, the only keys that appear in the object browser
are application and session (unless you use the Wizard to create a database
application). These are methods that allow you to access variables in your
application and session code.

Choose a command from this menu to add
objects to your source code or view the code.
61

Chapter 3

Working With Dynamic Elements

There are several ways to add items to the object browser:

• Use Project Builder to add keys and actions to your component’s source file.

When you save changes to a source file, WebObjects Builder parses the file,
detects items that have been added and deleted, and updates the object
browser’s display to reflect the changes. The source code can be written in
any of the languages that WebObjects supports (Java, Objective-C, or
WebScript).

• Use the menu at the bottom of the object browser to add items to your code
directly from WebObjects Builder. See the next section, “Creating Variables
and Methods in WebObjects Builder”, for more information.

• Drag a model file into the browser to create a display group variable. See
“Adding Display Groups” for more information.

Creating Variables and Methods in WebObjects Builder
At the bottom of the object browser, there is a pull-down menu called Edit
sourcefile. It has three items:

• Add Variable/Method allows you to add a key (an instance variable or a method
that returns a value) to your source file.

• Add Action allows you to add the template for an action (a method that takes no
parameters and returns a component).

• View Source File opens the source file in a Project Builder window.

When you choose Add Variable/Method, the following panel opens:

Type variable name here.

Choose variable’s type
from this pop-up menu.

Click one of these buttons if your variable is an array.

Check one or more of these boxes.
62

Chapter 3

Working With Dynamic Elements

In this panel, you specify:

• The name of the key.

• Its type.

You can choose the type from the pop-up list or type it in directly. You can
also use the radio buttons to specify whether the variable is an array.

• How the key is implemented.

The key can be an instance variable whose value is accessed directly, or a
method that returns a value (not necessarily associated with an instance
variable). You can also create a method that sets the value of an instance
variable.

When you click Add, the key’s name appears in the object browser (below
application and session). To see what was added to your source code, choose View
Source File from the pop-up menu in the object browser. You’ll see something
like the following:

Instance variable.

Method setting value of
instance variable.

Method returning value
of instance variable.
63

Chapter 3

Working With Dynamic Elements

When you choose Add Action, the following panel appears:

When you click Add, the following code is added to your source file:

public ThatPage myAction()
{

ThatPage nextPage = (ThatPage)pageWithName(“ThatPage”);

// Initialize your component here

return nextPage;
}

WebObjects Builder provides these ways to add variables and methods for your
convenience. Of course, you can add variables and methods directly to your
component’s code by editing them in Project Builder.

The Add Variable/Method and Add Action menu items apply to the code file
that appears in the menu’s title, as in “Edit Main.java.”. To add variables and
methods to the application or session code files, select application or session in the
object browser first. Notice that the pull-down menu title changes accordingly.
Then choose Add Variable/Method or Add Action from the pull-down menu.
Deselect the keys in the object browser to return to the main component (On
Mac OS X Server, command-click to deselect, and on Windows NT control-
click).

To delete a key or action, you must delete it from the source code in Project
Builder.

Adding Display Groups
A display group is an important type of variable that you use in WebObjects
applications that access databases. A display group is an object that can fetch,
insert, delete, display, update and search records in a database.

This section describes the mechanics of adding display groups to a WebObjects
project. For detailed information about display groups, see the
WODisplayGroup class specification in the WebObjects Class Reference. To learn

Enter the action method’s name here.
Select response page name
from pop-up menu.
64

Chapter 3

Working With Dynamic Elements

more about how to create a WebObjects database application, see “Creating a
WebObjects Database Application” in Getting Started With WebObjects.

WebObjects applications access databases through the Enterprise Objects
Framework, which represents database rows as enterprise objects. Enterprise
object classes typically correspond to database tables, and an enterprise object
instance corresponds to a single row or record in a table. For detailed information
on enterprise objects, read the Enterprise Objects Framework Tools and Techniques.

In a database application, you use entity-relationship models. A model associates
database columns with instance variables of objects. You create a model with the
EOModeler application, or you can specify one when you use the Wizard to set
up your application (when you add a model to your project, it is added to the
Resources suitcase). A model is stored in a model file. For more information on
creating models, see the chapter “Using EOModeler” in Enterprise Objects
Framework Developer’s Guide.

A model contains entities, attributes, and relationships. An entity associates a
database table with an enterprise object class. Display groups manage objects
associated with a single entity. An attribute associates a database column with an
instance variable. A relationship is a link between two entities that’s based on
attributes of the entities.

If you used the Wizard to set up your application, a display group was set up for
you based on the model you specified. There are several other ways to create a
display group:

• Drag a model (a folder with the extension .eomodeld) from the file system into
the object browser in your component window, or drag an entity from the
EOModeler application into the object browser.

When you do this, a panel asks you if you want to add the model to your
project. If you reply Yes, the Add Display Group panel appears.

It allows you to specify a name for your display group and decide if you
want to simply add the display group, or configure it as well. “Configuring
the Display Group” describes the configuration process.

Enter the display group’s name.

Click here to add the display
group and configure it.
65

Chapter 3

Working With Dynamic Elements

• Use Add Variable/Method to define a variable of typeWODisplayGroup, or
declare the display group directly in your code:

protected WODisplayGroup myDisplayGroup; //this is a Java example

When you add a display group this way, you are responsible for making sure
your project contains the appropriate model file. (For example, once a
model file has been added, you can create any number of display groups
based on it). In addition, you need to configure the display group.

When you use the Add Variable/Method panel, you can create not only display
group variables, but also enterprise objects associated with any of the entities in
your project’s models.

In the figure, if you choose the entity Movie as the variable’s type, the following
code gets added to your source file:

/** @TypeInfo Movie */

protected EOEnterpriseObject selectedMovie;

The variable selectedMovie is declared as type EnterpriseObject. The comment
/** @TypeInfo Movie */ is a structured comment that WebObjects Builder uses
to identify the entity associated with the object (don’t edit it). It is then able to
display the attributes in the object browser as shown here:

Choose an entity from the project’s
models to create an enterprise
object based on that entity.
66

Chapter 3

Working With Dynamic Elements

Configuring the Display Group
A display group must be configured in order for it to be created and initialized
automatically when the component is initialized. Display groups are
instantiated from an archive file (with the extension .woo) that’s stored in the
component. You shouldn’t edit .woo files by hand; they’re maintained by
WebObjects Builder.

In the object browser, means that the display group has been configured. A
means that it has not been configured, and so the variable isn’t automatically
created. A configured display group shows its keys and actions in the second
column of the object browser. You can bind them to elements in your program.

To configure a display group (or change its configuration), double-click its name
to open the Display Group Options panel.

The browser displays the
attributes of the entity.

Display group’s actions.

Unconfigured display group (double-click to configure).

Configured display group Display group’s keys
67

Chapter 3

Working With Dynamic Elements

In this panel, you specify the following information:

• Entity: The Entity combo box contains entities from the models in your
project. You can select one from the list or type the name.

• Has detail data source: Check this to create a detail display group. See
“Creating a Detail Display Group” for more information.

• Entries per batch: Set a non-zero value here to specify the number of records
to be displayed at once. When the value is zero, all records are displayed.

• Qualification: When displaying records according to a query, this setting
determines whether to display records that begin with, end with, or contain
the item specified.

• Fetches on load: When you check this option, the display group fetches all its
objects as soon as the component is loaded into the application.

• Sorting: You select an attribute by which to sort your displayed objects from
the pop-up list, and use the radio buttons to select the order of sorting.

• Fetch Spec: The Fetch Spec pop-up list contains all the fetch specification
defined in the correpsonding model file. A fetch spec is simply a predefined
query.

Select entity name

Check to create detail display group.

Enter non-zero value to batch records.

Specify attribute to sort by.

Specify sort order.

Check to fetch records when
component is loaded.
68

Chapter 3 Working With Dynamic Elements
Creating a Detail Display Group
While a display group manages objects associated with a single entity, you can
access other kinds of objects through an entity’s relationships. In a master-detail
configuration, a master display group holds enterprise objects for the source of a
relationship, while a detail display group holds records for the destination. As
individual records are selected in the master display group, the detail display
group gets a new set of enterprise objects to correspond to the selection in the
master.

To create a detail display group, you can use the Display Group Options panel:

1. Check “Has detail data source.”

The Master Entity pop-up list is enabled. It lists all entities in the models
in your project.

2. Select the Master Entity from the pop-up list.

The Detail Key pop-up list now contains the keys representing the master
entity’s relationships.

3. Select the Detail Key from the pop-up list.

You can also create a detail display group by dragging a to-many relationship
from EOModeler into your component.

Drag relationship from
EOModeler into component
to create detail display group.

This example creates a detail
display group based on the
toMovieRole relationship, with
Movie as the master entity
and MovieRole as the detail entity.
69

Chapter 3 Working With Dynamic Elements
As with other display groups, you can use the Display Group Options panel
to immediately configure the newly created display group.

Binding Elements

This section discusses the basic techniques you use to bind elements. Further
detail is presented in the sections that discuss specific dynamic elements.

In the figure, you have added a form (WOForm) containing a dynamic text field
(WOTextField) to your component. Note the triangle in the top left corner,
which distinguishes the dynamic text field from a static HTML text field. The
long rectangle surrounding the text field represents the containing form.

To bind the text field to the variable myVar:

1. Press mouse down on myVar in the object browser and drag to inside the text
field.

Form containing
text field.

Dynamic text field.
70

Chapter 3 Working With Dynamic Elements
A black line appears as you drag, and a black border appears around the
text field, indicating that you can bind to it.

2. Release the mouse button.

The Inspector for that element appears, listing its attributes. The value
attribute is selected by default. (This attribute represents the value that
the user enters into the text field.) If this isn’t the attribute you wish to
bind, click another attribute to select it.

3. To complete the binding, click the Connect button.

The name of the variable appears in the Binding column next to the
attribute. Note that it also appears inside the text field in the component
window. Some (not all) dynamic elements display the binding for their
default attribute inside the element itself.

Default attribute is
selected automatically.

Click to complete binding.

Bind by dragging from
the key to the element.
71

Chapter 3 Working With Dynamic Elements
4. If you change your mind, you can click the Inspector’s Disconnect button
(which changed from Connect) to undo the binding.

There are two other buttons on the bottom of the Inspector window:

• Click to view documentation on this dynamic element.

The relevant page from the Dynamic Elements Reference is displayed in your
web browser.

• Click Add Attribute to create a new attribute for this element.

Typically, you don’t add attributes for standard dynamic elements such as
WOTextField or WOString. You use this feature when working with your
own custom WebObjects (see “Custom WebObjects”).

To create an additional binding for the same element:

1. Drag from a key in the object browser to the element as before.

This time, a different attribute is selected, since the default attribute has
already been bound.

2. Click Connect to bind the selected attribute.

Click to add attribute to element.

Click to see documentation
on this dynamic element.

Binding of text field’s
default attribute.
72

Binding Elements
3. If, instead, you want to bind an attribute that has already been bound,
double-click its row, and the old binding is replaced with the new one.

You can also bind an element’s attributes by typing in the Inspector directly.
To do this:

1. Double-click in the binding column of the row for the attribute you
want to set.

A cursor appears in the Binding column, allowing you to type.

2. Type the binding in the text field, then press Enter.

When entering bindings this way, the following rules apply:

• Constant strings (such as “Joe”) must be in double quotes.
• Variable and method names (such as Joe) must not be in quotes.
• Symbolic constants (such as YES and NO) must not be in quotes.
• Keys must specify their full key path. For example, to bind the key that

is selected in the following figure, you would type
application.allGuests.count .

Double-click here to get a cursor,
then type the binding.
73

Chapter 3 Working With Dynamic Elements
Creating Form-Based Dynamic Elements

In HTML, a form is a container element (one that can contain other elements).
Typically, forms contain input elements (such as text fields, radio buttons and
checkboxes) to capture user information, a button or active image to submit the
form data, as well as display elements such as text and images.

In WebObjects Builder, you create form elements by clicking one of the buttons
in the Form Elements portion of the switchable toolbar (or using their menu
equivalents).

All the form elements you create in the toolbar are dynamic equivalents of
standard HTML elements. You can convert any dynamic form element to its
static equivalent (and vice versa) by using the Inspector (see “Dynamic and
Static Inspectors”).

Most form elements have a value attribute that represents the information
entered by the user. You bind this attribute to a variable so that your application
can work with it. Others, such as WOSubmitButton, WOImageButton, or
WOForm itself, don’t receive information but have an action attribute
representing an action to be taken when the form is submitted. You bind form-
based elements by the process described in “Binding Elements”.

WOPopupButton

WOTextField
WOSubmitButton

WOResetButtonWOForm
WOText

WOCheckbox

WOBrowser

WOImageButton

WORadioButton
74

Dynamic and Static Inspectors
Usually you create a WOForm element to contain other form elements,
including buttons. The submit and reset buttons will apply to all other
elements inside the same form.

By default, only one submit button is allowed in a single form. If you want
multiple submit buttons, use the WOForm Inspector to set the multipleSubmit
attribute to YES.

Dynamic and Static Inspectors

Most dynamic elements have static HTML counterparts (with the
exception of abstract dynamic elements, such as: WOString,
WORepetition, WOConditional, and WOCustom.) The Inspector for these
elements has two states:

• The Dynamic Inspector, which you use to set the bindings for the
element (see “Binding Elements”).

• The Static Inspector, which you use to set the HTML attributes for the
element’s static counterpart.

This example shows the Inspector for a dynamic text area element. It
displays the bindable attributes for this element. If you select Static
Inspector from the pop-up list, the Text Area Inspector appears. This is the
same Inspector you would see for a static text area element (<TEXTAREA>)
and allows you to set its HTML attributes (such as COLS or ROWS).

Note: You can also set the HTML attributes using the Dynamic Inspector.
The Static Inspector is provided for convenience only.

Select Static Inspector to
edit HTML attributes.

Click here to convert WOText
to a static text area.

Set bindings for the
WOText element here.
75

Chapter 3 Working With Dynamic Elements
To switch back to the WOText Inspector, select Dynamic Inspector from the
pop-up list.

In addition, you can convert any dynamic element into its static counterpart, or
vice versa:

• When inspecting a dynamic element, if you click Make Static, the element
becomes its static counterpart (if it has one), and the Static Inspector
appears.

• When inspecting a static element, if you click Make Dynamic, the element
becomes its dynamic counterpart. Both the Static and Dynamic Inspectors
are now available.

The following table shows the dynamic counterpart for each static element.

Static Element Dynamic Counterpart

Image WOImage,
WOActiveImage

Form WOForm

Textfield WOTextField

Text Area WOText

Button WOSubmitButton,
WOResetButton,
WOImageButton

Checkbox WOCheckBox

Radio Button WORadioButton

Set HTML attributes of text area here.

Select Dynamic Inspector to set
the WOText’s bindings.
76

Creating Other WebObjects
If you convert a static element to its dynamic counterpart by clicking Make
Dynamic, and there is no direct counterpart, the element becomes a generic
WebObject whose element name is the HTML tag for the static element
(see “Generic WebObjects”). In this figure, a list element () has been
converted to a generic WebObject element.

Creating Other WebObjects

You use this toolbar to create all dynamic elements other than form-based
elements. This section provides some general information about using
these elements. Each element is described in more detail in its own section.

Select WOBrowser,
WOPopupButton

Hyperlink WOHyperlink

Applet WOApplet

Other Generic WebObject

Static Element Dynamic Counterpart

WOHyperlink
WOConditional

Custom WebObjectWOString
WORepetition

WOImage

WOApplet

Generic WebObject
WOActiveImage
77

Chapter 3 Working With Dynamic Elements
To create a dynamic element, you click its toolbar icon. One thing to be aware
of is what happens when there are already elements selected when you create
the element:

• Some dynamic elements (WOHyperlink, WOConditional, WORepetition,
custom WebObjects and generic WebObjects) can contain other elements.
In this case, the selected elements appear with the new element “wrapped”
around it.

• Other dynamic elements (WOString, WOImage, WOActiveImage, and
WOApplet) can’t contain other elements. When you create one, it replaces
whatever was selected.

The first six dynamic element types (all those except for WOImage,
WOActiveImage, and WOApplet) display with a pair of icons surrounding the
element (and possibly other icons in between). For example, when you create a
repetition, it appears like this in the component window:

To bind a dynamic element, you drag from an item in the object browser to one
of the outer icons. The Inspector appears, allowing you to complete the binding.
See “Binding Elements” for more information.

You can double-click one of the icons to collapse the element into a single icon:

Collapsing can be desirable when you have dynamic elements that contain other
elements and take up a lot of space on the screen. You can double-click again to
expand the element. In addition, you can use the menu commands Elements m

WebObjects m Expand All or Elements m WebObjects m Collapse All to expand
or collapse all the dynamic elements in the window.

Dynamic Strings
A WOString element represents a dynamically generated string. You bind the
value attribute of a WOString to a variable or method that returns a string at run

Drag from the object browser to one of
the outer icons to bind (brings up Inspector).

Double-click icon to collapse or expand.

78

Creating Other WebObjects
time. A WOString is abstract in that it doesn’t represent any specific
element, but it can be contained in any other HTML element that can
contain text.

WebObjects Builder provides a shortcut for binding the value attribute of
commonly used elements such as WOString.

Instead of dragging to one of the icons, drag to the center binding box. The
binding appears directly in the box, and the Inspector doesn’t come to the
front.

Dynamic Hyperlinks
Dynamic hyperlinks (WOHyperlink) allow you to specify the link’s
destination at run time rather than at compile time. There are several ways
to do this:

• You can specify the name of a page in your application as the destination
of the link. To do this, bind the name to the WOHyperlink’s pageName
attribute. This is useful since pages in a WebObjects application don’t
have predictable URLs that you can specify in an HTML hyperlink.

• You can specify an action to be performed when the hyperlink is clicked
by binding WOHyperlink’s action attribute to an action method in your
code. This method can perform any sort of action, as well as returning a
page as the destination.

• You can also specify a URL as the destination by binding to the href
attribute.

To create a dynamic hyperlink:

1. Click in the toolbar.

2. Replace the word Hyperlink with the text of the link.

3. Create the element’s bindings.

To learn how to create a static hyperlink, see “Creating Hyperlinks”.

Drag to here to bind value attribute directly.
79

Chapter 3 Working With Dynamic Elements
Repetitions
A repetition (WORepetition) is a container element that repeats its contents a
certain number of times. It is like a loop in a structured programming language.
Repetitions are one of the most important elements in WebObjects, since it is
quite common for applications to display repeated data (often from databases)
when the amount of data to be displayed isn’t known until run time. Typically,
a repetition is used to generate items in a list, multiple rows in a table, or
multiple tables.

To create a repetition:

1. Click .

The repetition appears in the component window.

2. Add elements inside the repetition (replacing the word “Repetition”).

A repetition can contain any other elements, either static HTML or
dynamic WebObjects elements.

3. Alternatively, you can select existing elements, then click to wrap the
repetition around the elements. This is necessary in some cases, such as
wrapping a repetition around a table row.

You usually bind two attributes of a repetition: list and item. The list attribute must
be bound to an array. WebObjects generates the elements in the repetition once
for each item in the array. Each time through the array, the item attribute points
to the current array object. Typically, you bind item to a variable and then use that
variable in the bindings of the elements inside the repetition.

When you drag an item from the object browser to the WORepetition to bind it,
the default attribute shown in the Inspector depends on whether the item is an
array. If it is, list is the default attribute; otherwise, item is the default attribute.

In addition, as with WOStrings, WebObjects Builder provides a shortcut for
binding repetitions so that you don’t have to use the Inspector. Drag to the first
binding box to bind the list attribute; drag to the second box to bind the item
attribute.

Drag to here to bind the list attribute directly.

Add elements here.

Drag to here to bind the item attribute directly.
80

Creating Other WebObjects
When you wrap a repetition around a table row, the repetition symbol
doesn’t appear. Instead, a shaded background appears behind the row. To
bind the repetition, drag from the object browser to anywhere in the row
(but not to a dynamic element inside the row). The Inspector appears,
allowing you to complete the binding as usual.

Note: You can also wrap a repetition around a single cell in a table. In addition,
this same procedure of wrapping a repetition around a table row or cell also
works for conditionals (see next section).

Conditionals
A conditional (WOConditional) is a dynamic container element that
displays its contents only if a particular condition is true. WOConditional’s
main attribute is condition, which takes a Boolean value. If condition is true (1),
the WOConditional’s contents are displayed. If condition is false (0), the
contents aren’t displayed.

condition must be bound to a variable or a method that returns a boolean
value. (WebScript and Objective-C use the constants YES and NO; Java uses
true and false.) To bind condition (or any other attribute that takes a boolean) to
a constant value, enter YES or NO in the bindings Inspector.

Element path shows that the WORepetition
is contained by the table and contains a table row.

Click here to bind allGuests
to the repetitionÕs list attribute.

Drag variable to the table row
to bind to the repetition.

The shaded background
 means the row is in a
repetition.
81

Chapter 3 Working With Dynamic Elements
To create a conditional, click in the toolbar.

Note: Any selected elements will be contained within the conditional.

To bind to a conditional, click a variable or method and drag to one of the
conditional’s outer icons. The Inspector appears, displaying the bindings for the
WOConditional, with the condition attribute selected by default. Complete the
binding by clicking Connect, or choose a different attribute to bind.

There is a shortcut for binding the condition attribute similar to the WOString
shortcut. Drag from a key in the object browser to the binding box in the
conditional.

Sometimes, you want the equivalent of an “if-then-else” structure; that is, “if
the condition is true, display this text; if not, display this other text.” To
accomplish this, you can use the negate attribute. If negate is true, then the
contents of the conditional are displayed only if condition is false. To create an if-
then-else structure, do the following:

1. Create two WOConditionals.

2. Bind the condition attribute of both of them to the same variable or method.

3. Bind the negate attribute of the second one to YES (true).

By default, negate is false, so you do not explicitly need to bind the first
conditional’s negate attribute.

As with repetitions, you can “wrap” a conditional around a table row (see
“Repetitions”). When you do this, the conditional symbol doesn’t appear but
the row appears with a blue background.

Custom WebObjects
You use custom WebObjects for two main purposes:

• To implement WebObjects element classes not directly supported by
WebObjects Builder.

Drag from the object browser to here to bind
(opens the Inspector).

Contents of the conditional display if condition is true.

Drag from the object browser to this box to bind
the condition attribute without opening the Inspector.
The binding appears inside the box.
82

Creating Other WebObjects
• To implement reusable components (see “Reusable Components” for
more details).

To create a custom WebObject:

1. Click in the toolbar.

A template for a custom WebObject appears at the insertion point.

2. In the Custom WebObject Inspector, specify the element class.

The WebObject Class combo box allows you to type the class name or
select it from the components listed in the pop-up menu. This menu
lists all components that are in the current project and frameworks. For
example, the components listed in the menu above
(WOSimpleArrayDisplay, WOSortOrder, and so forth) are defined in
the WOExtensions framework, which is included in your project by
default.

If WebObjects Builder recognizes the element class, it automatically
displays its attributes. Otherwise, you can add them by clicking Add
Attribute.

Click to add the
element's attributes.

Select class name
from the list or type it.
83

Chapter 3 Working With Dynamic Elements
The WOExtensions palette (see “Palettes”) contains several pre-defined
custom WebObjects elements you can use in a component.

Generic WebObjects
You can use the generic WebObject element to create a dynamic version of any
HTML element.

To create a dynamic version of a standard HTML element:

1. Create the element (say, a heading).

2. In the Inspector, click Make Dynamic.

If the element has no specific dynamic counterpart, it becomes a generic
WebObject element.

To create a generic WebObject corresponding to any HTML element (even
ones not supported directly by WebObjects Builder):

1. Click in the toolbar.

2. Bring up the Inspector.

Click here to convert the heading
to a dynamic element.

Click here to convert back to a heading.
84

Creating Other WebObjects
A generic WebObject element has one required attribute, elementName,
which specifies what type of element should be generated at run time.

For example, imagine that a future version of HTML adds a new
container element, which you would like to generate dynamically in
your component. You would:

3. Type container name between the quotes in the Binding column.

4. Check “Element is container”.

5. Use the Add Attribute button to specify any additional properties of the
element.

Dynamic Images
The elements WOImage and WOActiveImage are dynamic images. At run
time, WOImage is rendered as a passive image and WOActiveImage as a

mapped, active image. To create them, click or in the toolbar,

respectively.

A static image element requires you to specify its pathname directly in the
HTML. With dynamic images, you bind the filename attribute to specify the
name of an image file in your project, or in a framework. You can bind this

Enter the element name here.

Click to add attributes.
85

Chapter 3 Working With Dynamic Elements
attribute to a variable or method so that the filename is dynamically generated
at run time.

You can also create a WOImage by dragging an image from the file system into
your component (see “Dragging Elements into the Component Window” for
more information). An alert appears, asking whether you want to add the image
to the project (if it is not already in the project). If you do, the file is added to the
Web Server Resources suitcase of your project.

WOApplets
The WOApplet dynamic element represents a Java applet or client-side
component. There are several ways to create a WOApplet. You can:

• Click in the toolbar.

This creates a WOApplet, whose bindings you must set.

• Drag a file of type .class into your component.

You are asked whether you want to add the .class file to your project. If you
reply Yes, it is added to the Web Server Resources suitcase. A WOApplet
appears in your component, with its code attribute set to the name of the
file.

• Drag an element from the Client-Side Components palette to your
component (see “Palettes”).
86

Reusable Components
Reusable Components

One of the strengths of the WebObjects architecture is its support of
reusable components. Any component that you define, whether it
represents an entire page or part of a page, can be reused by any
WebObjects application. A component can be used in multiple pages or
even multiple times in the same page. Reusable components can be used
for such items as headers, footers, and navigation bars.

When a reusable component is used inside another component, it is
referred to as a child component; the containing component is called the
parent component.

To reuse a component, you can either:

• Add the component to a framework and include the framework in any
project that wants to use the component. The component is a shared
component and doesn’t need to be copied into each application that uses
it.

• Add the component directly to your project (in the Web Components
suitcase).

See “Frameworks” for information on creating frameworks and adding
them to a project. To add a component directly to a project, you can:

• Drag a component (a folder with the .wo extension) from the file system
onto a component window.

You are asked whether you want to add the component to your project.
If you respond Yes, the component is copied to the project and placed
in the Web Components suitcase, along with all the other components.

The child component then appears in the window at the insertion
point. It is displayed graphically inside a custom WebObject element.

• Use the toolbar to add a custom WebObject element (see “Custom
WebObjects”) to your page, then use the Inspector to set its type to the
name of the reusable component.

• Drag a component that has been stored on a palette to the component
window (see “Palettes”).

A component that is designed for reuse can export keys and actions, which
become attributes that the parent component can bind, just as it would set
87

Chapter 3 Working With Dynamic Elements
88

the attributes of any other dynamic element. When the component is added to
a parent component, these attributes show up in the Custom WebObject
Inspector. The attributes must be enumerated in the .api file for the component.

For example, the WOSimpleArrayDisplay shared component that lives in the
WOExtensions framework exports the following attributes, as defined in its .api
file:

When you use this component in one of your pages, it looks like this:

The Inspector shows the child component’s attributes. As with any other
dynamic element, you can bind the child component’s attributes to keys and
actions in the parent component’s code.

Name of shared
component.

Parent component
can bind to
these attributes.

Shared component appears
inside Custom WebObject icons.

Reusable Components
Note: When you create a component that is specifically designed to be used
within other pages, specify “Partial document” in the Page Attributes
Inspector popup list (see “Setting Page Attributes”). This way WebObjects
Builder does not wrap <HTML>, <HEAD>, and <BODY> tags around your
component.

If your reusable component is complex and you want to declutter the
display, you can assign an image to the component that is displayed when
the element is collapsed. Assign an image to your component by simply
placing the graphics file (named after your component) in the .wo
component directory. For example, if your component name is MyComponent,
place MyComponent.tif in your MyComponent.wo directory.

For more information, see “Reusable Components” in the WebObjects
Developer’s Guide.
89

Direct To Web

Chapter 4

Direct to Web is a technology that provides a quick and easy method of
creating a web application that accesses a database. It lets you experiment and
prototype, while also allowing you the flexibility to access the full power of
WebObjects.

There are several stages you can go through, depending on your needs:

• First, you create a WebObjects project and specify a model to use. Direct
to Web uses the model, which defines the mapping between your
database and enterprise object classes, to generate an application that
provides an interface to your database. This application consists of a set
of pages that allow you to do queries on the entities in your database,
display results, and add and delete records.

A complete and correct model file with all the right relationships defined
is key to creating a WebObjects application with Direct to Web.

• To change the way the pages are presented, you can use the
WebAssistant, which is a Java applet that runs in your web browser. For
each page in your application, the WebAssistant allows you to specify
which pages are shown, which properties are shown, how these properties
are displayed, and the order in which they are listed. You can experiment
with different configurations until you are satisfied, without writing any
code.

• If you want to do further customization beyond what the WebAssistant
provides, you can “freeze” any or all of the pages in your application as
WebObjects components. This gives you the full power of WebObjects:
you can modify a component’s layout using WebObjects Builder, and you
can customize its behavior by writing Java code using Project Builder.

You can also use Direct to Web in other types of WebObjects applications.
Your application can take two approaches:

• Embedding Direct to Web components in your pages; these include
query forms, lists, or edit/inspect forms.

• Linking to dynamically generated Direct to Web pages

This document describes the elements that make up a Direct to Web
application, and shows you the steps you follow when creating and modifying
an application. See WebObjects Tools and Techniques for more information on
using Project Builder and WebObjects Builder to develop WebObjects
applications. For more information about using WebObjects with database
applications, see “Creating a WebObjects Database Application” in Getting
93

Chapter 4

Direct To Web

Started With WebObjects, as well as the Enterprise Objects Framework Developer’s
Guide.

Creating a Direct to Web Project

To create a Direct to Web application, begin by using Project Builder to create
a WebObjects application project. Follow these steps:

1. Launch Project Builder.

2. Choose Project m New.

3. In the New Project panel, choose the WebObjectsApplication project type
from the pop-up list and specify the project path where you want to save the
project.

4. Click OK.

The first screen of the WebObjects application wizard appears.
94

Creating a Direct to Web Project

5. Under Available Assistance, select Direct to Web.

You cannot select a language when the type of WebObjects application
is Direct to Web; when you create a Direct to Web project, Java is the
only available language.

6. Click Next.

7. Choose “Open existing model file.”

You can also create a new model file. If you choose “Create new
model,” you are led through a series of screens that prompt you to

Click here to
navigate to
your model file.
95

Chapter 4

Direct To Web

create a new model. For more information about creating a new model file,
see the chapter “Using EOModeler” in Enterprise Objects Framework
Developer’s Guide.

If the model you add to your project references entities in another model,
you must add the other model to your project manually. The wizard doesn't
include it automatically.

8. Click Browse, then navigate to the model file you want to use and select it.

If you are just exploring Direct to Web, you can use a model file from one
the Enterprise Objects example projects, such as Movies.eomodel in the
Movies project.

9. Click Next.

The next screen offers a selection of user-interface styles (“looks”) for your
Direct to Web application; see “The Different Looks for WebObjects
Applications” (page 97) for more information. Click an item in the browser
to select a look.

10. Click Finish to complete the WebObjects application wizard procedure.

You can now launch the Direct to Web application from Project Builder, in the
same way you would launch any other project. “Using Your Direct to Web
Application” (page 101) tells you how to launch your WebObjects application
and describes what you see when you launch it.

Click here to
finish creating
your application.
96

Creating a Direct to Web Project

The Different Looks for WebObjects Applications
In this release, Direct to Web offers two different user-interface styles, or
“looks,” for WebObjects applications: Basic and WebObjects. More looks
will be added in future releases. Currently the only simple way to change
the look of an application is to re-create a project using Project Builder and
then redefine the project with the WebObjects application wizard.
Therefore it is advisable to know which look you want in advance.

The essential difference between the Basic look and the WebObjects look
is that the latter look uses more graphics, particularly the spider-web image.
But there are also differences in the style and placement of user-interface
elements. The HTML in the Basic look is simple and straightforward,
which makes the Basic look more suitable if you intend to freeze your pages
and then customize them..

The login page for the Basic look has a panel-like submit form for the entry
of user name and password:

The login page for the WebObjects look presents the submit form without
the enclosing panel:
97

Chapter 4

Direct To Web

In the dynamically-generated pages (query, list, inspect, and so on), the
differences between the Basic look and the WebObjects look are even more
striking. In the Basic look the control header runs across the top of the page
whereas in the WebObjects look it appears on the left side of the page. In
addition, the Basic look is more tabular while the WebObjects look tends to
present records in visual “blocks.” For example, the following is an example of
a list page in the Basic look:

The following illustrates what a list page looks like in the WebObjects look.
98

The Structure of a Direct to Web Project

The Structure of a Direct to Web Project

A Direct to Web project has a structure similar to other WebObjects
application projects. A newly created project contains two components:

• Main.wo is the main component, representing the login page of the
application.

• PageWrapper.wo is a reusable component that wraps the content of the
pages of the application (except for Main.wo). It contains the header and
footer text and elements common to these pages. The header, by
default, consists of control buttons that are displayed at the top of each
page (or the left side of the page in the WebObjects look). If you choose,
99

Chapter 4

Direct To Web

you can add text or other elements to the header and footer areas of
PageWrapper.wo.

As you run your application, Direct to Web creates additional pages, using
information in your model file and the settings specified in the WebAssistant.
These pages do not show up as components in your project. Rather, Direct to
Web creates them dynamically using a set of reusable components in the Direct
to Web framework. However, you can save any page as a component. When you
do that, you are then able to modify the component just as you would with any
other WebObjects component. See “Generating Components” (page 126) for
more information.

In your project’s Classes suitcase, you’ll see a Java file for each of the
components, as well as the Session and Application objects. You can add code to
any of these files to extend their functionality. See “Modifying Your
Application’s Code” (page 129) for more information on the Direct to Web API.

The Resources suitcase contains the model file you specified when you created
the project (in this example, Movies.eomodeld). It also contains user.d2wmodel, which
stores the preferences you have specified using the WebAssistant (you should
never need to edit this file directly). The Resources suitcase also holds files
specifying the exported keys, both optional and required, for each type of
component used in the application; these files have an extension of .api.
100

Using Your Direct to Web Application

Using Your Direct to Web Application

Once you have created a Direct to Web application using Project Builder
and the WebObjects application wizard, and have compiled the resulting
project files, you can launch the application using Project Builder’s Launch
panel. The application pages are displayed in a web browser, where you can
test the application’s presentation of data and, with the WebAssistant
enabled, modify the layout of that data.

Launching a Direct to Web Application
To launch your application from Project Builder:

1. Click in the toolbar in Project Builder’s main window to open the
Launch panel.

2. Click in the Launch panel to launch your application.

Before you launch the application you might want to set some command
line options. For example, when running a Direct to Web Application for
deployment, you should turn on caching and disable the WebAssistant (to
prevent anyone from connect to the appliation using WebAssistant). To do
this, set the -WOCachingEnabled and -D2WLiveAssistantEnabled options,
respectively:

1. Click to bring up the Launch Options panel.
101

Chapter 4

Direct To Web

2. Click the Arguments tab.

3. Click Add to create a new command line and type the entries as shown in
the above example. If there is no checkmark under the Use column, double-
click the line under Use to set it.

For other command-line options for WebObjects applications, such as -WOPort ,
see Serving WebObjects.

You can test the Direct to Web application using a web browser on a machine
remote from the machine on which the application is running (that is, the
server). When you launch the application, look in the console output, which is
displayed in the Launch panel, for the line containing application’s URL.

Jul 28 09:48:52 D2WTest[2777] Your application’s URL is:
http://localhost:1234/cgi-bin/WebObjects/D2WTest

Enter the URL in your browser, after substituting the host name of the server
machine for “localhost”. In fact, you can exclude every thing in the URL after
the application port number. For example, if the server host name is “foobar”
you would enter the following URL in the browser to load the WebObjects
application:

http://foobar:1234/
102

Using Your Direct to Web Application

The Login Page
When you launch your application, your web browser displays the Direct to
Web login screen:

The login page is the default implementation of your Main component,
Main.wo. It contains text fields to enter a name and password, as well as a
submit button (Login) and an Enable Assistant checkbox. To go to the
application’s default first page, check Enable Assistant and click the Login
button. You don’t need to enter a name and password, because the default
application provides no password-checking logic. If you don’t check Enable
Assistant before clicking the Login button, you won’t have access to the
WebAssistant.

You can modify the login page (Main.wo) to provide any behavior or
appearance you like. For example, you can add your own password-
checking logic. See “Modifying Your Application’s Code” (page 129) for
more information.

Dynamically Generated Pages
Besides the login page, there are nine types of dynamically-generated pages
(or reusable components) in a Direct to Web application:

• A query-all page that displays all entities that are currently exposed and
lets users construct queries on the attributes (but not the relationships)
of those entities; see “Query Pages” (page 105). This properties of this
page cannot be customized.
103

Chapter 4

Direct To Web

• A query page that allows the user to construct a query for a particular entity;
see “Query Pages” (page 105).

• A list page that displays one or more records of a particular entity in tabular
form; see “List Pages and Select Components” (page 107). The result of a
query is always a list page.

• An inspect page that displays a single record of a given entity; see “Inspect
and Edit Pages” (page 109).

• An edit page that displays a single record of a given entity and also allows you
to make changes to the record and save it to the database; see “Inspect and
Edit Pages” (page 109).

• A select component that lets users select a record from a list, thereby adding it
to a to-many relationship or populating an edit component with it; see “List
Pages and Select Components” (page 107).

• A master-detail page consists of a select component and an edit component; it
allows you to select and edit a record without having to switch to another
page. See “Master-Detail Pages” (page 112).

• An edit-relationship page is a multiple component page for removing and
adding objects to a to-many relationship. See “Edit-Relationship Pages”
(page 111).

• An error page for displaying information related to exceptions and other
errors. This properties of this page cannot be customized.

All pages in your application contain the standard Direct to Web header (defined
in PageWrapper.wo) at the top of the page. This header provides a number of
controls, described in the following figure.
104

Using Your Direct to Web Application

For best results when navigating through a Direct to Web application, don’t
use your web browser’s backtrack buttons. Instead:

• To return to the previous page from an edit or inspect page, click
Cancel.

• To return to a query page from a list page, select the entity in the
Entities pop-up menu and click Build Query.

Query Pages
Direct To Web has two kinds of pages for constructing queries on the
properties of entities: a query-all page and a query page. When you log into
a Direct To Web application, the query-all page is displayed first by default.

Click here to activate
the WebAssistant..

Click here to return to the first
page of your application.

Click here to build a query
for the selected entity.

Select an entity to query
on from this pop-up list.

Click here to create a new record
of the selected entity type.

Query value

Execute query

Choose property for query

Database entities Query operator
(equals, less than,
and so on)

Displays the query
page for the entity
105

Chapter 4

Direct To Web

The query-all page enables you to construct a query on an attribute of a
particular entity (queries on relationships are not allowed). To use this page,
select a property from an entity’s pop-up menu, specify the comparison operator,
type the string to search on. and click the magnifying-glass button.

The query page, on the other hand, is tied to a particular entity but allows you
to construct queries on relationships as well as attributes. The following
example illustrates a query page:

The first column in the table lists the current entity’s properties. The second
column contains pop-up menus and text fields that let you enter values to
construct queries on single and multiple properties.

A property is either an attribute (a value stored directly in this entity’s table) or a
relationship (an association between this entity and another entity). For example,
in the figure above, Title is an attribute and Studio is a relationship. You can use
the WebAssistant to hide properties that you don’t want users to see.

Note: Direct to Web only displays properties that are class properties. In addition,
primary keys and attributes marked as the source of a relationship are hidden by
default.

Properties are represented in various ways. For example, in the figure, you enter
a single string value for Title, while you enter a range of values for Date
Released. You can change the representation of most properties using the
WebAssistant. In particular, you may want to change how relationships are
shown, since by default, you query them by specifying an ID, which is
something the user is unlikely to know. See “Changing How Properties Are
Displayed” (page 119) for more information on the different ways of
representing properties in your application’s pages.
106

Using Your Direct to Web Application

You can use initial characters and special characters in query fields for string
searches. For example, you could enter “sh” in the Movie entity’s Title to
search for all movies that begin with those characters. You can also use the
asterisk character to indicate “all occurences.” For instance, “*love” would
return all movies that contain the substring “love”.

In the Movie query, to get a list of all dramas released in the 1990’s, you
would:

1. Enter Drama in the Category field.

2. Enter 1980/1/1 and 1989/12/31 in the Date Released fields.

3. Click Query DB.

The results are displayed in a list page; see “List Pages and Select
Components” (page 107).

List Pages and Select Components
A list page displays a table showing multiple records of an entity. List pages
are used to display the results of a query, or to show the records satisfying a
to-many relationship in another list or inspect page.

Click Inspect to display a list
page showing the relationshipÕs
destination records.

Click arrows to back
and forward a batch,
or enter a batch number.

Type a number here
and press Enter to
change batch size.

Click here to bring up
an Edit page for the
record shown in this row.
107

Chapter 4

Direct To Web

Each row in the table represents a record. By default, a batch of ten records are
shown in a page. To change the batch size, type a number in the “Display _
Items” field and press Return or Enter. To display additional records in either
direction, click the triangle buttons or enter the page number you want to go to.

Each column in the list represents one of the entity’s properties. By default, all
properties are shown in alphabetical order. You can hide columns and change
their order by using the WebAssistant; see “Customizing Your Application With
WebAssistant” (page 113).

The symbols to the right of attribute names represent their sort order:

• : ascending order

• : descending order

• : unsorted

To change the sort order for any attribute, click the title to cycle between
ascending, descending, and unsorted. By default, the records are sorted in
ascending order by the attribute in the first column. You can specify up to three
columns to sort on; the last one specified becomes the primary sort key.

For properties that represent relationships, an Inspect button appears in the cell
by default (DisplayToManyFault). When you click the Inspect button one of
two things happen, depending on the type of relationship:

• If it is a to-one relationship, an inspect page appears, showing the
destination record.

In the above example, the Movie entity’s Studio relationship is a to-one
relationship to the Studio entity. If you click the Inspect button, an inspect
page appears for the Studio entity corresponding to the selected movie; see
“Inspect and Edit Pages” (page 109).

• If it is a to-many relationship, another list page appears, showing all the
destination records in the relationship.

In the above example, the Movie entity’s Roles relationship is a to-many
relationship to the MovieRole entity. If you click the Inspect button, a list
page appears, showing all the roles in the selected movie.
108

Using Your Direct to Web Application

You can use the WebAssistant to display the related records directly in the
table instead of with an Inspect button; see “Customizing Your Application
With WebAssistant” (page 113).

The select component looks a lot like the list page, but instead of the Edit
button there is a Select button. The select component occurs in multiple-
component pages. In the edit-relationship page you click Select to add a
record to a to-many relationship. In the master-detail page you click Select
to add a record to an edit component. A select component looks like this:

Inspect and Edit Pages
Inspect pages and edit pages display the data for a single record of an entity.
An edit page allows you to make changes to the record and save the
changes, while an inspect page is read-only.

An inspect page looks like this:

Note the buttons at the bottom of the page:
109

Chapter 4

Direct To Web

• Delete allows you to delete the record from the database.

• Cancel takes you back to the page from which you accessed this inspect
page.

• Edit brings up the equivalent edit page for this record, so that you can make
changes. (However, if your application specifies a particular entity as read-
only, you won’t be able to edit it.)

Also note the Movies property in the example above. You click the triangle to
display the movies of this studio in a list, browser, or table, as in the following
example:

This property is configured with the DisplayToManyTable component. For
more on how this is done, see “Representation of Relationships” (page 122).

An edit page (or edit component) looks like this:

It is similar to the inspect page, except that it has a Save button (for saving
changes to the database) instead of an Edit button. If you click the Edit button
next to the list of Movies, an edit-relationship page is displayed for editing the
records in the to-many relationship. Edit components can occur in multiple-
component pages, such as the master-detail page.
110

Using Your Direct to Web Application

Edit-Relationship Pages
An edit-relationship page allows users to add records to a relationship and
remove records from the relationship. Users typically come to these pages
when they click an Edit button next to a relationship in an edit page. Edit-
relationship pages consist of three separate components, of which two are
shown at any one time. The first component is a browser that lists the to-
many relationships of a particular property and contains several controls. In
addition to the browser, a query component initially appears for locating
another object to link to for that property.

This user interface facilitates the following tasks:

• To remove a record from the property, select the key identifying the
record in the browser and click Remove.

• To add a new record to the property, click New Record. An edit
component appears underneath the list of relationships; fill out the
fields of the edit component and click Save to add the new record to the
database and the new relationship to the property above.

• To locate an existing record to add to the relationship, enter the
properties to search on in the query component and click Query DB.

When a query is executed (assuming matching records are found) a select
component replaces the query component.
111

Chapter 4

Direct To Web

To add a listed record to the to-many relationship, click the Select button. To
construct a new query, click the Build Query button.

When you have finished editing a to-many relationship, click the Return button
under the browser to return to the original edit page. You must click the Save
button in this page to store the changed relationship in the database.

Master-Detail Pages
Master-detail pages put a select component and an edit component on the same
page, thereby allowing users to select and edit records without having to go to
another page. The following is an example of a master-detail page:
112

Customizing Your Application With WebAssistant

To use a master-detail page, click Select next to a record in the list
component. The information in that record is written to the edit
component. See “Inspect and Edit Pages” (page 109) for usage information.

The master-detail page does not appears under Tasks in the WebAssistant
(expert mode). This is because it is defined as a type of list page
(BASMasterDetailPage) of the list task.

Customizing Your Application With WebAssistant

The WebAssistant allows you to customize each page of your application.
You can specify:

• Which entities of the model the application displays and, of these,
which are read-only

• Global attributes of pages, such as style, color, and border thickness

• Which properties are displayed, and in what order

By default, an entity’s properties are listed in alphabetical order. Often,
you’ll want to change the order, as well as hiding some properties.

• How number and date strings should be represented
113

Chapter 4

Direct To Web

• How relationships should be represented

To activate the WebAssistant, click Customize in the Direct to Web header. A
Java applet window appears showing the WebAssistant.

When you have activated the WebAssistant in your browser, a frame appears at
the bottom of each page in your application in the browser (assuming it supports
Java applets), containing a “Show WebAssistant” button and a status field. To
bring the WebAssistant to the front, click the Show WebAssistant button (rather
than clicking Customize again).

Running WebAssistant With appletviewer
If you browser is incapable of running applets (such as WebAssistant), or if you
want to run WebAssistant in a different machine from your browser, you can
launch WebAssistant using the Java program appletviewer. To do this:

1. Launch your application with the command-line option
D2WLiveAssistantEnabled set to YES.

2. In the console output look for a line similar to the following:

Jul 23 10:29:48 D2WTest[527] Server-side Live Assistant launch line:
appletviewer http://localhost:8888/cgi-
bin/WebObjects/D2WTest.woa/wa/D2WActions/openLiveAssistant

3. Open a shell such as provided by the Terminal application on Mac OS X
Server systems or the Bourne Shell on Yellow Box for Windows systems.

4. Copy the string from “appletviewer” to “openLiveAssistant” to the shell
and press Return (or Enter).

If the port number is -1, look in the console output for the actual port
number of the application and substitute that.

When you complete this procedure, WebAssistant launches and is connected to
your application. If you stop and restart the Direct to Web application, the
WebAssistant will re-connect to it on the same port.

A standalone WebAssistant has exactly the same functionality as one launched
inside your browser. However, if the browser you are using is not Java-enabled,
your pages are not automatically refreshed after you click Update. You must
either click your browser’s “reload” or “refresh” button or (when you are picking
a new type of page, such as a MasterDetails page instead of a ListPage), you will
have to re-navigate to the same page.
114

Customizing Your Application With WebAssistant

WebAssistant Overview
When the Web Assistant applet is launched, it appears in a window whose
title indicates the current page and entity:

The WebAssistant has three displays, each selectable by clicking a tab:

• Customize Application. Allows you to select which entities of the model are
hidden, which are shown, and which are read-only.

• Customize Page. Allows you to customize global page properties, such as
overall style, color, and border thickness. In expert mode, allows you to
“freeze” customized pages as reusable components.

• Customize Properties. Allows you to set which properties of an entity are
shown in a page, the order in which they’re displayed, and the display
characteristics of properties (for example, color and alignment).

The WebAssistant stays synchronous with your browser. When you
navigate to a new page, it displays the settings for that page.

The Web Assistant has two modes, Standard mode and Expert mode. By
default the Web Assistant opens in Standard mode, which lets you
customize the current page in your application. When you customize a page
in Standard mode, the changes apply to all occurrences of that page, and
that page only. For example, if you change the order of properties in an edit
page for the Movie entity, then any time a Movie edit page is displayed,
those changes are in effect. However, the changes don’t apply to a Movie
115

Chapter 4

Direct To Web

query, list, or inspect page; if you want to customize those in the same way, you
must do so explicitly.

Using Web Assistant’s Expert mode, you can customize any page in the
application, regardless of whether it is currently displayed. Thus, by specifying
the “*all*” setting in Expert mode, you could change all pages of a given entity
at once. For more information, see “WebAssistant Expert Mode” (page 124).

When you’ve made changes to a page, you can use the buttons at the bottom of
the WebAssistant to apply them:

• Update: Sends your changes to the server and causes the page to be
refreshed.

• Revert: Causes all settings to revert to their last saved values.

• Save: Saves the changes to disk. You need to save your changes in order for
them to persist beyond the current session.

• Use Defaults: reverts all settings to the values they had when the project was
created.

The Info button displays a brief description of the currently selected Direct to
Web component.

Restricting Access to Entities
The Customize Application display of the WebAssistant enables you to specify
which entities of the database model appear in the application. Of those entities,
it further allows you to specify which are read-only and which the user can write
data do. Records from read-only entities are restricted from appearing in edit
pages.

The user interface for accomplishing these tasks is simple, as the following
example illustrates:
116

Customizing Your Application With WebAssistant
To specify an entity that shouldn’t appear in the application, select it and
use the arrow keys to move it to the Hidden Entities column. To specify an
entity that should be read-only, select it and use the arrow keys to move it
to the Read-only Entities column. You can also press Enter (or Return) to
move selected entities right to left. By default, all entities initially appear in
the Read/Write Entities column.

Customizing Pages
The Customize Page display of the WebAssistant enables you to set global
attributes for the current page. These attributes include the page style (as
determined by the page component), the color of the table, whether this
color alternates with white in lists, and the size of the border enclosing the
page. The following is an example of the Customize Page display:
117

Chapter 4 Direct To Web
• To change the component defining the page style, choose another
component from the pop-up menu.

• To change the thickness of the border around the page, type a number in
the Border Size field, replacing the current number. (A border thickness of
five pixels is the maximum allowed.)

• To change the color of the table, move the sliders to the right of the sample
color. The color specification is RGB-based (that is, a specific mixture of red,
green, and blue). The top slider manipulates red saturation, the middle
slider is for green, and the bottom slider is for blue. The three pairs of
hexadecimal digits after the number sign in the field represent (left to right)
saturation levels of red, green, and blue.

Setting Which Properties are Displayed
The Customize Properties display of the WebAssistant enables you to specify
which properties of an entity appear in a page (or component) and the order in
which these properties appear. Most of the user-interface elements for
accomplishing these things are in the left half of the display; note the Hide and
Show columns along with their associated buttons in the following example:
118

Customizing Your Application With WebAssistant
All the entity’s properties (attributes and relationships) are listed in the
Show column, in the order in which they are displayed in the page.
Properties in the Hide column are not displayed in the page. For each
property, you can:

• Move it to the Hide column it by double-clicking it or by selecting it
and clicking the left arrow. Likewise, if a property is hidden, you can
show it by double-clicking it or by selecting it and clicking the right
arrow.

• Move it up or down in the list by clicking the up and down arrows. This
changes the order of appearance of the properties in the page (left to
right or top to bottom, depending on the component).

By default, the WebAssistant shows only class properties. If you want to
show a custom method or a keypath, click the Add button. A dialog box is
displayed in which you can entery your custom key or key path (for
example, “studio.budget”).

You can also change the title for a property by editing the string in the
Display Name field. This change only affects the way the entity is labeled
in the page, and has no effect on the actual entity name.

Changing How Properties Are Displayed
You can use the Customize Properties display of the WebAssistant to
specify various display characteristics of properties, such as formatting,
119

Chapter 4 Direct To Web
color, alignment, and the representation of to-many relationships. The fields
and controls for setting these characteristics are on the right half of the display.
Here is an example:

Let’s go over the various elements of this part of the user interface:

• At the top is the name of the selected property and under this, in
parentheses, is its data type. The data type determines the set of display
components available for use. You cannot edit this information directly
(however, you can edit where it is specified in the model file by using
EOModler).

• Under the property name and data type is the Display field, which holds the
title of the property for the current page and entity. As discussed in “Setting
Which Properties are Displayed” (page 118), you can edit this string.

• The icon to the right of the Display field shows whether the selected

property is an attribute or a relationship . The list of available
display components differs depending on whether the property is an
attribute or a relationship.

• The WOComponent group (or “box”) contains a pop-up menu showing the
name of the component that is used to display the selected property in the
current page. From this menu you can choose a different component to
display the property. When you choose a display component, the set of
controls and fields in the WOComponent group can change.

The items in the WOComponent pop-up menu identify reusable components
in the Direct to Web framework which are used to generate the pages you see
120

Customizing Your Application With WebAssistant
in your application. Each property in a page of any type is initially shown in
a default way for that type and is based on a certain component.

Textual Attributes and Formatting
The display components available for the currently selected property offer
characteristics suitable to the data type and function of the attribute. A few
examples might help to clarify this statement:

• If the data type of the attribute is an NSString (or String in Java) but it
is a URL, then the DisplayHyperlink or DisplayMailTo components
could be what you want.

• If the attribute is a date (NSCalendarDate), then you might choose the
DisplayString component and provide format specifiers to have the
date formatted in a certain way.

• Similarly, if the attribute is a currency value (NSNumber), you might
want to use the DisplayNumber component and format the display of
the attribute with two decimal positions and a leading dollar sign.

• If you want to highlight a certain column of values in a table by giving
them a different color, then you could choose the DisplayStyledString
component which lets you apply a color to a property.

You can click the Info button in the WebAssistant to get a short description
of the currently selected display component.

The three most common display characteristics for properties are
alignment, formatting, and color. Each of these has their own controls or
fields in the WOComponent group:

• Alignment. Choose Right, Center, or Left from the pop-up menu to
specify the alignment of text within a cell of a table.

• Formatter. You can have your application display some types of data, such
as dates and numbers, as formatted strings. For example, the date “Sat
4 Jul 98” can be also represented as “July 4, 1998.” The number one
thousand can be represented either as “1,000” or “1.000”, depending
on the locale. There are different format specifiers for dates and
numbers; check the reference documentation for the
NSDateFormatter and NSNumberFormatter classes for details.

• Color. To change the color of text, either move the sliders to the right of
the sample color or enter hexadecimal numbers in the field above the
sliders. The color specification is RGB-based (that is, a specific mixture
121

of red, green, and blue). The top slider manipulates red saturation, the
middle slider is for green, and the bottom slider is for blue. The three pairs
of hexadecimal digits after the number sign in the field represent (left to
right) saturation levels of red, green, and blue.

Representation of Relationships
Properties that are relationships (instead of attributes) have their own set of
display components that you can use. Take the following list page as an
example:

There are four relationships on this page. Two are to-one relationships (Studio
and Plot Summary) and two are to-many relationships (Directors and Roles). By
default, all to-many relationships are displayed using DisplayToManyFault, and
to-one relationships use DisplayToOneFault. “Fault” indicates that the records
in the relationship aren’t displayed until they are asked for; that is, until the user
clicks Inspect. When you click Inspect, a list page appears, showing all the
records in the relationship (such as all roles in the movie).

You can change the display component for the relationship to get a different
presentation. Consider the Roles relationship in the Movie-List page example
above. Using your browser, navigate to the list page for the Movie entity and
select the roles property; then, in the WebAssistant, select the
DisplayToManyBrowser component from the WOComponent pop-up menu.
The right side of the WebAssistant should look similar to the following example:

Customizing Your Application With WebAssistant
In addition to the Alignment pop-up menu, the WOComponent group
includes two controls specific to the display of relationships. The items in
the Target Keys browser are selected attributes of the destination entity;
these “target keys” are used as labels for a to-many relationship. In this case
the Movie Roles entity has one target key, roleName. In addition, Direct to
Web provides a default key called userPresentableDescription, which is usually a
combination of the relationship’s keys, if there are multiple keys.

The Allow Collapsing checkbox, when checked, causes the relationship
initially to be presented as a disclosure triangle followed by a number and
the plural form of the display name for the destination entity (for example,
“6 Movie Roles”). When the user clicks the triangle, the table cell expands
to display the items in the form appropriate to the display component; in
this case, a browser:

To get a better sense of the control you have over the presentation of
relationships, set the display component for the Movie Roles relationship to

Click to display records in their own list page.
123

Chapter 4 Direct To Web
DisplayToMany and uncheck the Allow Collapsing checkbox. When you
update your browser, a cell in the Roles table should look similar to this:

To-one relationships by their nature offer fewer possibilities for
presentation.The DisplayToOneFault component presents an Inspect button
which, when clicked, displays the relationship record in an inspect page. The
other choice of component, DisplayToOne, displays the target key for the single
destination record as a hyperlink which, when clicked, brings you to the same
inspect page.

A note of caution: The type of display component appropriate to a relationship
depends on the likely number of records in that relationship. For example, the
Studio entity has a Movies to-many relationship; if some studios have produced
hundreds of movies, it might make more sense to use DisplayToManyFault
(that is, the Inspect button) rather than display the titles of all those movies in a
cell in the table.

To find out more about a display component for a relationship, click the Info
button in the WebAssistant after selecting the component.

WebAssistant Expert Mode
Expert mode is similar to standard mode, except that it allows you to make
changes to any page in your application whether it is currently displayed in your
browser or not. If you click the Expert mode button at the bottom of the
WebAssistant, the window expands to show two additional lists:

• Tasks shows the types of pages available in Direct to Web.

• Entities shows all the entities in the model.
124

Customizing Your Application With WebAssistant
To customize any page in your application, simply select the type of page
and the entity. The figure above shows an example of choosing the inspect
page for the Talent entity, making the WebAssistant focus on this page
rather than the page currently showing in the browser.

If you select “*all*” under Tasks, any changes you make affect all
customizable pages for the selected entity. If you select “*all*” under
Entities, you’ll see a list of data types that exist in the application, as shown
in the following figure.
125

Chapter 4 Direct To Web
Any changes you make affect all occurrences of that type. For example, the
figure shows NSCalendarDate selected. You can specify a formatter, and pick a
component to use anywhere in the application that an NSCalendarDate object
is displayed.

If you click Show Browser Page, the task and entity for the current browser page
are selected in the WebAssistant.

You can also select the Customize Page display of the WebAssistant while in
Expert mode and change the underlying component, color, and border
thickness of whatever page for whatever entity you select in the Tasks and
Entities browsers.

Generating Components

When you have worked with the WebAssistant and customized your pages to
your liking, you may still want to add more features to your application. To do
so, you can “freeze” a page; that is, save it as a WebObjects component. When
you do this, the component becomes part of your project and is no longer created
“on the fly” by Direct to Web. This has several advantages:
126

Generating Components
• You have complete control over the visual appearance of the page. You
can add any static or dynamic HTML elements you like, using a tool
such as WebObjects Builder.

• You can add functionality to the page by editing the component’s Java
code, as well as by editing the bindings of the page’s dynamic elements.

• Your application’s performance improves because Direct to Web
doesn’t have to go through the process of creating the page “on the fly.”

The main disadvantage of generating components is that you lose the
ability to modify settings with the WebAssistant. Therefore, you should try
to get your settings as close as possible to what you want before generating
the component.

To save a page as a component:

1. Click the Expert Mode button at the bottom of the WebAssistant to
enter Expert mode.

1. Click Customize Page at the top of the WebAssistant.
127

Chapter 4 Direct To Web
2. Select the task and entity corresponding to the page you want to generate.

You can’t select “*all*” to generate multiple components. You must
generate the components one at a time.

3. In the Advanced Options group of controls, make sure the “Choose
DirectToWeb page” radio button is selected.

4. Click Generate.

The Freeze Component window appears. It contains a text field with a
default name for your page (the page name followed by the entity name).
You can edit the name if you choose.

5. Click the Ok button.

Direct to Web generates a component and adds it to your project. (You may
have to wait a few moments for this process to complete.) Your settings are
automatically saved.

6. Rebuild your project.

To “un-freeze” a component, select the “Choose DirectToWeb page” radio
button but do not click the Generate button.

When you generate a page and click Update, the browser’s current page doesn’t
reflect the changes. To use the new component, you must rebuild the
application, relaunch it, and then navigate to a new instance of the page. For
example, if the current page is a Movie query page, and you use the
WebAssistant to freeze it, you must rebuild the project with the frozen
component, then launch the application and navigate to a new instance of
Movie query (by clicking Build Query); the new instance uses the frozen
component.

The generated component is like any other WebObjects component. You can
edit your component graphically using WebObjects Builder. You can also

Edit this field to change the componentÕs name.
128

Modifying Your Application’s Code
examine the HTML and bindings (.wod file) of the new component in
Project Builder.

Direct to Web also generates Java code for your component, which you can
modify appropriate to your needs. Each component implements an
interface that is appropriate to the page: QueryPageInterface,
ListPageInterface, InspectPageInterface, and EditPageInterface. For
example, the QueryMovieRole.java file shown below implements the
QueryPageInterface. For example, it contains an action method called
queryClicked that returns a component when the Query DB button is clicked.
(Note that the component’s submit button is bound to queryClicked in
QueryMovieRole.wod.)

Modifying Your Application’s Code

You can modify your application’s code just as you would in any other
WebObjects application. In addition, there is an API for you to use
specifically in Direct to Web applications. This consists of a set of methods
defined in the D2W class. Some of these methods allow an object to control
the WebAssistant. Others return various components (inspect, query, list,
and so on) defined for an entity in a session; the component objects
returned must implement the appropriate interface:

QueryPageInterface queryPageForEntityNamed (String entity, WOSession
session);

ListPageInterface listPageForEntityNamed (String entity, WOSession
session);

EditPageInterface editPageForEntityNamed (String entity, WOSession
session);

InspectPageInterface inspectPageForEntityNamed (String entity,
WOSession session);

SelectPageInterface selectPageForEntityNamed (String entity,
WOSession session);

EditRelationshipPageInterface editRelationshipPageForEntityNamed
(String entity, WOSession session);

QueryAllPageInterface queryAllPage (WOSession session);

You can override these methods to customize the component returned. The
defaultPage method of the D2W class is also one you might want to override;
this method returns the application’s default page which, by default, is the
query-all page.

If you make a subclass of D2W to override certain methods, make sure you
call the setFactory class method with an instance of the new class as argument.
129

Chapter 4 Direct To Web
The following example overrides defaultPage:

import com.apple.yellow.foundation.*;

import com.apple.yellow.eocontrol.*;

import com.apple.yellow.directtoweb.*;

import com.apple.yellow.webobjects.*;

public class D2WExtendedFactory extends D2W {

 static {

 D2W.setFactory(new D2WExtendedFactory());

 }

 public WOComponent defaultPage (WOSession session) {

 return WOApplication.application().pageWithName("MyDefaultPage",
session.context());

 }

}

Using Direct to Web in Other WebObjects Applications

Other WebObjects applications (that is, applications not using the Direct to Web
option in the wizard) can use the Direct to Web framework to display query, list,
edit, and other pages in the Direct to Web repetoire. Making use of Direct to
Web can be a convenient shortcut for many applications when all they need is a
standard database-related page. They can use Direct to Web in one of two ways:

• By embedding Direct to Web components in the pages of their application

• By linking to a dynamically-created Direct to Web page and appropriately
implementing the action method invoked when the link is clicked

Embedding Direct to Web Components
Using a Direct To Web component is not much different than using any other
off-the-shelf component. The procedure is the following.

1. Add the DirectToWeb framework to your project. You can find this framework in
NEXT_ROOT/System/Library/Frameworks.
130

Using Direct to Web in Other WebObjects Applications
2. Decide which Direct to Web component you want to use and become
familiar with its API.

See “Direct to Web Component Reference” (page 132) for summaries
of these components.

3. Put a WebObjects tag for the component in the page that is to display it.

<webObject name=MyD2WQuery></webObject>

This is a step you can complete in WebObjects Builder.

4. Make the appropriate bindings for the component.

MyD2WQuery: D2WQuery {

entityName="Movie";

displayKeys="(title, roles, studio.budget)";

queryDataSource=movieDisplayGroup.dataSource;

}

All embedded components require an entityName binding to specify the
entity the page will be dealing with. Extra bindings could be required,
depending on the functionality of the page. For example, List pages
require a dataSource binding.

You can also complete this step in WebObjects Builder.

5. If necessary, implement the action method for the component.

6. You can customize embedded Direct to Web components using the
WebAssistant. But first you must add a file named user.d2wmodel to the
Resources category of your application project. The WebAssistant uses
this file to maintain your settings. In addition, before you launch the
WebAssistant, make sure rapid-turnaround is enabled for your
application. You can then launch the WebAssistant using the appletviewer
tool; see “Running WebAssistant With appletviewer” (page 114).

When the WebAssistant acts upon a non-DirectToWeb application, it does
not automatically track which page is displayed. Thus you must point it at
the page you want to modify in Expert mode. For example, if you want to
customize a list page for Movies, you will have to click Expert Mode and
then select “list” as the Task and “Movie” as the entity. You can then
customize a component in the same way you customize DirectToWeb
pages. Also, when you click Update to send the new settings to the
application, the browser does not automatically refresh your page. You must
either click the “Reload” button in your browser or (especially in cases
where you pick a new type of component) you must re-navigate to the page.
131

Chapter 4 Direct To Web
Direct to Web Component Reference
The current release defines five Direct to Web components in the DirectToWeb
framework.

D2WQuery
For information on the behavior and appearance of this component see “Query
Pages” (page 105).

Example:

myQuery : D2WQuery {

entityName = “Movie”;

displayKeys = “(title, roles)”;

queryDataSource = displayGroup.dataSource;

action = displayGroup.fetch;

}

D2WList
For information on the behavior and appearance of this component see “List
Pages and Select Components” (page 107).

Example:

myList : D2WList {

entityName = “Movie”;

dataSource = displayGroup.dataSource;

displayKeys = “(title, roles)”;

}

Bindings Comments

entityName The name of the entity for this query (NSString)

displayKeys The properties of the entity to display for the query (NSArray or NSString)

queryDataSource The data source for the query

action The action method to invoke when Query DB is clicked. The queryDataSource is
pushed onto your page before this action is invoked.

Bindings Comments

entityName The name of the entity for this list (NSString)

dataSource The data source for the list

displayKeys The properties of the entity to display (NSArray or NSString)
132

Using Direct to Web in Other WebObjects Applications
D2WSelect
For information on the behavior and appearance of this component see
“List Pages and Select Components” (page 107).

Example:

mySelect : D2WSelect {

entityName = “Movie”;

selectedObject = displayGroup.selectedObject;

dataSource = displayGroup.dataSource;

action = selectAction;

}

D2WInspect
For information on the behavior and appearance of this component see
“Inspect and Edit Pages” (page 109).

Example:

myInspect : D2WInspect {

entityName = “Movie”;

object = displayGroup.selectedObject;

action = editAction;

}

Bindings Comments

entityName The name of the entity for this list (NSString)

displayKeys The properties of the entity to display (NSArray or NSString)

selectedObject Returns the object associated with the clicked Select button.

dataSource The data source for the list

action The action method to invoke when the Select button is clicked. The selectedObject is
pushed onto your page before this method is invoked

Bindings Comments

entityName The name of the entity for this record (NSString)

object Returns the object associated with the clicked Inspect button.

action The action method to invoke when the Return button is clicked

displayKeys The properties of the entity to display (NSArray or NSString)
133

Chapter 4 Direct To Web
D2WEdit
For information on the behavior and appearance of this component see “Inspect
and Edit Pages” (page 109).

Example:

myEdit : D2WEdit {

entityName = “Movie”;

object = displayGroup.selectedObject;

action = editAction;

}

Linking to a Direct to Web Page
In addition to embedding static Direct to Web components, your application can
link directly to a dynamically-generated page of the appropriate type. The
technique for doing this has two basic requirements:

• A page-wrapper component for the dynamically-generated page

• An action method that returns a Direct to Web component implementing
the appropriate page interface

For pages whose next page is dynamically determined (such as query pages),
the action method must do more than simply return the page component. See
“Setting Up a Next-Page Callback” (page 136) for detals.

Setting Up the Page Wrapper
Every application that links to a dynamically-created Direct to Web page must
have a component called PageWrapper.wo. This component acts as a “wrapper” for
the dynamically-generated content, and can have customized header and footer
material. The following example shows how to set up the PageWrapper.wo
component. You can use a text editor, Project Builder, or (preferably)
WebObjects Builder to construct this component.

PageWrapper.html example:

Bindings Comments

entityName The name of the entity for this record (NSString)

object Returns the object associated with the clicked Edit button.

action The action method to invoke when the Edit button is clicked

displayKeys The properties of the entity to display (NSArray or NSString)
134

Using Direct to Web in Other WebObjects Applications
<html>

<webObject name=Head></webObject>

<webObject name=BodyContainer>

<webObject name=Body></webObject>

</webObject>

 </html>

PageWrapper.wod example:

BodyContainer: WOBody {

 filename = "Images/bkg.jpg";

 framework = "DodgeDemo";

 bgcolor="#c0c0c0";

 TEXT = "#000000";

 LINK = "#0000F0";

 VLINK = "#0000F0";

 ALINK = "#FF0000";

}

Head : D2WHead {

 _unroll = YES;

}

Body: WOComponentContent {

 _unroll = YES;

};

The only required component in PageWrapper.wo is the
WOComponentContent. The other components shown in the example are
optional, and you can create your own header, footer, and body-container
components for your dynamically-generated pages.

The _unroll attribute, when YES, enables the WebAssistant to generate a
static component from the dynamically-generated one.

Implementing the Action Method
To implement the action methods needed for linking to Direct to Web
pages you must use methods of the D2W class and the page-specific Direct
to Web interfaces. You also need to specify a hyperlink, active image, or
similar HTML control with which to invoke the action method. Take the
following example of a hyperlink; first, the HTML WebObjects tag:

<webObject name=D2WListPage>D2W list page</webObject>

Then, in the .wod file, bind the hyperlink to the action:

D2WListPage: WOHyperlink {

 action = d2wList;

}

135

Chapter 4 Direct To Web
The method for linking to a Direct to Web page must return a component (that
is, a WOComponent object) that implements the interface appropriate to the
required type of page. For example, if you want to link to a dynamically
generated list page, the component returned must implement the
ListPageInterface interface. Fortunately, the D2W class provides methods that
create such components:

public WOComponent d2wList() {

 ListPageInterface
lpi=D2W.factory().listPageForEntityNamed("Movie",session());

 lpi.setDataSource(movieDisplayGroup.dataSource());

 lpi.setNextPage(this);

 return (WOComponent)lpi;

 }

Notice that before you return the component, you must set things such as the
data source for the component and the page to go to when users click the Return
button (setNextPage).

Setting Up a Next-Page Callback
For query pages, you must create a component implementing the
QueryPageInterface, and this component must create a callback object (an
object that implements the NextPageCallback interface) that is pushed back
into the page with the component is returned. When the submit button is
clicked for the query (Query DB), the callback method is invoked.Here is an
example of how to provide a callback:

public WOComponent d2wList() {

QueryPageInterface qpi=D2W.factory().queryPageForEntityNamed(“Movie”,
session());

qpi.setNextPageCallback(new NextPageCallback() {

public WOComponent nextPage(WOComponent sender) {

EODataSource=((QueryPageInterface)sender).queryDataSource();

myDisplayGroup.setDataSource(dataSource);

movieDisplayGroup.fetch();

return MyComponent.this;

}

});

return (WOComponent) qpi;

}

136

Deploying a Direct To Web Application
Deploying a Direct To Web Application

To deploy a Direct to Web application, you need to take a couple of steps
in addition to the standard derployment procedure (as described in Serving
WebObjects).

• Make sure that the D2WLiveAssistantEnabled command-line option is
set to NO. The WebAssistant should not be accesible in deployment
mode; it is strictly a development tool for configuring your application.

• Because the Direct to Web pages are built dynamically, they take more
time to render than regular WebObjects pages. To improve
performance, you should consider “freezing” some of the more
sophisticated pages, especially the list pages. (See “Generating
Components” (page 126) for instructions on freezing pages.)
Remember, though, that after you freeze a page you cannot customize
your page with WebAssistant.
137

Chapter 4 Direct To Web
138

	WebObjects Tools and Techniques
	Setting Up
	Creating WebObjects Application Projects
	Choosing Assistance
	Choosing the Programming Language

	The Structure of a WebObjects Application Project
	Adding or Deleting Items From a Project
	Web Components
	Classes
	Headers
	Other Sources
	Resources
	Web Server Resources
	Subprojects
	Supporting Files
	FrameWorks
	Libraries
	Non Project Files
	Opening an Existing Project

	Editing Your Project's Source Files
	 Editing Your Component's HTML and Declarations Files
	Building Your Application
	The Application Wrapper
	Launching Your Application
	Installing Your Application

	Rapid Turnaround Mode
	Rapid Turnaround and Direct Connect Mode
	Testing With a Web Server

	Editing
	The Component 'window
	The WebObjectsx Builder Toolbar
	Editing Modes
	Entering Text
	Creating Elements With the Toolbar
	Menu Equivalents For Toolbar Commands
	Selecting Elements
	Hiding Editing Marks

	The Inspector
	Structure Elements
	Paragraphs
	Lists
	Headings
	Horizontal Rule
	Images
	Custom Marker
	Removing Elements or Text From a Container
	Working With Tables
	Creating Tables
	Table Editing Modes
	Sizing Tables
	Inspecting Tables, Rows, and Cells

	Creating Hyperlinks
	Setting Page Attributes
	Setting Colors
	Palettes
	Creating and Using Palette Items
	Changing a Palette Icon

	Dynamic Elements
	Working With Dynamic Elements
	Introduction to Dynamic Elements
	Attributes
	Creating Dynamic Elements
	Using the Toolbar
	Dragging Elements into the Component Window
	Using the Add WebObject Panel

	The Object Browser
	Creating Variables and Methods in WebObjects Builder
	Adding Display Groups
	Configuring the Display Group
	Creating a Detail Display Group

	Binding Elements
	Creating Form-Based Dynamic Elements
	Dynamic and Static Inspectors
	Creating Other WebObjects
	Dynamic Strings
	Dynamic Hyperlinks
	Repetitions
	Conditionals
	Custom WebObjects
	Generic WebObjects
	Dynamic Images
	WOApplets

	Reusable Components

	Direct To Web
	Direct To Web
	Creating a Direct to Web Project
	The Different Looks for WebObjects Applications

	The Structure of a Direct to Web Project
	Using Your Direct to Web Application
	Launching a Direct to Web Application
	The Login Page
	Dynamically Generated Pages
	Query Pages
	List Pages and Select Components
	Inspect and Edit Pages
	Edit-Relationship Pages
	Master-Detail Pages

	Customizing Your Application With WebAssistant
	Running WebAssistant With appletviewer
	WebAssistant Overview
	Restricting Access to Entities
	Customizing Pages
	Setting Which Properties are Displayed
	Changing How Properties Are Displayed
	Textual Attributes and Formatting
	Representation of Relationships

	WebAssistant Expert Mode

	Generating Components
	Modifying Your Application’s Code
	Using Direct to Web in Other WebObjects Applications
	Embedding Direct to Web Components
	Direct to Web Component Reference

	Linking to a Direct to Web Page
	Setting Up the Page Wrapper
	Implementing the Action Method
	Setting Up a Next-Page Callback

	Deploying a Direct To Web Application

